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Abstract

In this paper we present the University of
Sheffield submissions for the WMT18 Qual-
ity Estimation shared task. We discuss our
submissions to all four sub-tasks, where ours
is the only team to participate in all language
pairs and variations (37 combinations). Our
systems show competitive results and outper-
form the baseline in nearly all cases.

1 Introduction

Quality Estimation (QE) predicts the quality of
Machine Translation (MT) when automatic eval-
uation or human assessment is not possible (typi-
cally at system run-time). QE is mainly addressed
as a supervised Machine Learning problem with
QE models trained using labelled data. These la-
bels differ for different tasks, for example, binary
labels for fine-grained predictions (e.g. OK/BAD
for words or phrases) and continuous measure-
ments of quality for coarse-grained levels (e.g.
HTER (Snover et al., 2006) for sentences).

For this year’s shared task, post-edited (PE) and
manually annotated data were provided. They
cover four levels of predictions: sentence-level
(task 1), word-level (task 2), phrase-level (task 3)
and document-level (task 4), over five language
pairs: English into German, Latvian, Czech and
French, as well as German-English. For the first
time, these data contain translations produced by
neural MT (NMT) systems. Such translations are
known to be more fluent but less adequate (Toral
and Sánchez-Cartagena, 2017).

For tasks 2 and 3, this year’s edition introduces
a new task variant of predicting missing words in
the translations. Thus two additional prediction
types are required: (i) binary labels for gaps in
the translation to indicate whether one or more to-
kens are missing from a certain position, and (ii)

binary labels for words in source sentences to indi-
cate which of these words lead to incorrect words
in the translations.

We participated with two different systems,
both available in the DeepQuest1 toolkit (Ive et al.,
2018):
• SHEF-PT: an in-house re-implementation of

the POSTECH system (Kim et al., 2017b),
and
• SHEF-bRNN: a bidirectional recurrent neu-

ral network (bRNN) system.
We participated in all sub-tasks and submitted a

total of 74 predictions (37 per system).

2 Systems Description

Our light-weight neural QE approach is based
on simple encoders and requires no pre-training
(bRNN). We compare its performance to the per-
formance of our re-implementation of the state-of-
the-art neural QE approach of Kim et al. (2017a,b)
(POSTECH), which uses a complex architecture
and requires resource-intensive pre-training.

2.1 Architecture

Following current best practices in neural
sequence-to-sequence modelling (Sutskever
et al., 2014; Bahdanau et al., 2015), our bRNN
approach employs encoders using recurrent neural
networks (RNNs). Encoders encode input into an
internal representation used to make classification
decisions. bRNN representations at a given level
rely on representations from more fine-grained
levels (i.e. sentences for document, and words for
phrase and sentence).
bRNN uses two bi-directional RNNs to learn the

representation of the<source, MT> sentence pair.
Source and MT RNNs are trained independently.

1https://sheffieldnlp.github.io/
deepQuest
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The two representations are then combined via
concatenation. For word-level QE, those represen-
tations (sequences of hidden states hj associated
with words) can be used directly to make classifi-
cation decisions. A sentence vector is a weighted
sum of word vectors as generated by an atten-
tion mechanism. Another output layer takes this
sentence vector as input and produces real-value
sentence-level quality scores.

For phrase-level QE, we have modified the
architecture described above. It takes a three-
dimensional MT input (batch length × sentence
length in phrases× phrase length in words).2 Con-
catenation of source and MT sentence represen-
tations, as performed in our word- and sentence-
level architecture, will require source inputs to be
three-dimensional as well. However, as the phrase
alignments are not provided with the task, three-
dimensional source inputs can not be formed with-
out an additional approximation.3 Instead, we fol-
low best practices of NMT (Bahdanau et al., 2015)
and implement its standard encoder-decoder archi-
tecture. The encoder creates source representa-
tions using a bidirectional RNN, at each timestep
the decoder produces a word representation tak-
ing into account not only the previously produced
representations, but also the sum of source word
representations weighted by an attention mecha-
nism.4 This process can be interpreted as defin-
ing word alignments: the resulting decoder repre-
sentations contain information on both MT words
and respective parts of the source attended at each
timestep. Each phrase representation can be com-
puted out of word vectors: average, maximum,
sum, etc. The resulting representations are pro-
vided to the output layer, as illustrated in Figure 1.

