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Abstract

Through Gradient Symbolic Computation
(Smolensky and Goldrick, 2016), in which in-
put forms can consist of gradient blends of
more than one phonological realization, we
propose a way of deriving surface forms in
complex inflectional paradigms that dispenses
with direct references to inflectional classes
and relies solely on relatively simple blends of
input expressions.

In languages whose inflectional systems have
a highly complex paradigmatic structure, it be-
comes a challenge to explain how a speaker can
produce a correct inflectional form when the num-
ber of possible forms is exceedingly large. As
Ackerman and Malouf (2013, p. 429) (henceforth
A&M) comment: “That speakers are able to do
this is a truly puzzling accomplishment given the
extraordinary variation and complexity attested in
the morphological systems of the world.” When it
becomes extremely difficult for a speaker to mem-
orize every possible inflectional form for every
lexeme in their language, it becomes attractive to
posit some means by which they can produce a
correct unmemorized form.

Three interacting types of paradigmatic com-
plexity that put a burden on learning are ad-
dressed here: (a) differences in inflectional ma-
terial across lexemes, which, descriptively, result
in division of lexemes into inflectional classes; (b)
syncretism, where the same inflectional material
occurs in different paradigm cells; (c) independent
subsystems of inflectional class behaviour, evident
in Mazatec (see §3.) These complexities are all
ways in which inflectional patterns depart from
canonicity as defined in detail by Corbett (2009);
Baerman and Corbett (2010); Stump (2016).

Through Gradient Symbolic Computation
(Smolensky and Goldrick, 2016), a type of Har-
monic Grammar, and with examples from Russian

and Mazatec1, we propose a system that enables
a speaker to produce correct forms of complex
paradigms through learnable input representations
without indexing to inflectional classes.

The paper is organized as follows. §1 introduces
GSC and how it can be applied to learning ex-
ponents of inflectional paradigms. §2 shows how
Russian noun inflection can be acquired through
this framework. §2.1 shows how GSC limits the
kinds of inflectional patterning that are possible.
§3 analyses complex paradigms in Mazatec, where
inflectional classes vary in three cross-cutting di-
mensions. §4 discusses testing and comparison
with other models. §5 summarizes how this frame-
work can both explain departures from canonicity
in inflectional paradigms and also constrain the de-
gree of departure from the canonical.

1 Gradient Symbolic Computation

We adopt here Gradient Symbolic Computation
(henceforth GSC), in which gradient inputs are
given numerical activation levels, which we shall
show to be learnable, and are evaluated with
weighted constraints that calculate the Harmony
of input candidates, where the candidate with the
greatest Harmony surfaces. This formalism is part
of a larger research program in which computa-
tion derives outputs from gradient representations
in phonology, syntax and semantics (Cho et al.,
2017; Faust and Smolensky, 2017; Faust, 2017;
Goldrick et al., 2016; Hsu, 2018; Müller, 2017;
Rosen, 2016, 2018; Smolensky et al., 2014;
Smolensky and Goldrick, 2016; Van Hell et al.,

1In response to a reviewer’s question about the effects and
degree of simplification of the paradigms of these two lan-
guages, we contend that (a) any linguistic analysis will have
some degree of simplification, (b) the paradigms are no more
simplified than those analysed by A&M and in fact include
more paradigm positions than are represented in their table
A6 (p. 457), and (c) nothing in the analysis was excluded be-
cause the model couldn’t handle it.
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2016; Zimmermann, 2017b,a, forthcoming).2

In the examples in §2 from Russian noun inflec-
tion, the surface exponents that can represent gen-
itive singular among the descriptive inflectional
classes, form a blend of input segments, which we
shall call ‘inflectional input’: {a, i}. A lexeme
(basic element of the lexicon) in descriptive class
1 whose genitive sg. is vina, ‘wine’ contributes
an input we shall call ‘base input’ that consists of
what is traditionally thought of as a stem plus a
blend of word-final segments {a, u, o} that mir-
rors segments that can occur in surface-final posi-
tion. We propose that it derives as follows, with
numerical details shown later in table 4.

