
C-command dependencies as TSL string constraints

Thomas Graf
Stony Brook University

mail@thomasgraf.net

Nazila Shafiei
Stony Brook University

nazila.shafiei@stonybrook.edu

Abstract
We provide a general formal framework for
analyzing c-command based dependencies in
syntax, e.g. binding and NPI licensing, from
a subregular perspective. C-command rela-
tions are represented as strings computed from
Minimalist derivation trees, and syntactic de-
pendencies are shown to be input-output tier-
based strictly local over such strings. The
complexity of many syntactic phenomena thus
is comparable to dependencies in phonology
and morphology.

1 Introduction

The last decade has seen tremendous progress in
the subregular analysis of phonology and mor-
phology (see Chandlee 2017, Heinz 2018 and ref-
erences therein). The subregular program is con-
cerned with identifying proper subclasses of the
regular languages that are sufficiently powerful for
natural language, and to convert these tighter com-
plexity bounds into typological predictions and
new learning algorithms.

Extending the subregular approach to syntax
has proven more challenging because syntactic de-
pendencies are not regular over strings, let alone
subregular (Chomsky, 1957; Huybregts, 1984;
Shieber, 1985; Michaelis and Kracht, 1997; Ko-
bele, 2006). But syntactic dependencies seem to
be subregular over tree structures (Graf, 2012).
More recently, a series of arguments (Graf,
2018a,b; Graf et al., 2018) has been presented that
dependencies in phonology, morphology, and syn-
tax are all of comparable subregular complexity
once one picks a suitable data structure (string-like
vs. trees). More precisely, all dependencies are
conjectured to belong to natural extensions of the
class tier-based strictly local (TSL; Heinz et al.,
2011; Graf and Mayer, 2018).

While this claim is well-supported for phonol-
ogy and morphology, it is on shakier ground for

syntax. It seems to hold for subcategorization
and displacement (Merge and Move in Chom-
skyan terms) and some kinds of NPI-licensing
(Vu, 2018). But it may fail for constraints based on
c-command, which are numerous in syntax. This
paper argues that these dependencies are also TSL
given the right kind of representation.

We define a general procedure for converting c-
command dependencies to string languages. Intu-
itively, our procedure amounts to little more than
making c-command a basic relation in syntac-
tic representations (cf. Frank and Vijay-Shanker,
1999). Formally, we represent Minimalist gram-
mar derivations (Stabler, 1997) as dependency
trees (cf. Brody, 2000; Kobele, 2002) and then as-
sociate each node with a string of nodes that c-
command it. Principle A of binding theory, for
example, then requires that a string that ends in
a reflexive must contain a potential binder some-
where between the reflexive and the head of its
binding domain. Based on a preliminary analy-
sis of c-command dependencies in the literature,
we contend that they all fit into extensions of TSL
that have been proposed for phonology and mor-
phology.

The paper proceeds as follows. We first discuss
some general preliminaries (§2), including MGs,
dependency trees, and subregular syntax. After
that, c-strings are introduced as a string-based rep-
resentation of c-command relations (§3.1), and
various syntactic phenomena are characterized in
these terms (§3.2). We then show that the depen-
dencies of these phenomena are input-output tier-
based strictly local (Graf and Mayer, 2018) over c-
strings (§4), and we explain why this likely holds
for all c-command dependencies in syntax. Some
final complications introduced by movement are
discussed in §5.

205
Proceedings of the Society for Computation in Linguistics (SCiL) 2019, pages 205-215.

New York City, New York, January 3-6, 2019

2 Preliminaries

While the ideas presented in this paper are fairly
intuitive, a sufficiently rigorous description re-
quires a broad formal background. We first intro-
duce some basic notation (§2.1) and then discuss
Minimalist grammars as a formal model of syntax
(§2.2). We also explain how their derivation can be
encoded as dependency trees, which will be used
in §3 to easily compute the c-commanders for any
given node. After that, §2.3 surveys some recent
developments on subregular syntax and why this
paper pursues a different route.

2.1 Formal language theory
We follow the standard notation for strings: ⌃ by
default denotes a fixed alphabet, " is the empty
string, S⇤ is the Kleene closure of set S, S+ is
S⇤ � {"}, S is ⌃� S, and instead of {a} we may
simply write a.

2.2 Minimalist grammars
In order to assess the complexity of syntactic
dependencies, we need a formal model of syn-
tax. We choose Minimalist grammars (MGs; Sta-
bler, 1997, 2011). MGs are inspired by Chomsky
(1995) but can incorporate a wide range of ideas
from the syntactic literature (see Graf 2013 and
references therein). This makes them an ideal test-
ing ground for c-command dependencies.

Every MG is a finite set of lexical items that
are annotated with strings of features to drive the
structure-building operations Merge and Move.

Example 1 (Merge). The noun car only carries
the category feature N�. The determiner the car-
ries a matching selector feature N+. The full fea-
ture string for the is N+D�. This indicates that
the first selects a noun and then acts as DP that
can be selected by anything with the matching se-
lector feature D+. The possessive marker ’s, on
the other hand, must select both a noun as its com-
plement and a DP as its specifier. Hence its feature
string is N+D+D�.