Our document-level framework is a wrapper
over sentence QE approaches. It uses a bidirec-
tional RNN to summarize sentence-level represen-
tations as document-level representations used for
regression.

More details on the architecture and implemen-

2Note that other architectural choices may lead to, for in-
stance, two-dimensional inputs (batch length × phrase length
in words). A representation of each MT phrase may be cre-
ated without taking the rest of the translated sentence into
account.

3For instance, we may assume that translation of a
phrase relies on the whole source sentence. Thus, a three-
dimensional input can be formed by simply repeating each
source sentence along the second axis to match respective
counts of phrases in each MT sentence.

4Note that Jhaveri et al. (2018) also use this architecture
for sentence-level QE.

Figure 1: bRNN phrase-level QE architecture.

tation of our sentence and document-level models
can be found in Ive et al. (2018).

2.2 Implementation Details

To train POSTECH’s predictor, we used the corre-
sponding parts of the in-domain corpora provided
by the organisers for the corresponding languages
(≈ 2M sentences were selected randomly per lan-
guage pair). The only exception was EN-LV for
which we had less than 2M sentences in the cor-
pus. Therefore, we combined the in-domain cor-
pus with the Europarl (version 8)5 and EMEA cor-
pus.6 This totaled in 1,241,615 EN-LV sentences.

For the word and phrase-level tasks, we tack-
led prediction of MT error tags, source tags and
MT gaps separately. For predicting source tags,
we built models by swapping source and MT in-
puts. POSTECH’s predictors were then trained
with swapped source and target inputs. For pre-
dicting gaps, we added a dummy word at the be-
ginning of each MT sentence to match the count
of gap tags per line.

We experimented with phrase-level representa-
tions and created them by computing the sum or
the average of composing word vectors. To opti-
mise the usage of computational resources, in each
experiment we fixed the size of a phrase in words
to the upper quartile of the respective distribution
in the training data.

For the document-level QE, we experimented
with sentence-level representations coming from
both bRNN and POSTECH architectures.

For our POSTECH-based document-level mod-
els, we experimented with predictors trained on a

5http://www.statmt.org/wmt17/
translation-task.html

6http://opus.nlpl.eu/EMEA.php
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SHEF-PT SHEF-bRNN Baseline
r MAE ρ r MAE ρ r MAE ρ

EN-DE – SMT 0.487 0.132 0.510 0.366 0.139 0.378 0.365 0.140 0.381
EN-DE – NMT 0.377 0.131 0.468 0.381 0.130 0.480 0.287 0.129 0.420
EN-LV – SMT 0.375 0.141 0.329 0.396 0.138 0.332 0.353 0.155 0.348
EN-LV – NMT 0.463 0.166 0.446 0.421 0.172 0.409 0.444 0.163 0.458

EN-CS 0.533 0.150 0.537 0.501 0.157 0.506 0.394 0.165 0.414
DE-EN 0.554 0.130 0.501 0.482 0.143 0.443 0.332 0.151 0.325

Table 1: Evaluation of our systems for task 1 on the test set. We show scores of Pearson’s r correlation, MAE and
Spearman’s ρ correlation.

part of the English–French Europarl (version 7),7

as well as on an in-domain corpus (described in
Section 3.4). As mentioned before, our document-
level QE system is a modular architecture wrap-
ping over any sentence-level QE model. We took
advantage of this modularity and also attempted
multi-task learning (MTL). We pre-trained the
weights of sentence-level modules (both bRNN
and POSTECH) to predict Multidimensional Qual-
ity Metrics (MQM)8 scores for sentences (more
details in Section 3.4).