Lexical base Inflectional affix

Input:

root︷︸︸︷
vin {a, u, o } GEN.SG. = {a, i}

Output: vin︸︷︷︸ a︸︷︷︸
root exponent affixal exponent

Table 1: Gen.sg. of lexeme, descriptive class 1

In this framework, a discrete output form is
chosen from possible candidates by the action
of Faithfulness constraints that are familiar from
Optimality Theory (Prince and Smolensky, 1993),
but which, in GSC, have weighted values and
evaluate gradient input activations. We assume
a highly-weighted quantization constraint quanti-
fied by an equation in Cho et al. (2017) that dis-
favours blended outputs and gives a higher Har-
mony to discrete non-blended forms. The tableaux
below thus ignore blended output candidates.3

Surface material that some models view as de-
riving solely from an affix input is derived here
from two distinct input sources, thus blending two
competing analyses: a constructivist approach that
builds whole words out of morphemes and a word-
based approach that seeks relationships between
whole word forms. The input representation of
a lexeme that includes affixal material as an in-
trinsic part of the word is based upon a whole-
word model; an affix as a fully independent in-
put follows a morpheme-based model. A simi-

2A reviewer asks what advantages this model
has over a “genuine connectionist model” such as
Goldsmith and O’Brien (2006); Kann and Schütze (2016);
Malouf (2018). In this model, the knowledge it contains is
completely transparent, whereas in the last two models cited
by the reviewer, it is not clear what kind of knowledge is
contained in those networks. (See §4 for further discussion.)

3But see Zimmermann (2017b,a, 2018) for analyses of
other phenomena in which outputs are also gradient.

CLASS 1 2 3 4
SINGULAR

NOM -o -∅ -a -∅
ACC -o -∅ -u -∅
GEN -a -a -i -i
DAT -u -u -e -i
LOC -e -e -e -i
INST -om -om -oj -ju

PLURAL

NOM -a -i -i -i
ACC -a -i -i -i
GEN -∅ -ov -∅ -ej
DAT -am -am -am -am
LOC -ax -ax -ax -ax
INST -am’i -am’i -am’i -am’i

Table 2: Russian noun paradigm

lar approach is taken by Smolensky and Goldrick
(2016), treating French liaison as derived from
both the end of a preceding word and the begin-
ning of a following word, thus combining two
competing approaches to liaison in the literature.

Any matching phonological material from the
two sources will combine through coalescence.
When there are multiple descriptive inflectional
classes, the exponent for a given inflectional com-
bination varies, depending not only on the lexeme,
but on the stem when there is stem allomorphy
(Stump, 2016). The current proposal for blended
word-final input segments that mirror affixes, di-
rectly encodes the fact that lexeme/stem choice
will affect affix-choice. Non-concatenative and
suppletive alternations can thus be represented as
well, as blends of different stem alternants occur-
ring underlyingly.

2 Learning Russian noun inflection

For ease of exposition, we first examine the rela-
tively simple paradigms of case/number noun suf-
fixes in Russian, with data from A&M p. 460 given
in table 2. For presentation purposes, we ignore
here the paradigm defectiveness of some Russian
nouns (Corbett, 2007).

The exponent that surfaces for a given stem
and person/number combination is the one with
the highest aggregate activation that surpasses
a threshold determined by MAX and DEP con-
straints to be defined below. When two in-
stances of the same exponent occur in both base
and inflectional input, they can coalesce together
in the output, with an aggregate input activa-
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Source a u o i
Base input 0.1 0.02 0.16
GEN-SG 0.3 0.26
Total 0.4 0.02 0.16 0.26

Table 3: Summed activations for class 1 GEN-SG

vin(0.1 · a, 0.02 · u, 0.16 · o) ‘wine’
+ GEN-SG(0.3 · a, 0.26 · i)

MAX DEP Harmony
5 −2

vin-a 2.0 −1.2 0.8
vin-u 0.1 −1.96 −1.86

vin-o 0.8 −1.68 −0.88

vin-i 1.3 −1.48 −0.18

vin-e −2.0 −2.0

vin 0.0

Table 4: Tableau for class 1 GEN-SG

tion that is the sum of the two source activa-
tions. Consider again the same genitive sin-
gular form vina given above in table 1. Sup-
pose that the base input has a blend of three
affix-mirroring segments with the following activ-
ity levels: vin + (0.1·a, 0.02·u, 0.16·o) and affixal
GEN-SING is a blend of segments (0.3·a, 0.26·i).
There are then four possible candidate segments
that have a non-zero input activation: /-a/, /-u/, /-o/
and /-i/, whose input activations will be the sums
of any pair of co-occurring segments that can coa-
lesce in the output as shown in table 3.