Example 2 (Move). The determiner which is sim-
ilar to the, except that it also undergoes wh-
movement after it has been selected. Therefore
its feature string must include a licensee feature
wh� at the very end: N+D�wh�. At least in
some cases the landing site of the wh-mover is
an empty CP-specifier. In order to allow for this,
the grammar must contain a lexical item whose
phonetic exponent is " and whose feature string

is T+wh+C�. Here wh+ is a licensor feature that
marks the empty C-head as a landing site for wh-
movement.

As every MG builds a phrase structure tree via
a sequence of Merge and Move steps, every syn-
tactic tree can be fully specified by its derivation.
The derivation, in turn, can be represented as a
tree, which may take the form of a dependency
tree as shown in Fig. 1 (cf. Brody, 2000; Kobele,
2002). In an MG dependency tree, a node d is
the daughter of node n iff n selects d. For MGs,
this means that X� on d and a matching X+ of
n were checked as part of the same Merge opera-
tion. We assume that the linear order of siblings
is the reverse of the order of selection, so that the
first argument of a head is its rightmost daughter.
Movement is not indicated in dependency trees as
it can be inferred from the distribution of licensor
and licensee features.

2.3 MGs as subregular tree languages

It has been known for a long time that every
MG’s set of well-formed derivation trees forms
a regular tree language (Michaelis, 2001; Kobele
et al., 2007). While these results build on a dif-
ferent derivation tree format, they also hold for
the dependency tree format in this paper because
the latter can be obtained from the former by a
regularity-preserving tree transduction.

It has also become clear, though, that MG
derivation tree languages are not just regular, but
subregular (Graf, 2012). Most recently, Graf
(2018b) showed that they belong to the formal
class TSL. This class was first defined for strings
to handle some phenomena in phonology (Heinz
et al., 2011). Graf lifts TSL from strings to trees.
Intuitively, TSL masks out parts of the tree that
are irrelevant for a given dependency and then
puts locally bounded constraints on the remain-
der. Graf limits his attention to Merge and Move,
but follow-up work has since argued that NPI-
licensing and morphological case also fit into this
class (Vu, 2018; Vu et al., 2019). If correct, this
would not only suggest a new kind of computa-
tional parallelism between language modules, but
might also prove useful for parsing and learning
algorithms.

Although we believe this work to be very
promising, it is still based on detailed case stud-
ies and has not yielded any general properties that
guarantee that TSL is a safe upper complexity

206

" :: T+top+C�

" :: V+nom+T�

likes :: D+D+V�

’s :: N+D+D�nom�

John :: D� mother :: N�

this :: N+D�top�

car :: N�

CP

DP

this car

C0

C TP

DP

John D0

’s mother

T0

T VP

t V0

likes t

Figure 1: A dependency tree representation of an MG derivation, with its corresponding phrase structure tree to the
right. Movement is indicated by arrows for the reader’s convenience, it is not part of the tree. Crucially, moving
phrases remain in their base position in the dependency tree.

bound for all attested syntactic dependencies. In
addition, the step from strings to trees compli-
cates the comparison to phonology and morphol-
ogy. Several subregular classes besides TSL have
been argued to play a central role in these domains,
e.g. SP (Rogers et al., 2010) and IBSP (Graf, 2017,
2018a). The latter is difficult to lift from strings
to trees, whereas the former seems ill-suited for
syntactic dependencies based on preliminary work
of ours. For these reasons, a string-based view
of syntactic dependencies is a welcome alterna-
tive that makes it easier to compare phonology and
syntax. As we argue in this paper (§4.2), it also
provides some general insights that make it very
likely that all c-command dependencies fall within
a subregular region that is also occupied by depen-
dencies in phonology and morphology.

3 C-command relations as strings

We are finally in a position to demonstrate how
c-command dependencies reduce to constraints on
strings. We first present the general idea in §3.1
and then apply it to several examples in §3.2. We
only describe the relevant string languages and
wait until §4 to show that they fit into (extensions
of) TSL.

3.1 Idea and definition
The dependency graphs make it very easy to en-
force c-command requirements for any given node
— at least if one puts aside movement, as we will
do until §5. Until then, “c-command” only means
“c-command between base positions before move-
ment”.

If u is a left sibling of v in an MG dependency
tree t, then (the phrase headed by) u c-commands

(the phrase headed by) v. This is illustrated by
John and mother in Fig. 1. In addition, v is c-
commanded by almost every node that dominates
it. Looking again at Fig. 1, we see that the T-
head and the C-head dominate John in the de-
pendency tree and c-command John in the phrase
structure tree (at the position marked by the trace
in Spec,VP).

One minor wrinkle is the relation between
heads and their specifiers. The former do not c-
command the latter, but they do so according to
our definition. Hence our notion of command is
actually a hybrid of c-command and m-command
(Aoun and Sportiche, 1983). One may call it
d[erivational]-command to emphasize this differ-
ence: a node d-commands all its right siblings, all
its daughters, and everything that is d-commanded
by its siblings or daughters. As far as we can
tell, the minor differences between c-command
and d-command are immaterial for all syntactic
dependencies that have been argued to involve c-
command, and we will continue to use c-command
as the general term instead of d-command when-
ever this does not cause any confusion.

