
Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 140–150
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

140

An Arabic Morphological Analyzer and Generator with Copious Features

Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani, and Nizar Habash
Computational Approaches to Modeling Languages Lab

New York University Abu Dhabi
{dima.taji, salamkhalifa, oobeid, fadhl.eryani, nizar.habash}@nyu.edu

Abstract

We introduce CALIMAStar, a very rich Ara-
bic morphological analyzer and generator that
provides functional and form-based morpho-
logical features as well as built-in tokeniza-
tion, phonological representation, lexical ra-
tionality and much more. This tool includes
a fast engine that can be easily integrated into
other systems, as well as an easy-to-use API
and a web interface. CALIMAStar also sup-
ports morphological reinflection. We evaluate
CALIMAStar against four commonly used an-
alyzers for Arabic in terms of speed and mor-
phological content.

1 Introduction

Work on Modern Standard Arabic (MSA) mor-
phological modeling has been ongoing for the
past thirty years resulting in many resources with
high degrees of accuracy for analysis, genera-
tion, and tokenization (Beesley et al., 1989; Al-
Sughaiyer and Al-Kharashi, 2004; Habash, 2010;
Pasha et al., 2014; Abdelali et al., 2016). These
previous efforts addressed many of the important
challenges of Arabic morphology such as its high
degree of ambiguity resulting from optional dia-
critization and templatic morphemes. However,
while there are several commonly used systems for
Arabic morphology, we observe that there are still
some unresolved challenges.

First, some aspects of Arabic’s rich morphology
are not fully or consistently modeled. Examples
include the discrepancy between form and func-
tion (in gender, number, case and state) as well as
the rationality feature. The commonly used Penn
Arabic Treebank (PATB) (Maamouri et al., 2004)
and Buckwalter Arabic Morphological Analyzer
(BAMA) (Buckwalter, 2002) do not model nom-
inal functional features or rationality. Some previ-
ous attempts did not cover all these phenomena or
focused on limited data sets (Smrž, 2007; Alkuh-
lani and Habash, 2011).

Second, the different existing tools do not all
provide the same kind of information, which of-
ten led researchers to improvise extensions to ac-
commodate their downstream task needs. One
example is the phonological representation map-
pings that Biadsy et al. (2009) devised on top of
the MADA disambiguation system (Habash et al.,
2009) instead of using Elixir-FM (Smrž, 2007),
which already included phonology. This is par-
tially because Elixir-FM was not connected to a
disambiguation system. Another example is the
work by Habash et al. (2009) to provide genera-
tion capability on top of the BAMA (Buckwalter,
2002) algorithm and databases because BAMA,
which was used to annotate the PATB, was analy-
sis focused, unlike the finite-state solutions to Ara-
bic morphology (Beesley et al., 1989).

Third, many of the existing tools have differ-
ent use requirements (operating system, program-
ming language, etc.), and some have no easy-to-
use APIs.

In this paper, we introduce CALIMAStar,1

a very rich Arabic morphological analyzer and
generator that includes functional features, built-
in tokenization, phonological representation, and
numerous other features. CALIMAStar comes
with a fast engine that can be easily integrated
into other systems, and an easy-to-use web in-
terface. CALIMAStar also supports morpholog-
ical reinflection. While in this paper we focus
on MSA only for the database discussion, the en-
gine itself is independent of the variant choice.
CALIMAStar will be made publicly available as
part of a large suite of tools to support research on
Arabic natural language processing (NLP).2

1In Arabic, �
éÒÊ¿ /kalima/ means ‘word’. We follow and

extend the naming convention from Habash et al. (2012) who
developed CALIMAEGY, and Khalifa et al. (2017) who de-
veloped CALIMAGLF. The Star designation in CALIMAStar

is intended to eventually represent all Arabic variants (MSA
and dialects), and all possible features.

2http://resources.camel-lab.com/.

http://resources.camel-lab.com/


141

2 Related Work

In this section, we discuss previous work on
Arabic morphological analysis and generation in
terms of (a) algorithms and representations, (b)
morphological knowledge, and (c) morphological
disambiguation and tokenization. Table 1 com-
pares the features supported by CALIMAStar and
a number of analyzers discussed below.

2.1 Algorithms and Representations

There are a number of dimensions over which so-
lutions to Arabic morphology modeling have var-
ied (Beesley et al., 1989; Beesley, 1996; Habash
and Rambow, 2006; Smrž, 2007; Altantawy et al.,
2010, 2011). One important aspect is the de-
gree of explicitness of representing morphological
rules and their interactions. Some approaches use
very abstract and linguistically rich representa-
tions and rules to derive surface forms of the words
(Beesley et al., 1989; Beesley, 1996; Habash and
Rambow, 2006; Smrž, 2007). Other approaches
pre-compile representations of the different com-
ponents needed by the system: BAMA (Buck-
walter, 2002), SAMA (Graff et al., 2009), and
ALMORGEANA (ALMOR for short) (Habash,
2007) are examples of such systems. They use
a six-table representation consisting of three lex-
ical tables (for prefixes, suffixes, and stems), and
three compatibility tables (prefix-suffix, prefix-
stem, and stem-suffix). Altantawy et al. (2011)
described a method to bridge between these two
types of solutions. The type of representation
used naturally needs to synchronize with the ap-
propriate algorithms for analysis and generation.
CALIMAStar is of the second category (tabulated
pre-compiled solutions), and it builds on the popu-
larly used BAMA, SAMA, and ALMOR morpho-
logical analyzers.