The segment a surpasses the relevant thresh-
old and surfaces, having the highest aggregate in-
put activation. Table 4 shows a harmonic tableau
for this form. In GSC, a MAX constraint (here
weighted 5.0) contributes positive Harmony pro-
portionate to the surfacing of underlying activa-
tion. A DEP constraint (here weighted at −2.0)
contributes negative Harmony for the deficit be-
tween input and output activations. We assume
that quantization will only allow surface activa-
tions of 0 or 1 so the tableau only considers candi-
dates with those values. The positive contribution
to Harmony from MAX for the winning candidate
is is 5 times the sum of its input activations for /a/
which are 0.1 from the base input plus 0.3 from
gen.sg. inflection input. The winning candidate
has the highest Harmony.

An affixless candidate incurs no MAX reward
or DEP penalty and will be optimal when all other
candidates have negative Harmony (table 5.)

vin(0.1 · a, 0.02 · u, 0.16 · o) ‘wine’
+ GEN-PL(0.28 · ov, 0.22 · ej)

MAX DEP Harmony
5 −2

vin-a 0.5 −1.8 −1.3

vin-u 0.1 −1.96 −1.86

vin-o 0.8 −1.68 −0.88

vin-ov 1.4 −1.44 −0.04

vin-ej 1.1 −1.56 −0.46

vin-e −2.0 −2.0

vin 0.0

Table 5: Tableau for class 1 GEN-PL

The following simple algorithm4 learned
blended base and inflectional input values such
that the optimal output candidate is the correct
target of learning for all 48 forms. Following
Faust and Smolensky (2017, page 2), not just an
individual segment but also other structures can
have an activity level.

• Initialize all activations at zero.
• Calculate the Harmony for each descriptive

stem-class/number/case combination.
• If the wrong affix is predicted, decrease its two

input activations if nonzero and increase the ac-
tivations of the desired affix. Stepsize 0.02.

• Repeat until all 48 paradigm positions are cor-
rectly predicted.

Tables 6 and 7 show the learned input values
after 72 iterations.

Nonzero inputs for an inflectional combination
indicate its set of possible exponents. A co-
occurring nonzero base input narrows down the
choice of those exponents. For example, the loca-
tive singular affix is -e for all descriptive classes
except class 4, where -i surfaces. The activation
of 0.12 for -i for a class 4 base input allows it to
surpass other competitors where it surfaces.

In summary, representing both base and inflec-
tional inputs with a blend of partially activated ex-
ponents allows a speaker to encode all the infor-
mation in a multi-class inflectional paradigm di-
rectly on the relevant input forms.

4A reviewer suggests that the contribution of this model
is theoretical rather than computational and that the learning
algorithm is ‘fairly trivial.’ We see no advantage in a model
of human learning that is intentionally complex; the focus of
this proposal is to contribute to computationally-based theo-
ries of human language rather than to test new computational
techniques.
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Class 1 2 3 4
a 0.1 0.04
e 0.12
u 0.02 0.06
om 0.04
ov 0.02
ax
am
am’i
i 0.1 0.12
oj 0.06
ju 0.06
o 0.16
ej 0.08

Table 6: Learned nonzero input values
Cell NSG ASG GSG DSG LSG ISG

a 0.28 0.3
e 0.26 0.3
u 0.28 0.3
om 0.3
ov
ax
am
am’i
i 0.26 0.22 0.24
oj 0.26
ju 0.26
o 0.24 0.22
ej
Cell NPL APL GPL DPL LPL IPL

a 0.24 0.24
e
u
om
ov 0.4
ax 0.3
am 0.3
am’i 0.3
i 0.3 0.3
oj
ju
o
ej 0.22

Table 7: Learned inflectional input values

2.1 Restricting possible paradigms

The Russian noun paradigm exhibits both syn-
cretism within descriptive inflectional classes and
variance of exponents for a given position across
inflectional classes. Our model predicts that there
are limits to such departures from canonicity. In
the dative singular, the affix is e in class 3 and i
in class 4. In the genitive singular, it is i for both

classes, making i syncretic across those two fea-
ture combinations for class 4. Our model predicts
the impossibility of the pattern in the right-hand
half of table 8.

Real Impossible
Class 3 Class 4 Class 3 Class 4

Gen. Sg. i i i e
Dat. Sg. e i e i

Table 8: Crossing diagonals

In the impossible paradigm, lines connecting
the two instances of i (coloured blue) and connect-
ing the two instances of e (coloured red) would
cross. Such diagonal crossing can be shown to
mathematically imply activation hierarchies that
lead to a contradiction (table 9) , where ι repre-
sents the activation of i and ϵ of e for a given (sub-
scripted) feature value or descriptive inflectional
class.