Note that d-command is a highly natural rela-
tion over derivation trees as it encodes prominence
with respect to feature checking. Based on the
definition above, x d-commands y iff x had one
of its Merge features checked more recently than
y. A specifier s of head h d-commands a com-
plement c of h because s has been selected more
recently than c. And h d-commands s because h
is selected by some other head after s has been se-
lected. C-command as a basic relation of syntax
is difficult to motivate (but see Epstein et al. 1998
and Chametzky 2000, 2011). D-command, on the

207

other hand, falls out naturally from the MG fea-
ture calculus and thus is a plausible primitive for
syntactic dependencies.1

One can automatically calculate for every node
a string representation of the relevant command re-
lations. Let T be a tree such that node m has the
daughters d1, . . . , di, d, di+1, . . . , dn, with n � 0.
The immediate c[ommand]-string ics(d) of d is
the string d di · · · d1. For every node n of T , its
c[ommand]-string cs(n) is recursively defined as
shown below, where · indicates string concatena-
tion:2

cs(n) :=

(
ics(n) if n is the root of T

ics(n) · cs(m) if m is n’s mother

Note that c-strings sort d-commanders in a
bottom-up fashion, which usually yields the re-
verse of their linear order in the string. For im-
proved readability, we omit all features and re-
place empty heads by their category.
Example 3. Consider once more the dependency
graph in Fig. 1. While the immediate command
string of car is just car, its c-string is car this ’s
likes T C.

The next subsection illustrates how a number of
syntactic phenomena can be reinterpreted as con-
straints on c-strings. Even more strikingly, these
constraints are fairly intuitive, and as we will see
in §4, their subregular complexity is largely in line
with what has been found in phonology and mor-
phology.

3.2 Examples of syntactic constraints
It is beyond the purview of this paper to exhaus-
tively analyze every syntactic dependency that
has been claimed to involve c-command. Con-
sequently, we limit ourselves to a representative
sample of NPI-licensing (§3.2.1) and binding ef-
fects (§3.2.2–§3.2.4). Due to space restrictions,
we are also limited to high-level discussions that
illustrate the general ideas but do not account for
all details and potential complications (cf. §3.2.5).

1If one wants to include c-command relations created by
movement, it suffices to broaden the definition such that any
kind of feature checking induces d-command relations, not
just those affecting category and selector features.

2C-strings over dependency trees are closely related to the
concept of spine languages (cf. Martens et al., 2008; Graf,
2012). In spine languages, ics(n) and cs(m) would be sep-
arated by a distinguished symbol, e.g. |. We omit this here
for simplicity, but point out that preliminary work of ours
suggests that | is needed in some cases to correctly define
locality domains.

3.2.1 NPI licensing
NPIs can occur in a variety of contexts, but the
central syntactic licensing condition is c-command
by a downward-entailing operator. We can capture
this in terms of conditions on string languages. If
a c-string ends in an NPI, then it must also contain
a licensor such as no or nobody. So the required
string language is NPI · · · {no, nobody} · · · . This
ensures that no NPI can ever occur without a c-
commanding licensor.

Example 4. Consider the ill-formed ⇤Every stu-
dent said that the train ever arrives on time. As-
suming that ever is a functional head between V
and T, its c-string is ever T that every said T C.
Since this string is not a member of the NPI-
licensing language, ever is not licensed and the
sentence is illicit.

As is witnessed by Have you ever been to Rus-
sia, NPIs are also licensed in questions. We can
readily accommodate this by adding interrogative
C-heads to the set of licensors. Overall, then, the
c-string pattern for NPI-licensing is NPI · · · Lic
· · · , where Lic is a downward entailing quantifier
or an interrogative C-head.

3.2.2 Locally bound reflexives
Principle A requires that reflexives must be bound
within their binding domain, usually a TP contain-
ing an abstract subject. When construed as a dis-
tributional constraint, this reduces to the presence
of a DP in the binding domain that c-commands
the reflexive and matches its �-features (person,
number, and gender).

In MGs, every TP with an abstract subject is
headed by a lexical item with category feature T�

and licensor feature nom+. Let T be the short-
hand for any such LI, R[�] a reflexive, and D[�] a
matching determiner. Since MGs have finite lex-
icons, one can list for each reflexive which deter-
miners match its �-features. Then Principle A cor-
responds to the string language R[�] T

⇤
D[�] · · · ,

where T
⇤ is a (possibly empty) string that contains

no instances of T .

Example 5. Contrast the well-formed John said
that Mary likes herself with the ill-formed ⇤John
said that Mary likes himself. The former has the
c-string herself Mary likes T that John said T C.
Since Mary is �-feature compatible with herself
and occurs between the reflexive and the T-head,
Principle A is satisfied. In the ill-formed sentence,
herself is replaced by himself. The closest com-

208

patible D-head is John, but since a finite T-head
occurs between John and the reflexive, Principle A
is violated.