3 Tasks Participation

The four QE tasks correspond to different levels of
quality prediction: sentence-level (task 1), word-
level (task 2 and 3a), phrase-level (task 3b) and
document-level (task 4). For each prediction level,
different language pairs and system outputs are
provided. Below we provide a detailed descrip-
tion of the datasets together with the results for
our submitted systems for each of these tasks.

3.1 Task 1: Sentence-level QE
Four language pairs are available for sentence-
level scoring and ranking:
• EN-DE: sentences on the IT domain, with

MT from either an SMT (26, 273 train-
ing / 1, 000 development / 1, 000 test) or an
NMT (13, 442 training / 1, 000 development /
1, 000 test) system,
• EN-LV: sentences on the life sciences do-

main, with MT from either an SMT (11, 251
training / 1, 000 development / 1, 000 test) or
an NMT (12, 936 training / 1, 000 develop-
ment / 1, 000 test) system,
• EN-CS: sentences on the IT domain, with

MT from an SMT system (40, 254 training /
7http://www.statmt.org/wmt15/

translation-task.html
8http://www.qt21.eu/mqm-definition/

definition-2015-12-30.html

1, 000 development / 1, 000 test), and
• DE-EN: sentences on the life sciences do-

main, with MT from an SMT system (25, 963
training / 1, 000 development / 1, 000 test).

In summary, there are six data setting variants
and the quality score for prediction is HTER in all
of them. For each variant in this task we submitted
two systems: SHEF-PT and SHEF-bRNN. For the
ranking evaluation, we rank sentences using the
predicted HTER outputted by our systems.

Following the shared task setup, Pearson’s r
correlation coefficient is used as the primary eval-
uation metric for the scoring task (with Mean
Absolute Error – MAE – as the secondary met-
ric), whilst Spearman’s ρ rank correlation coeffi-
cient is used as metric for the ranking task. The
task baseline systems are Support Vector Machine
(SVM) models trained with 17 baseline features
from QuEst++ (Specia et al., 2015).

We show the official results in Table 1. Both
our systems outperform the baseline for all the
language pairs according to the main evaluation
metric (r). SHEF-bRNN is better than SHEF-PT
only for EN-DE – NMT and EN-LV – SMT. These
may be cases where bRNN is able to better capture
the fluency of high-quality MT by encoding it di-
rectly as sequences rather than assessing it word
for word as POSTECH. On the official develop-
ment set,9 EN-DE – NMT and EN-LV – SMT
translations have the best overall quality (on av-
erage HTER=0.17 versus HTER=0.28 for the rest
of the systems).

3.2 Task 2: Word-level QE
Task 2 uses the same datasets as task 1. Target
words are assigned a binary label (OK or BAD)
based on the alignments between MT and post-
edits extracted by the TER tool. In this year’s edi-
tion, the organisers have also proposed the predic-

9The organisers have not provided the gold labels for the
test set.
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TRG words prediction
SHEF-PT SHEF-bRNN Baseline

F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT
EN-DE – SMT 0.508 0.846 0.430 0.453 0.811 0.367 0.412 0.882 0.363
EN-DE – NMT 0.335 0.869 0.291 0.351 0.863 0.303 0.197 0.918 0.181
EN-LV – SMT 0.416 0.869 0.361 0.409 0.860 0.351 0.381 0.905 0.345
EN-LV – NMT 0.519 0.809 0.420 0.503 0.828 0.416 0.487 0.864 0.421