ιg.sg. + ι3 > ϵg.sg. + ϵ3 (1)

ϵg.sg. + ϵ4 > ιg.sg. + ι4 (2)

ιdat.sg. + ι4 > ϵdat.sg. + ϵ4 (3)

ϵdat.sg. + ϵ3 > ιdat.sg. + ι3 (4)

(1) + (2) : ι3 + ϵ4 > ϵ3 + ι4 (5)

(3) + (4) : ι4 + ϵ3 > ϵ4 + ι3 (6)

(6) contradicts (5)

Table 9: Contradictory inequalities

Thus, in spite of a common misconception that
“you can do anything with numbers”, the pro-
posed GSC model predicts that many conceivable
paradigms are impossible.

3 Learning inputs in Mazatec

We now consider verb paradigms in Chiqui-
huitlán Mazatec, a language with a high degree of
paradigmatic complexity. Jamieson (1982) shows
that its verbal inflectional morphology has three
separate dimensions in the affirmative forms of the
neutral and incompletive aspects: (a) a stem for-
mative (table 12), with 35 possible exponents, (b)
a final vowel (table 19), with 11 possible expo-
nents, and (c) a tone pattern (table 15), with 15
possible exponents. For example, in the neutral
1st person singular form in table 10, ba3sæ1, the
stem is merely the segment s. The stem formative
is ba, the final vowel is æ and the tone pattern is
3-1. Yet these 35×11×15 = 5775 hypothetically
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NEUTRAL INCOMPLETIVE

SG PL SG PL

1INCL ča2sẽ2 ča2sẽ42

1 ba3sæ1 ča2sı̃24 kwa3sæ1 ča4sı̃24

2 ča2se2 ča2sũ2 ča4se2 ča4sũ2

3 ba3se2 kwa4se2

Table 10: Paradigm for ‘remember’

possible combinations are actually reduced to 20
in Jamieson’s list of paradigms. Table 10 gives the
paradigm for ba3se2 ‘remember’ from A&M:450,
taken from Jamieson (1982, p. 167). This lexeme
is in stem formative descriptive class 11, tone pat-
tern class B 3-1 and final vowel class 2.

Combinations of morphosyntactic features are
represented by combinations of multiple expo-
nents, but there is no apparent correspondence be-
tween individual feature values and individual ex-
ponents. The surface form for a verb expresses
feature values for aspect, person and number, with
a stem formative, a tone pattern and a suffix vowel.

Stems in many cases consist merely of a single
segment. As A&M:447 observe, a stem is much
more easily identified by “its membership in an
inflectional class in each of three distinct cross-
cutting dimensions: tone pattern, final vowel, and
stem formative.” In the proposed blended repre-
sentations, a lexeme’s base input carries much of
the information that predicts what exponents it oc-
curs with, in this way identifying what can de-
scriptively be called its stem. It also directly en-
codes what is descriptively its inflectional class in
a way that is not possible in a model in which
paradigm information and stem information are
separate. Table 11 shows, with activation values
omitted for now, an example basic input-output
structure, which contains gradient blends of con-
sonants in the input.

Tone and final vowel omitted here
Lexical base Stem formative

Input: {b, kw, č} a
root︷︸︸︷
s 3rd.p.def.incomp.

{ >
sk, kwh, s, kw }

Output: kwa︸︷︷︸ s︸︷︷︸
stem formative root exponent

Table 11: Input-output for ‘remember’ 3rd.p.def.inc.

Some further complexities in Jamieson’s data
are omitted here for simplicity of exposition but

Class Stem formatives Representations
3def or 1s Oth.prsns

Neu. Incomp. Neu. Incomp. blend vowel
1 be kwe be kwe b,kw e
2 ba kwa ba kwa b, kw a
3 bo

>
sko čo čo b,

>sk, č o
4 bu

>
sku ču ču b,

>sk, č u
5 hu

>
sku čhu čhu h,

>sk, čh u
6 hi

>
ski čhi čhi h,

>sk, čh i
7 hba kwha hba kwha hb, kwh a
8 ✁ci ✁ci nı̃ nı̃ ✁c, n i
9 su su nũ nũ s, n u
10 bu ku bu ku b,k u
11 ba kwa ča ča b, kw, č a
12 ka

>
ska ča ča k,

>sk, č a
13 hba kwha nã nã hb, kwh, n a
14 ba kwa nã nã b,kw, n a
15 bi kwi bi kwi b,kw i
16 bu

>
sku ntu ntu b,

>sk, nt u
17 hi si či ši h, s, č, š i
18 hba kwha čha čha hb, kwh, čh a

Table 12: Representations of stem formatives

can be explained by our analysis. These include
suffixing of verbs, verb compounding, verbs with
no stem formative5 and stem suppletion.6

Among the 35 possible stem formatives, 11 pos-
sible final vowels and 15 possible tone patterns, a
given lexeme’s input form only needs a blend of a
small subset of each of these exponents.