3.2.3 Non-locally bound reflexives
The reflexive sig in Swedish only partially obeys
Principle A. It still requires a syntactic binder, but
said binder must not be part of the same binding
domain (Kiparsky, 2002). The corresponding c-
string language is R[�] · · · T · · · D[�] · · · .

Example 6. Suppose for the sake of argument
that English himself behaves like Swedish sig, and
consider again John said that Mary likes himself/
herself. Then the sentence with herself would be
ill-formed, but not the one with himself. And as
the reader may verify for themselves, only the c-
string of himself fits the pattern above.

3.2.4 Principle B
Principle B regulates the distribution of syntacti-
cally bound pronouns. Pronouns in English can
always be discourse-bound, so their distribution
is unproblematic. Marathi, on the other hand,
has pronouns that must be syntactically bound
(Kiparsky, 2002). Like standard pronouns, they
I) must be non-locally bound, and II) cannot have
the same referent as a local c-commander. Condi-
tion II) makes the distribution of Marathi pronouns
much harder than that of Swedish sig-reflexives.

From a distributional perspective, Principle B
enforces a counting condition: if a pronoun is
c-commanded by n pronouns in the same bind-
ing domain, then at least n potential antecedents
must c-command the binding domain in order to
furnish at least one grammatical reading. Tem-
porarily putting aside �-features, this yields the
string template ↵T� such that ↵,� 2 ⌃⇤, ↵
starts with a pronoun, and the total number of R-
expressions (i.e. D-heads) in � exceeds the num-
ber of pronouns in ↵; pronouns are counted as R-
expressions in � because they can bind pronouns
in ↵. Without further assumptions, this pattern is
context-free and thus much more complicated than
any of the previous c-string languages.

But Graf and Abner (2012) show that even
though a binding domain may contain an un-
bounded number of pronouns, most of them can
share the same referent. Pronouns within distinct
adjuncts can pick out the same referent, and other
constructions such as coordination are very lim-
ited in how they interact with bound pronouns. As
a result, there is an upper bound n on the number

of distinct antecedents that are needed to license
all pronouns in a binding domain. This guarantees
regularity and, as we will see in §4.3, subregularity
by virtue of being definable in IO-TSL.

Example 7. Suppose for the sake of argument
that English pronouns always require syntactic an-
tecedents. Then the sentence John thinks that he
likes him is ungrammatical, whereas John told Bill
that he likes him is well-formed. This immediately
follows from the c-string of the second pronoun in
each sentence. One is him he likes T that John
thinks T C and thus does not furnish enough an-
tecedents for him and he. The other c-string pro-
vides the required minimum of two antecedents,
namely John and Bill: him he likes T that Bill John
told T C.

3.2.5 Caveats
Each one of the phenomena above has several
complications. What counts as an NPI licensor
depends on the position of the NPI. For exam-
ple, every can license an NPI if it occurs in a rela-
tive clause modifying the argument of every. Simi-
larly, many reflexives are exempt from Principle A
when they occur inside certain adjuncts, and some
languages like Icelandic allow for long-distance
binding only under specific circumstances. These
are serious complications. A careful analysis of
any one of these phenomena arguably requires a
full-length journal paper. Nonetheless we believe
that these complications would render the string
patterns more complicated, but not more complex.
The reason for this is explained at the end of the
next section, which analyzes the subregular com-
plexity of syntactic dependencies over c-strings.

4 Subregular complexity

We have successfully reduced c-command depen-
dencies to regular string languages. But regularity
is a loose upper bound. As we explain next, the
c-string languages from the previous section all fit
into IO-TSL, the class of input-output tier-based
strictly local string languages. This class has re-
cently been proposed as an upper bound on phono-
tactic complexity (Graf and Mayer, 2018). We first
present the defintion IO-TSL (§4.1) and provide a
general IO-TSL strategy for capturing dependen-
cies over c-strings (§4.2). This strategy is then
exemplified with IO-TSL grammars for each one
of the templates from the previous section (§4.3).
In §4.4, we explain why IO-TSL is a meaningful

209

upper bound that makes testable predictions about
the shape of syntactic dependencies.

4.1 Defining IO-TSL
IO-TSL is an extension of the strictly local (SL)
languages. A language is SL iff it can be de-
scribed by a list of finitely many forbidden sub-
strings. IO-TSL enhances this with a local tier
projection mechanism: whether a symbol is pro-
jected on a tier depends on the symbol itself, its
local context in the string (i.e. up to m symbols
before and/or after it), and up to n previous sym-
bols on the tier.

Example 8. Unbounded tone plateauing forbids
any instances of the low tone L to occur between
two high tones H. So HLLL and LLLH are well-
formed, but HLLLH is not. One can capture this
by projecting L iff it occurs immediately to the
right of H, and projecting H iff the previous sym-
bol on the tier is L. The strings above would get
the tiers L, empty, and LH, respectively. If one for-
bids the substring LH on tiers, HLLLH is ruled out
as desired while HLLL and LLLH are still gener-
ated.