EN-CS 0.556 0.796 0.443 0.554 0.792 0.439 0.534 0.834 0.445
DE-EN 0.485 0.874 0.424 0.446 0.871 0.389 0.485 0.902 0.437

SRC words prediction
SHEF-PT SHEF-bRNN Baseline

F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT
EN-DE – SMT 0.422 0.799 0.337 0.414 0.821 0.340 - - -
EN-DE – NMT 0.314 0.841 0.264 0.330 0.865 0.286 - - -
EN-LV – SMT 0.351 0.859 0.302 0.357 0.857 0.306 - - -
EN-LV – NMT 0.444 0.814 0.361 0.444 0.800 0.355 - - -

EN-CS 0.493 0.799 0.394 0.490 0.811 0.398 - - -
DE-EN 0.392 0.887 0.348 0.366 0.875 0.320

Gaps prediction
SHEF-PT SHEF-bRNN Baseline

F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT
EN-DE – SMT 0.294 0.962 0.282 0.271 0.955 0.259 - - -
EN-DE – NMT 0.110 0.984 0.108 0.121 0.985 0.119 - - -
EN-LV – SMT 0.141 0.968 0.136 0.118 0.975 0.115 - - -
EN-LV – NMT 0.130 0.965 0.126 0.119 0.944 0.113 - - -

EN-CS 0.171 0.977 0.167 0.179 0.972 0.174 - - -
DE-EN 0.210 0.970 0.204 0.200 0.966 0.193 - - -

Table 2: Evaluation of our systems for task 2 on the test set. We show scores of F1-MULT, F1 for the OK class
and F1 for the BAD class.

tion of gaps and source words quality. According
to the TER alignment, all source words aligned to
a target word will receive the same tag as the target
word. For annotating gaps, a gap tag is placed af-
ter each token and in the beginning of the sentence.
A gap tag will be BAD if one or more words were
expected to appear in the gap, and OK otherwise.

Task 2 has 18 variants, for each of them
we again submitted two systems: SHEF-PT and
SHEF-bRNN.

The primary evaluation metric of task 2 is F1-
MULT: multiplication of F1-scores for the OK
and BAD classes. F1-scores of OK and BAD
classes are used as secondary metrics. The base-
line system for the target word predictions is a
Conditional Random Fields (CRF) model trained
with word-level baseline features from the Mar-
mot (Logacheva et al., 2016) toolkit. There are
no baseline systems for the prediction of gaps or
source word issues.

Table 2 shows the official results. For predic-
tion of target words, SHEF-PT is the best for EN-
DE – SMT, EN-LV – SMT and EN-LV – NMT.
SHEF-bRNN is the best for EN-DE – NMT. This
confirms our previous conclusion that bRNN better

captures the fluency of high-quality MT (cf. Sec-
tion 3.1). For source words and gaps prediction,
SHEF-bRNN and SHEF-PT show similar perfor-
mance across language pairs.

To get a closer insight into the performance of
our models, we manually analysed results for the
official EN-DE – SMT/NMT development sets.
For those two systems either SHEF-PT, or SHEF-
bRNN performs the best respectively. Our ob-
servations suggest that, because of pre-training,
SHEF-PT better captures SMT adequacy (cf. ex-
amples in Table 3; the term “screen readers” is cor-
rectly translated by the SMT system into German
as “Bildschirmlesehilfen” and correctly marked
as OK by SHEF-PT, but incorrectly marked as
BAD by SHEF-bRNN). SHEF-bRNN better cap-
tures NMT fluency: e.g. only the word “Trans-
parenzeffekte” correctly marked as BAD from the
first part of the NMT translation in Table 3 vs. the
context of this word marked as BAD by SHEF-PT.