3.1 Learning inputs for stem formatives

Consider first the stem formatives, shown in table
12 (Data from Jamieson (1982).)7

The proposed representation for each base input
is simply a blend of all its possible initial conso-
nants. The vowels stay the same across a class.
Which consonant surfaces depends on how this
blend interacts through coalescence of identical
consonants with an inflectional input blend of con-
sonant features.

Tables 13 and 14 show the results of the same
kind of algorithm discussed on page 3 for learn-
ing input activations of inflectional person-number
combinations and base inputs respectively.

It took 22 iterations to learn activations that
derive the correct stem formative consonants for
each of 4 person-number groups in 18 classes.

Abstracting away for now from tone and final
5If a stem formative is absent from the base input, an

anchoring constraint will prevent an inflection-based stem-
formative input from surfacing.

6Stem suppletion can be accounted for by an input that
includes a blend of different stem allomorphs each linked to
different inflectional features.

7Following Golston and Kehrein (1998), we take what
Jamieson transcribes as complex onsets and nuclei to be sim-
plex segments with secondary articulations.
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3def,1sg,neu 3def,1sg,incomp
b 0.27

>
sk 0.21

k 0.06 kwh 0.21
h 0.12 s 0.12
hb 0.12 kw 0.12
Other Neu. Other Incomp

b 0.21 č 0.15
č 0.21 kwh 0.12
n 0.21 n 0.21
nt 0.12 š 0.15

Table 13: Input activations for person/number

vowels, for kwa4se2 ‘remember’ (class 11), 3rd p.
def. incompl., the activations for the input given
above in table 11 are as follows.

Base input: (0.1·b, 0.3·kw, 0.3·č)as

Inflectional input:
(0.21·>sk, 0.21·kwh, 0.12·s, 0.12·kw)

For each candidate, an inflectional input can co-
alesce with a base input. The segment with the
highest combined activation surfaces, namely kw,
with an underlying activation of 0.3+0.12 = 0.42.
We assume the stem consonant and the vowel of
the stem formative to both have full 1.0 underlying
activations; thus no Harmony is gained by having
a gradient inflectional stem formative consonant
incorrectly coalesce with the stem consonant nor
for a gradient inflectional final vowel to incorrectly
coalesce with the stem formative vowel.

3.2 Learning inputs for tone patterns

Tone patterns, which fall into 11 descriptive
classes, were also learned by an algorithm that
separately learned patterns for the first and second
syllables.

Table 15 shows tone patterns listed by class and
person-number-aspect combination. (Data from
Jamieson (1982).)

There is some phonological predictability for
the tones of the second syllable, where 1 is the
highest tone and 4 the lowest:

• The initial tone on the second syllable can be no
lower than the final tone of the first syllable.

• If the initial tone of the second syllable is 3 or 4
and the same as the final tone of the first, there
is a further rise of two tone levels:

– e.g. 4 can be followed by 42 but not simple 4;
– 3 can be followed by 31 but not 3.
– 2 can only be followed by 2 or 24.

Class stem formative input activation
1 b 0.2

kw 0.3
2 b 0.1

kw 0.3
3 b 0.1

>
sk 0.2
č 0.2

4 b 0.1
>
sk 0.2
č 0.3

5
>
sk 0.2
h 0.2
č 0.3

6
>
sk 0.2
h 0.2
č 0.3

7 hb 0.3
kwh 0.2

8 ✁c 0.4
n 0.2

9 n 0.2
s 0.3

10 b 0.2
k 0.3

Class stem formative input activation
11 b 0.1

kw 0.3
č 0.3

12
>
sk 0.2
k 0.3
č 0.3

13 hb 0.2
kwh 0.2
n 0.2

14 b 0.1
kwh 0.2
n 0.3

15 b 0.2
kw 0.2

16 b 0.1
>
sk 0.2
nt 0.3

17 s 0.2
h 0.2
š 0.3
č 0.1

18 hb 0.2
kwh 0.1
č 0.3

Table 14: Input activations for stem formatives

– 1 can only be followed by 1.