The rest of this subsection formalizes this in-
tuitive idea. Let ⌃ be some fixed alphabet and
s 2 ⌃⇤. The set fk(s) of k-factors of s consists of
all the length-k substrings of ok�1snk�1, where
o,n /2 ⌃ and k � 1.

Definition 1. A stringset L ✓ ⌃⇤ is strictly k-
local (SL-k) iff there is some G ✓ (⌃[{o,n})k

such that L = {s 2 ⌃⇤ | fk(s) \ G = ;}.

Intuitively, G defines a grammar of forbidden
substrings that no well-formed string may con-
tain. The class SL of strictly local stringsets isS

k�0 SL-k.

Example 9. The string language (ab)+ is gener-
ated by the grammar G := {on,ob, aa, bb, an}
and thus is SL-2. For instance, aba is illicit
because f2(aba) \ G = {an} 6= ;, whereas
f2(abab) \ G = ;.

Example 10. The finite language of all
strings of length 3 is SL-4. It is generated
by the grammar {abcd | a, b, c, d 2 ⌃} [
{abcd | a = o, d = n, b, c 2 ⌃ [{o,n}}.

The tier projection mechanism of IO-TSL is
defined in terms of contexts that specify when a
given symbol should be added to the tier. An
(i, j)-context c is a 4-tuple h�, b, a, ti with � 2 ⌃,

t a string over ⌃ [{o} of length j � 1, and
a and b strings over ⌃ [{o,n} of combined
length i � 1. The basic idea is that c specifies
that � should be projected whenever both of the
following hold: it occurs between the substrings b
(look-back) and a (look-ahead), and the tier con-
structed so far ends in t. Given a set of contexts
c1, c2, . . . , cn, we call it an (i, j)-context set iff for
every cm (1 m n) there are im i and
jm j such that cm is an (im, jm)-context.

Definition 2. Let C be an (i, j)-context set.
Then the input-output strictly (i, j)-local (IOSL-
(i, j)) tier projection ⇡C maps every s 2 ⌃⇤

to ⇡0
C(oi, sni,oj), where for � 2 ⌃ and

a, b, t, u, v, w 2 (⌃ [{o,n})⇤, it holds that
⇡0

C(ub,�av, wt) is

" if �av = ",
�⇡0

C(ub�, av, wt�) if h�, b, a, ti 2 C,
⇡0

C(ub�, av, wt) otherwise.

Example 11. Let ⌃ := {a, b, c} and consider the
tier projection that always projects the first and
last symbol of the string, always projects a, never
projects c, and projects b only if the previous sym-
bol on the tier is a. This projection is IOSL-(2,2).
The context set contains all the contexts below,
and only those:

• h�,o, ", "i for all � 2 ⌃,

• h�, ",n, "i for all � 2 ⌃,

• ha, ", ", "i,

• hb, ", ", ai.

Definition 3. A stringset L ✓ ⌃⇤ is input-
output tier-based strictly (i, j, k)-local (IO-TSL-
(i, j, k)) iff there exists an IOSL-(i, j) tier pro-
jection ⇡C and an SL-k language K such that
L := {s 2 ⌃⇤ | ⇡C(s) 2 K}. It is IO-TSL iff it
is IO-TSL-(i, j, k) for some i, j, and k.

The class TSL-k defined in Heinz et al. (2011) is
identical to IO-TSL-(1, 1, k). This shows that IO-
TSL is indeed a generalization of TSL. In fact,
I-TSL and O-TSL have been independently pro-
posed in computational phonology (Baek, 2017;
De Santo and Graf, 2017; Mayer and Major, 2018;
Yang, 2018), and Graf and Mayer (2018) show
that the combination of the two into IO-TSL fur-
nishes the additional power that is required for
Sanskrit n-retroflexion. Under the assumption that

210

dependencies in phonology and syntax are of com-
parable complexity, IO-TSL is a natural candidate
for a tighter upper bound on the complexity of
constraints on c-strings.

4.2 General IO-TSL strategy
The dependencies in §3.2 — and syntactic depen-
dencies in general — all share the common prop-
erty that even though there is no upper bound on
the length of c-strings, only a finitely bounded
number of elements actually matter. Which ele-
ments matter depends only on the local context
and which symbols are already on the tier. This
allows for a very general IO-TSL strategy: con-
struct tiers such that they only contain the rele-
vant elements. Then there are only finitely many
distinct tier configurations, and hence the set of
well-formed tiers is finite. As every finite string
language is SL-k for some k (cf. Ex. 10), sep-
arating the well-formed tiers from the ill-formed
ones becomes trivial. So the central challenge for
an IO-TSL treatment of c-command dependencies
lies in the construction of tiers, not the constraints
on those tiers.

The tier construction process also follows a gen-
eral template. We project tiers from left to right,
and the very first element is always projected —
this is an input-sensitive projection step. We then
use an output-sensitive projection strategy to only
project relevant elements.

Example 12. Suppose the first symbol to be pro-
jected is an NPI. Then only an NPI-licensor can
be projected next. After the first NPI-licensor has
been projected, no more symbols are put on the
tier. Since a single NPI-licensor is enough, we
never project more than one. So the tier either has
the form NPI NPI-licensor or just NPI. The former
is well-formed, the latter is not.