3.3 Task 3: Phrase-level QE

This task considers a subset of the English-
German SMT data from task 1 (Section 3.1).
Here, the MT output has been manually anno-
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SRC to make your content accessible to screen readers , avoid using these modes .
PE um den Inhalt für Bildschirmlesehilfen zugänglich zu machen , vermeiden Sie diese Modi .
SMT um den Inhalt für Bildschirmlesehilfen zugänglich machen , vermeiden Sie diese Modi .
gold OK OK OK OK OK OK OK OK OK OK OK OK OK
PT OK OK OK OK OK OK OK OK OK OK OK OK OK
bRNN OK OK OK OK BAD BAD BAD BAD BAD BAD BAD BAD OK
SRC besides applying transparency effects to single objects , you can apply them to groups .
PE Sie können Transparenzeffekte nicht nur auf einzelne Objekte , sondern auch auf Gruppen anwenden .
NMT Sie können nicht nur Transparenzeffekte auf einzelne Objekte anwenden , sondern auch auf Gruppen anwenden .
gold OK OK OK OK BAD OK OK OK BAD OK OK OK OK OK OK OK
PT BAD BAD BAD BAD BAD BAD OK OK OK OK BAD BAD BAD BAD OK BAD
bRNN OK OK OK OK BAD OK OK OK OK OK OK BAD OK OK OK OK

Table 3: Examples of prediction errors for task 2 on the EN-DE – SMT/NMT development sets

SHEF-PT SHEF-bRNN Baseline
F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT

TRG words 0.3338 0.8250 0.2754 0.3253 0.8235 0.2679 0.2714 0.9099 0.2469
Gaps 0.2730 0.8775 0.2396 0.2631 0.8785 0.2312 - - -

SRC words 0.5048 0.8137 0.4108 0.4920 0.7916 0.3895 - - -

Table 4: Evaluation of our systems for task 3a on the test set. We show scores of F1-MULT, F1 for the OK class
and F1 for the BAD class.

SHEF-PT
F1 BAD F1 OK F1-MULT F1 BAD w o

TRG phrases 0.2294 0.8059 0.1849 0.0794
Gaps 0.1073 0.9349 0.1003 -

SHEF-ATT-SUM
F1 BAD F1 OK F1-MULT F1 BAD w o

TRG phrases 0.2881 0.7614 0.2194 0.1146
Gaps 0.1028 0.9416 0.0968 -

Baseline
F1 BAD F1 OK F1-MULT F1 BAD w o

TRG phrases 0.3919 0.9152 0.3584 0.0194
Gaps - - - -

Table 5: Evaluation of our systems for task 3b on
the test set. We show scores of F1-MULT, F1 for
the OK class, F1 for the BAD class and F1 for the
BAD word order class.

tated at the phrase level with four labels: OK,
BAD, BAD word order and BAD omission, with
the phrase boundaries defined by the SMT de-
coder. The last two labels are new to this task.
They indicate whether a phrase is in an incorrect
position in the sentence, or one or more word(s)
are missing in a certain position, respectively. The
subtasks of predicting gaps and source phrases
quality were proposed similarly to task 2 (cf. Sec-
tion 3.2).

The subtask data are provided with word-level
segmentation. Task 3 is therefore divided into two
subtasks 3a and 3b, for word- and phrase-level pre-
dictions, respectively.

Task3a – word-level prediction Word-level la-
bels have been produced as follows: each
word has been labelled according to the phrase
it belongs to (i.e. as either OK, BAD or
BAD word order); gaps have been labelled as ei-
ther OK or BAD omission. The evaluation metrics
for this subtask are similar to task 2.

The official results are reported in Table 4. Our
two systems outperform the baseline for the target
words prediction, while there are no other results
for gaps and source words predictions.

Task3b – phrase-level prediction In addition
to the usual binary labels (OK and BAD), this
subtask considers the BAD word order label. To
tackle the phrase-level challenge, we implemented
a new model as part of deepQuest (cf. Section 2).
The submitted SHEF-ATT-SUM system takes the
sum of composing word vectors to create phrase
vectors used for regression. This configuration
performed the best on the official development set.