• We can take the level 4 tone that occurs last in
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Neutral aspect
Class 3def 1s 1in 2s 1ex 2p
A 3-1 3-1 3-31 3-1 3-14 3-1
B1-1 2-2 1-1 2-2 2-2 2-24 2-2
B3-1 3-2 3-1 2-2 2-2 2-24 2-2
C 3-24 14-3 14-42 14-3 14-34 14-3
D1-1 1-1 1-1 3-2 3-2 3-24 3-2
D3-1 3-2 3-1 3-2 3-2 3-24 3-2

Incompletive aspect
A(1-7) 4-2 3-1 3-31 3-1 3-14 3-1
A(8-18) 4-2 3-1 4-31 4-1 4-14 4-1
B1-1 (1-7) 4-2 1-1 2-2 2-2 2-24 2-2
B1-1 (8-13) 4-2 1-1 4-42 4-2 4-24 4-2
B1-1 (14-18) 4-1 1-1 4-42 4-3 4-34 4-3
B3-1 (1-7) 4-2 3-1 2-2 2-2 2-24 2-2
B3-1 (8-13) 4-2 3-1 4-42 4-2 4-24 4-2
B3-1 (14-18) 4-1 3-1 4-42 4-3 4-34 4-3
C 3-24 14-3 14-42 14-3 14-34 14-3
D1-1 (8-13) 4-2 1-1 4-42 4-2 4-24 4-2

Table 15: Tone patterns

the 1st exclusive to be a separate tonal input for
1st-exclusive.

Tables 16 and 17 show the results of learning
algorithms for first and second syllable tones. Ten
iterations were required for syllable 1 and 22 it-
erations for syllable 2, with a stepsize of 0.05
for syllable 1 and 0.1 for syllable 2. Activations
were initialized at 0.2 for each base-input and
tonal person-number input for each tone pattern
that actually occurs. We assume there exists a Har-
monic Grammar analysis of the above constraints,
in which they have higher weight than Faithful-
ness, which will otherwise derive the pattern with
the highest aggregate activation.

A two-syllable base input has a tone linked to
the mora of each syllable. The inflectional in-
put has a linearly ordered sequence of two tones
on the tonal tier.8 A strongly-weighted anchoring
constraint will require the tones on the inflectional
input to line up with the tones on the base input
when they coalesce.

Consider the second person singular incomple-
tive of ‘remember’, ča4se2. This is tonal class B-
3-1 (8-13) with inputs shown in table 18. When
the two input sources coalesce on each syllable,
tone level 4 has the highest activation for syllable
1 of 0.25 + 0.1 = 0.35 and tone level 2 on syllable
2 of 0.4 + 0.0 = 0.4., both the correct tones.

3.3 Learning inputs for final vowels
Table 19, with data from Jamieson (1982) shows
the 10 descriptive classes of final vowels.

8In the 1st person exclusive, a level 4 tone will occur fur-
ther to the right of other tones.

First syllable tones
Tone class 1 2 3 4 14
A1-7 0.25 0.15
A8-18 0.2 0.25
B1-1-1-7 0.15 0.25 0.05
B1-1-18-13 0.2 0.25 0.2
B1-1-14-18 0.15 0.25 0.2
B3-1-1-7 0.3 0.2 0.1
B3-1-8-13 0.25 0.15 0.25
B3-1-14-18 0.25 0.1 0.25
C 0.2 0.35
D1-1 0.2 0.15 0.25
D3-1 0.15 0.2 0.25
Person/number 1 2 3 4 14
3def Neu. 0.05 0.25
1s Neu. 0.15 0.15 0.1
1in Neu. 0.2 0.15 0.05
2s Neu. 0.15 0.15 0.05
1ex Neu. 0.2 0.15 0.05
2p Neu. 0.1 0.1
3def Inc. 0.15 0.35
1s Inc. 0.25 0.15 0.1
1in Inc. 0.05 0.05 0.1 0.05
2s Inc. 0.05 0.1 0.1
1ex Inc. 0.05 0.05 0.1
2p Inc. 0.05 0.05 0.1