Example 13. If the first element is a reflexive that
is subject to Principle A, only T-heads and match-
ing D-heads need to be projected. Again nothing is
projected after this second projection step as Prin-
ciple A is already satisfied or violated depending
on whether the second symbol is T or D[�]. The
tier then has one of the following three forms: re-
flexive D, reflexive T, or just reflexive. The first one
is well-formed, the other two ill-formed.

If the first symbol on the tier is not subject
to any constraints, then nothing else is projected.
Proceeding in this fashion, we can define a sin-
gle IO-TSL grammar that generates every well-

formed c-string while forbidding those that violate
one of our string patterns from §3. This shows that
the whole system of syntactic dependencies is IO-
TSL, not just each individual dependency.

4.3 Example grammars for dependencies
Let us now apply this idea to the c-string tem-
plates from §3, repeated here for the readers con-
venience:

NPI · · · Lic · · ·
R[�] T

⇤
D[�] · · ·

R[�] · · · T · · · D[�] · · ·
↵T� (↵ starts with pronoun,
� has more R-expressions than ↵ has pronouns)

Now consider the corresponding projection
contexts for any arbitrary MG G. We first include
h�, ",n, "i for all � 2 G so that the first symbol
is always projected. Next we add hl, ", ", ti for all
l 2 G and t 2 G⇤ such that:

NPI t is an NPI and l an NPI licensor, or

Reflexive t is a reflexive, and l is either a T-head
carrying nom+ or a D-head with matching �-
features, or

sig either t is a sig-reflexive and l is a T-head car-
rying nom+, or t = uv with u a sig-reflexive
and v a T-head carrying nom+ and l is a D-
head with matching �-features.

The definition for sig is convoluted because it ac-
counts for both projection of T after sig and pro-
jection of D[�] after T and sig.

Next we forbid all bigrams of the form lp such
that either l is an NPI and p is not an NPI-licensor,
or l is a reflexive and p is not a matching D-head.
Note that this includes cases where p is no LI at all,
but rather the start/end of a tier. We also forbid all
trigrams that start with a sig-reflexive but do not
continue with a suitable T-head and a matching D-
head.

Example 14. Consider once more the illicit NPI
in example 4. Given the c-string ever T that every
said T C, the constructed tier is just ever, which
is forbidden. If every is replaced with no, the tier
becomes ever no and thus is well-formed. If ever
were always instead, the tier would just be always,
which is never illicit because no special licensing
is needed. Note that the tier never grows past ever
no, even for sentences like No student told no pro-
fessor that no train ever arrives on time.

211

Example 15. Suppose as in example 6 that En-
glish reflexives behaved like Swedish sig and thus
require a non-local binder. The c-string herself
Mary likes T that John said T C results in the illicit
tier herself T. But if herself is replaced by himself,
one obtains the well-formed tier himself T John in-
stead. This is also the tier for much longer sen-
tences such as Bill thinks Peter doubts that John
said that Mary likes him.

For Principle B, the projection strategy is very
similar.

• Project the first element, which is a pronoun
that must be syntactically bound.

• Also project such pronouns if the tier so far
contains i such pronouns and nothing else,
where i is less than some fixed bound n.

• Project a T-head carrying nom+ if the tier
only contains pronouns so far.

• Project an R-expression if the tier already
contains a T-head and at most n � 1 R-
expressions.

With this projection strategy, the longest possible
tier is of the form pron T Rn, and all illicit tiers
can be filtered out by (2n + 1)-grams.

As pointed out earlier, this analysis ignores
complicating factors such as additional licensing
configurations for NPIs, or �-feature matching in
Principle B. But this does not affect the core
property that guarantees the IO-TSL nature of
c-command dependencies: Each dependency re-
quires only a finite number of elements on the
tier, and by considering the entire tier built so far
one can ensure that no extraneous material is pro-
jected. In addition, each LI can only be subject
to finitely many licensing conditions. These two
facts jointly entail that the length of tiers can al-
ways be finitely bounded, which makes it trivial
to provide an SL grammar that rules out all il-
licit tiers. It is because of this fixed bound on the
number of elements that matter for any given c-
command dependency that IO-TSL is a safe upper
bound on the complexity of syntactic dependen-
cies over c-strings. This is also the reason why we
contend that IO-TSL could accommodate empiri-
cally more adequate characterizations of the phe-
nomena in §3 — the number of relevant lexical
items would still be finitely bounded within any
given c-string.

Admittedly, this strategy comes at the poten-
tial cost of large contexts. Fairly small contexts
seem to suffice for realistic examples, though, and
a smarter, less brute-force strategy may be able to
reduce their size even further. We would not be
surprised if most c-command dependencies turn
out to belong to IO-TSL-(3, 3, 3) or perhaps even
IO-TSL-(2, 2, 2).

4.4 Limits of IO-TSL dependencies

IO-TSL makes some strong predictions about
what shape linguistic dependencies can take and
how multiple c-command conditions may be in-
terwoven.