The official results are reported in Table 5.
While we perform better than the baseline for task
3a, we are not able to beat it at the phrase level.
We believe this is because the dataset is too small
to train a competitive neural model. There are no
other results for gaps prediction.10

10We did not participate to the source phrases prediction
task, since the phrase alignments were not provided by the
organisers.
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3.4 Task 4: Document-level QE
Task 4 consists in predicting document-level
quality scores for MT of product reviews from
the Amazon Product Reviews dataset (He and
McAuley, 2016). For this task, a selection of
Sports and Outdoors product titles and descrip-
tions were machine translated from English into
French. The MT system used is a state-of-the-
art NMT system. The machine translated docu-
ments were annotated with word-level MQM in-
formation. The MQM taxonomy has three coarse-
grained classes: accuracy, fluency and style. Each
error was classified into one of the fine-grained
classes within a main class and also according to
its severity: minor (it does not change the meaning
of the source), major (the meaning was changed by
the incorrect word) or critical (besides changing
the meaning the error results in a negative effect,
e.g. the translation can be seen as offensive).

Document-level scores were devised as follows
using the information about the errors and their
severities:

score = 100 ∗ (1.0− Tseverity ∗ 1.0

N
) (1)

where Tseverity is the sum of the severity weights
of all errors in a given document (predefined as
minor = 1.0, major = 5.0 and critical = 10) and
N is the total number of words in this document.

For training, development and testing, 1, 000,
200 and 269 documents were made available, re-
spectively. The baseline is an SVM model trained
with 15 baseline document-level features from
QuEst++. Evaluation is done in terms of Pearson’s
r correlation scores.

Since the MQM scores are at the word level,
Equation 1 can also be used to extract scores
for sentences. We exploit this feature and create
MTL systems trained to predict both sentence and
document-level scores. We submitted two systems
officially and also report three additional systems.
Our systems are listed below, where systems with
an * are the official submissions:
• *SHEF-PT (in-domain): POSTECH system

pre-trained with in-domain data extracted
from the English–French part11 of the Giga-
word corpus,12

11https://catalog.ldc.upenn.edu/
LDC2011T10

12≈300K segments were extracted, using
XenC (Rousseau, 2013), as having the best perplexity
according to a language model trained on a selection of the
English in-domain Amazon reviews (≈200K segments).

• SHEF-PT (out-domain): POSTECH system
pre-trained with the Europarl data,
• SHEF-bRNN: our bRNN system for

document-level QE,
• SHEF-MTL-PT (in-domain): multi-task
POSTECH pre-trained with the in-domain
data, and
• *SHEF-MTL-bRNN: multi-task bRNN.
Table 6 shows the evaluation of our systems on

the test set in terms of Pearson’s r and MAE. The
baseline is considerably strong, achieving over
0.5 of correlation and the lowest MAE (56.09).
SHEF-PT (in-domain) and SHEF-MTL-PT (in-
domain) are the only systems that outperform the
baseline. Note that the SHEF-MTL-bRNN system
achieved results close to the baseline, even though
it does not use any external resources (unlike the
SHEF-PT systems and the baseline).

r MAE
SHEF-PT (in-domain) 0.534 56.23

SHEF-PT (out-domain) 0.511 57.55
SHEF-bRNN 0.468 57.58

SHEF-MTL-PT (in-domain) 0.521 56.60
SHEF-MTL-bRNN 0.473 56.59

Baseline 0.512 56.09

Table 6: Evaluation of our systems for task 4 on the
test set. We show scores of Pearson’s r correlation and
MAE.

4 Conclusions

We presented our systems submitted to the
WMT18 QE shared task. We experimented with
two different architectures: our re-implementation
of the POSTECH system (SHEF-PT) and our
bRNN (bi-directional RNNs) approach (SHEF-
bRNN). Although SHEF-PT is better than SHEF-
bRNN for the majority of the task variants, SHEF-
bRNN is still a competitive system and, given
its simplicity and independence from external re-
sources, it can be seen as a good alternative for
low-resource languages. In addition, it is worth
mentioning that SHEF-bRNN requires consider-
ably less training time than SHEF-PT, which may
better fit certain scenarios.
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