Table 16: Input activations for σ1 tones

Second syllable tones
Tone class 1 2 3 4 24
A1-7 0.2 0.2 -0.1
A8-18 0.5 0.2 0.2
B1-1-1-7 0.2 0.2
B1-1-18-13 0.4 0.2
B1-1-14-18 0.1 0.6 0.4
B3-1-1-7 0.2 0.2
B3-1-8-13 0.4 0.2
B3-1-14-18 0.5 0.4 0.2
C 0.3 0.3 0.2
D1-1 0.5 0.2
D3-1 0.1 0.5 0.2
Person/number 1 2 3 4 24
3def Neu. 0.2 0.4 0.2
1s Neu. 0.5 0.2
1in Neu. 0.1 0.5 0.8
2s Neu. 0.2 0.1 0.2
1ex Neu. 0.2 0.1 0.2
2p Neu. 0.2 0.1 0.2
3def Inc. 0.2 0.3 0.1 0.2
1s Inc. 0.5 0.3
1in Inc. 0.3 0.7
2s Inc. 0.1 0.3
1ex Inc. 0.1 0.2
2p Inc. 0.1 0.2

Table 17: Input activations for σ2 tones

The algorithm learns input values, shown in ta-
ble 20, for ±hi, ±lo, ±bk and nas features, with
coalescence of values from the two input sources.
A negative value in the table represents a positive
value for the negative binary feature: e.g. −0.1

108



Syllable 1
Tone → 1 2 3 4
Tonal class B-31 (8-13) 0.25 0.15 0.25
2nd sg. incomp. 0.05 0.1 0.1
Total 0.3 0.25 0.35

Syllable 2
Tone → 1 2 3 4
Tonal class B-31 (8-13) 0.4 0.2
2nd sg. incomp. 0.1 0.3
Total 0.1 0.4 0.3 0.2

Table 18: Aggregate activations

Class 3def 1s 1in 2s 1ex 2p
(basic)

1 i æ ẽ i ı̃ ũ
2 e æ ẽ e ı̃ ũ
3 æ æ ẽ e ı̃ ũ
4 u u ũ i ı̃ ũ
5 o o õ e ı̃ ũ
6 a a ã e ı̃ ũ
7 ı̃ ẽ ẽ ı̃ ı̃ ũ
8 ẽ ẽ ẽ ı̃ ı̃ ũ
9 ũ ũ ũ ı̃ ı̃ ũ
10 ã ã ã ı̃ ı̃ ũ

Table 19: Classes of final vowels

hi means 0.1 −hi. We assume that ∀i both +fi

and −fi do not occur in the same source. Table
21 shows input vowel features for ča4se2 ‘remem-
ber’, final-vowel class 2 in the 2nd sg. incomp.
(Wv denotes base input.)

hi lo bk nas
3def -0.1
1s -0.2 0.2
1in -0.2 0.2
2s 0.1 -0.3 -0.2
1ex 0.4 -0.2 -0.2 0.2
2p 0.4 -0.2 0.3 0.2

hi lo bk nas
Class 1 0.2 -0.1
Class 2 -0.2 -0.1 -0.1
Class 3 -0.2 0.2 -0.1
Class 4 0.4 -0.2 0.1
Class 5 -0.2 -0.3 0.1
Class 6 -0.2 0.1 0.1
Class 7 0.2 -0.1 -0.2 0.2
Class 8 -0.1 0.2
Class 9 0.4 -0.2 0.1 0.1
Class 10 0.1 0.1

Table 20: Input activations for vowel features

We adopt a second, strongly-weighted quantiza-

tion constraint from Cho et al. (2017) that requires
the sum of activations from a binary feature group
such as {+hi, −hi} to be 1. Thus −hi competes
with +hi and −hi surfaces because its higher ag-
gregate activation results in greater Harmony.

Feature 2nd-sg. Wv Winner
hi 0.1 −0.2 −hi

lo −0.3 −0.1 −lo

bk −0.2 −0.1 −bk

nas 0 nas

Table 21: Values for final-vowel class 2, 2nd-sg.

[−hi,−lo,−bk, 0 nas] = e, the correct final
vowel, is the output after quantization.

4 Testing and comparison with other
models

To test how a learner could predict an unseen in-
flectional form for a given stem, we ran cross-
vaidation on Mazatec stem formatives, tone pat-
terns and final vowels, with training set items
(70% of the total stemclass×inflection combina-
tions) picked randomly from a Zipf-Mandelbrot
distribution. On ten runs for each, the average
test accuracy was 83% for stem formatives, 87%
on tone 1, 92% on tone 2 and 89% on the final
vowel. As a baseline, we simultaneously tested
prediction of unseen forms based on frequency
of occurring stem formatives, for which the accu-
racy was 9.5%. The relative success of the model
in cross-validation is due to the syncretism that
occurs both within paradigms and across classes.
The following tableau shows how the correct stem
formative kwh is predicted for a never-encountered
3rd-definite-incompletive form of a class 7 stem
‘weave’ aPy9 in the holdout set, using activation
values that were learned for encountered forms.10

The strength of this model is that it directly
encodes knowledge of the tendency of an expo-
nent to occur for a given stem and for a given
morphosyntactic combination. For example, a
Mazatec class 1 stem with a stem-formative blend
(0.2·b, 0.3·kw) encodes the relative tendencies of
these two exponents to occur with this stem, with
zero-valued exponents having no inclination to
occur. In Kann and Schütze (2016) and Malouf

9Since the vowel a of the stem formative does not vary,
for convenience we can take it here to be part of the stem.