Example 16. Consider an unattested variant of the
long-distance Principle A that applies to Swedish
sig. In this variant, the reflexive and the antecedent
not only have to be separated by a T-head, but
each intervening T-head must be c-commanded by
some functional head F that is lower than the next
higher T-head. So the c-string language is not just
· · · D[�] · · · T · · · R[�], but rather ↵R[�] such that
I) ↵ contains at least one D[�] and, II) F occurs
between every two instances of T.

This string language is not IO-TSL because we
can no longer omit projecting all T-heads to the
tier. To see this, contrast the well-formed pat-
tern D[�](F T)⇤ F T (F T)⇤R[�] against the ill-
formed D[�](F T)⇤ T (F T)⇤R[�]. The only dif-
ference is the unlicensed T-head in the middle, so
this T-head must end up on the tier in order to dis-
tinguish well-formed from ill-formed strings. But
there is no context that can uniquely identify just
this T-head without projecting other T-heads or F-
heads. The set of well-formed tiers then would be
an infinite subset of {T, F}⇤ D[�] {T, F}⇤ R[�],
which is not SL unless the distance between D[�]
and R[�] is finitely bounded. Since there are no
additional factors that guarantee such a bound on
the distance between reflexive and licensor, our
unattested variant of sig-licensing is not IO-TSL.

This example highlights a crucial limitation of
IO-TSL: a long-distance dependency cannot apply
across an unbounded number of long-distance de-
pendencies that interact with it. The F -licensing
of T -heads would be unproblematic if it were an
independent constraint that must always be satis-
fied, rather than just being an extra condition on
sig-licensing. For then it would be a condition on
all c-strings that start with T-heads and could be
omitted in c-strings that start with reflexives. Al-

212

ternatively, F -licensing of T -heads could be cap-
tured if the distance between F and T were lo-
cally bounded. In this case, one could project F
and T only once and skip all other locally licensed
T -heads. Similarly, it would suffice to project at
most one unlicensed T -head. The result would be
tiers of the form D[�]↵R[�] where ↵ is T F T or
F T T . Then the tier language would once again
be finite. So a long-distance dependency can inter-
act with other dependencies, but either the number
of those dependencies or their locus of application
must be finitely bounded.

It is worth mentioning that this unattested ex-
ample pattern is easily defined in first-order logic,
which so far has been the only safe upper bound
on syntactic dependencies (Graf, 2012). The IO-
TSL perspective of c-command dependencies thus
improves on previous work by ruling out some lin-
guistically undesirable patterns.

5 Adding movement

The discussion so far has largely ignored the ef-
fects of movement on c-command relations. Un-
der the standard raising analysis, no does not
c-command ever from its base position in [No
train]i has ever seemed to me ti to ti arrive on
time. The c-command relation is derived by move-
ment. Our current notion of c-strings fails to cap-
ture this.

For most dependencies discussed in this paper,
it only matters that a dependent element has at
least one licensor in its c-string. In this case,
movement effects can be accommodated by mod-
ifying the construction of c-strings such that a
mover is also copied into its landing sites. The
c-string for ever in the previous example would be
ever no has C after the mover no is copied into the
position corresponding to its landing site.

But this covers only movement of a licensor.
Sometimes, a dependent element is licensed only
because it has moved out of a locality domain into
a higher position where it is accessible to its licen-
sor. In such cases, the c-string would be truncated
by deleting all material between the licensor and
the relevant occurrence, effectively pushing the li-
censee into a higher position.

This strategy shifts a lot of the burden to the cor-
rect construction of c-strings, which may be par-
ticularly complicated when both the licensor and
the licensee move. The construction of the appro-
priate c-string from a dependency tree is still de-

finable in first-order logic and hence subregular,
but this is a very generous upper bound. An in-
depth exploration of movement from a subregular
perspective has to be left for future work.

Conclusion

We have defined a string-based representation
format over dependency trees that allows for c-
command dependencies to be easily evaluated for
any given node. The dependencies over these
strings all fall within the class IO-TSL, which
was first defined for phonology (Graf and Mayer,
2018). This paper marks but a first step towards a
subregular theory of syntactic dependencies, and a
lot remains to be done.

The current approach only measures the com-
plexity of a syntactic dependency with respect to
a specific node. To check the whole dependency
tree, one has to evaluate the c-string of each node.
We do not know whether the TSL-approach of
Graf (2018b) provides a method for doing so. As
long as all dependencies are IO-TSL, though, the
well-formedness of the whole dependency tree can
be verified by a deterministic top-down tree au-
tomaton with a look-ahead of 1. This implies sub-
regular complexity and may even allow for highly
efficient parsing algorithms.

Dependencies that go beyond c-command can-
not be handled with our approach. This includes
binding via sub-command, parasitic gaps, and
across-the-board movement as an exception to the
coordinate structure constraint. It remains to be
seen whether they can be accommodated with tree
tiers as proposed in Graf (2018b), or whether a
completely new perspective is needed for these
phenomena.

References
Joseph Aoun and Dominique Sportiche. 1983. On the

formal theory of government. Linguistic Review,
2:211–236.

Hyunah Baek. 2017. Computational representation
of unbounded stress: Tiers with structural features.
Ms., Stony Brook University; to appear in Proceed-
ings of CLS 53.

Michael Brody. 2000. Mirror theory: Syntactic rep-
resentation in perfect syntax. Linguistic Inquiry,
31:29–56.

Robert A. Chametzky. 2000. Phrase Structure: From
GB to Minimalism. Blackwell, Oxford.

213

Robert A. Chametzky. 2011. No derivation with-
out representation. In Cedric Boeckx, editor, The
Oxford Handbook of Linguistic Minimalism, pages
311–326. Oxford University Press, Oxford.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, 27:599–641.

Noam Chomsky. 1957. Syntactic Structures. Mouton,
The Hague.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, MA.

Aniello De Santo and Thomas Graf. 2017. Structure
sensitive tier projection: Applications and formal
properties. Ms., Stony Brook University.

Samuel D. Epstein, Erich M. Groat, Ruriko
Kawashima, and Hisatsugu Kitahara. 1998. A
Derivational Approach to Syntactic Relations.
Oxford University Press, Oxford.

Robert Frank and K. Vijay-Shanker. 1999. Primitive c-
command. Ms., John Hopkins University and Uni-
versity of Delaware.

Thomas Graf. 2012. Locality and the complexity of
Minimalist derivation tree languages. In Formal
Grammar 2010/2011, volume 7395 of Lecture Notes
in Computer Science, pages 208–227, Heidelberg.
Springer.

Thomas Graf. 2013. Local and Transderivational Con-
straints in Syntax and Semantics. Ph.D. thesis,
UCLA.

Thomas Graf. 2017. The power of locality domains in
phonology. Phonology, 34:385–405.

Thomas Graf. 2018a. Locality domains and phonolog-
ical c-command over strings. To appear in Proceed-
ings of NELS 2017.

Thomas Graf. 2018b. Why movement comes for free
once you have adjunction. To appear in Proceedings
of CLS 53.

Thomas Graf and Natasha Abner. 2012. Is syntactic
binding rational? In Proceedings of the 11th In-
ternational Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+11), pages 189–197.

Thomas Graf, Alëna Aksënova, Hyunah Baek, Aniello
De Santo, Hossep Dolatian, Sedigheh Moradi, Jon
Rawski, Suji Yang, and Jeffrey Heinz. 2018. Tiers
and relativized locality across language modules.
Slides of a talk given at the 1-day workshop Parallels
Between Phonology and Syntax, July 9, Meertens
Instituut, Amsterdam, Netherlands.

Thomas Graf and Connor Mayer. 2018. Sanskrit n-
retroflexion is input-output tier-based strictly local.
To appear in Proceedings of SIGMORPHON 2018.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frank Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195.
Mouton De Gruyter.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

M. A. C. Huybregts. 1984. The weak adequacy of
context-free phrase structure grammar. In Ger J.
de Haan, Mieke Trommelen, and Wim Zonneveld,
editors, Van Periferie naar Kern, pages 81–99. Foris,
Dordrecht.

Paul Kiparsky. 2002. Disjoint reference and the typol-
ogy of pronouns. In Ingrid Kaufmann and Barbara
Stiebels, editors, More than Words, volume 53 of
Studia Grammatica, pages 179–226. Akademie Ver-
lag, Berlin.

Gregory M. Kobele. 2002. Formalizing mirror theory.
Grammars, 5:177–221.

Gregory M. Kobele. 2006. Generating Copies: An In-
vestigation into Structural Identity in Language and
Grammar. Ph.D. thesis, UCLA.

Gregory M. Kobele, Christian Retoré, and Sylvain Sal-
vati. 2007. An automata-theoretic approach to Min-
imalism. In Model Theoretic Syntax at 10, pages
71–80.

Wim Martens, Frank Neven, and Thomas Schwentick.
2008. Deterministic top-down tree automata: Past,
present, and future. In Proceedings of Logic and
Automata 2008, pages 505–530.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from Uyghur backness
harmony. In Proceedings of Formal Grammar 2018.
To appear.

Jens Michaelis. 2001. Transforming linear context-free
rewriting systems into Minimalist grammars. Lec-
ture Notes in Artificial Intelligence, 2099:228–244.

Jens Michaelis and Marcus Kracht. 1997. Semilin-
earity as a syntactic invariant. In Logical Aspects
of Computational Linguistics, volume 1328 of Lec-
ture Notes in Artifical Intelligence, pages 329–345.
Springer.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Vischer, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christan Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Lan-
guage, volume 6149 of Lecture Notes in Artificial
Intelligence, pages 255–265. Springer, Heidelberg.

Stuart M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Phi-
losophy, 8(3):333–345.

214

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68–95. Springer, Berlin.

Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617–
643. Oxford University Press, Oxford.

Mai Ha Vu. 2018. Towards a formal description of
NPI-licensing patterns. In Proceedings of the Soci-
ety for Computation in Linguistics, volume 1, pages
154–163.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2019.
Case assignment in TSL syntax: A case study. To
appear in Proceedings of SCiL 2019.

Su Ji Yang. 2018. Subregular complexity in Korean
phonotactics. Undergraduate honors thesis, Stony
Brook University.

215