10Because the activation values were learned just for a ran-
dom training set, they will be different from those given in
tables 13 and 14 above.
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3RD-DEF-INC(0.1·a,0.15·>sk, 0.09·kwh , 0.12·s, 0.12·kw)

+(0.20·hb, 0.20·kwh) aPy- ‘weave’

MAX DEP Harmony
5 −1

>
sk-aPy- 0.75 −0.85 −0.10

kwh-aPy- 1.45 −0.71 0.74

s-aPy- 0.6 −0.88 −0.28

kw-aPy- 0.6 −0.88 −0.28
hb-aPy- 1.0 −0.80 −0.20

Table 22: Tableau for ‘weave’ class 7 3rd-def-inc.

(2018), there is no indication of what kind of
knowledge is represented by a given node or con-
nection. Goldsmith and O’Brien (2006)11 is more
similar to the present model but it is not clear
how weights from input to hidden-layer nodes
translate into feature-values on a symbolic level.
And its winner-take-all mechanism with no thresh-
old to surpass means than zero exponents in a
paradigm must be represented as such, rather than
resulting from any exponent failing to surpass a
threshold. This results in awkward representa-
tions when a form is expressed by multiple zero
affixes. The advantage of the GSC model, (see
Smolensky et al. (2014, p. 1103)) is that it com-
bines a subsymbolic neural level with a symbolic
level, i.e. ‘microlevel representations and algo-
rithms’ with symbolic grammatical theory, with an
interface between the two. The subsymbolic level
provides a platform for optimization and allows
gradient activations. When output activations are
quantized to discrete values they percolate to the
symbolic level which contains symbolic descrip-
tions that are familiar from symbol-based linguis-
tic theory.

5 Summary

Inflectional patterns in Russian and Mazatec de-
part from canonicity in a number of ways, as
was outlined on page 1. If these systems were
completely canonical, each morphosyntactic com-
bination of feature values would have a unique,
lexeme-invariant exponent. In our model, in Rus-
sian, the variance of an exponent across inflec-
tional classes is expressed directly by a blend of
segments in an underlying form, e.g. (a, i) for gen-
itive singular. Syncretism across inflectional fea-
ture combinations, such as multiple instances of -i
in several classes is expressed by its occurrence as

11See also Goldsmith and Rosen (2017), which has simi-
larities with the present model but differs in crucial ways.

a base input, so that it can coalesce with a match-
ing inflectional input12 for several feature combi-
nations. If a different exponent occurred in each
cell and there were no inflectional class divisions,
the URs could simply be a single non-blended ex-
ponent for each inflectional input, with no inflec-
tional formatives on base inputs. So the represen-
tations proposed here directly encode and capture
the kinds of departures from canonicity that occur.

In Mazatec, blended inputs capture not just de-
viation from paradigm canonicity but patterns of
predicability within its paradigm structure. Out
of 1235 possible stem-formative combinations that
could occur in 12 paradigm positions, Jamieson
only lists 18 classes. Blended input representa-
tions, in which no more than four phonemes oc-
cur for a base input or inflectional input, limit
how many stem formatives occur for a given lex-
eme and along with the occurrence of the same
blended inflectional inputs in multiple person-
number combinations, derive the syncretism that
occurs across those paradigm positions.

This approach can also derive subtractive mor-
phology, suppletion, umlaut and moraic augmen-
tation. For example, if an inflectional form is sub-
tractive relative to a base, the subtractable part can
have partial or negative-valued underlying activa-
tion in the UR and express morphosyntactic fea-
tures that affect its surfacing. Umlaut (Trommer,
2017) can be derived from a blend of different
vowel features where alternation occurs.

Given the vast number of ways that languages
can deviate from canonical inflection (Corbett,
2009, 2007; Baerman and Corbett, 2010; Stump,
2016), we hope with future research to explore
in the GSC framework how it is possible to learn
complex paradigmatic patterns in other languages.
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