2.2 Morphological Knowledge

Previous efforts show a wide range for the depth
that morphological analyzers can produce. Some
efforts include very shallow analyses such as
in the Temple Translator’s Workstation Project
(Vanni and Zajac, 1996) which only provided En-
glish glossing. Others include a range of form-
based features, functional features, and morpheme
forms, in addition to lexical features (Buckwalter,
2002; Smrž, 2007; Boudlal et al., 2010; Alkuhlani
and Habash, 2011; Boudchiche et al., 2017).

Alkuhlani and Habash (2011) extended part of
the PATB to include functional gender and num-
ber, and rationality, but did not cover the entire
database used by BAMA or SAMA. ElixirFM
(Smrž, 2007) includes functional gender and num-
ber, as well as full case and state modeling, but
not rationality. ElixirFM, MAGEAD (Altantawy
et al., 2010; Habash and Rambow, 2006) and
AlKhalil Morpho Sys (Boudlal et al., 2010; Boud-
chiche et al., 2017) include roots, with varying de-
grees of accuracy. ElixirFM includes phonological
forms; but ALMOR does not. However, Biadsy
et al. (2009) presented orthography-to-phonology
rules that can be used on automatically diacritized
text to generate pronunciation dictionaries.

Our goal is to make all these features be built-in
as part of our CALIMAStar databases, and to fill
in any gaps that were left by other efforts.

2.3 Analysis, Disambiguation and
Tokenization

We distinguish between analysis and disambigua-
tion: analysis refers to identifying all of the differ-
ent readings (analyses) of a word out of context;
while disambiguation is about identifying the spe-
cific analysis in context. Tokenization is the pro-
cess of segmenting a word into different units for
downstream applications. There are many possi-
ble tokenization schemes and techniques to apply
them (Habash and Sadat, 2006). The tokenized
form of a word varies depending on the specific
analysis of the word. Systems such as MADA
(Habash et al., 2009), AMIRA (Diab et al., 2004),
and MADAMIRA (Pasha et al., 2014) handle dis-
ambiguation and tokenization differently. Both
MADA and MADAMIRA disambiguate the anal-
yses that are produced by a morphological ana-
lyzer. The chosen analyses are then used to to-
kenize the words using morphological regenera-
tion. AMIRA, on the other hand, has a different
two step process in which a toeknization compo-
nent is followed by part-of-speech (POS) tagging.

The FARASA system (Abdelali et al., 2016)
relies on probabilistic models of stems, prefixes,
and suffixes, instead of using context informa-
tion to produce high tokenization accuracy. YA-
MAMA (Khalifa et al., 2016) is a MADAMIRA-
like (analysis/disambiguation) system that disam-
biguates using a maximum likelihood model in-
spired by FARASA.

CALIMAStar is primarily an out-of-context



142

BAMA SAMA ALMOR MAGEAD ElixirFM AlKhalil CALIMAStar

Functional Gender and Number 7 7 7 partial partial partial 3

Case and State Modeling partial partial partial 3 3 partial 3

Rationality 7 7 7 7 7 7 3

Roots and Patterns 7 7 7 3 3 3 3

Phonological Representation 7 7 7 3 3 7 3

Number of Tokenization Schemes 1 1 1 1 1 1 4
Number of POS Tag Sets 1 1 2 1 1 1 4
Out-of-Context Probabilities 7 7 7 7 7 7 3

Functionalities Analysis Analysis Analysis Analysis Resolution Analysis Analysis
Generation Inflection Generation

Derivation Reinfletion
Lookup

Table 1: A comparison of the different features in a number of morphological tools. A 3 denotes a feature
that is present in the system, while an 7 denotes a feature that is not. ElixirFM uses different terminology
to denote the analysis, generation, and reinflection functionalities.

analysis and generation system. Its database in-
cludes pre-compiled out-of-context probabilities
for POS and lemmas. In Section 6, we report on
how well these probability features do in terms of
disambiguation. CALIMAStar also produces tok-
enizations in different schemes from features that
are pre-compiled in its database.

3 Baseline Arabic Morphology:
Algorithm and Database

In this section, we describe the basic database
and algorithm used in a number of morphological
analyzers, all following the work of Buckwalter
(2002), including our system CALIMAStar.

3.1 Database Structure

The database we use has six tables. Three are lex-
icon tables for prefixes, suffixes, and stems. Each
lexicon table entry has three columns: a lookup
form, a compatibility category to control behavior
and agreement, and a list of feature-value pairs.
The lookup form is an orthographically normal-
ized surface form, which can appear with multi-
ple categories and feature-value pairs. The other
three tables are compatibility tables: prefix-suffix,
prefix-stem, and stem-suffix. These tables are used
to ensure that any analysis that is produced by the
system contains a prefix, a stem, and a suffix that
are compatible with each other. This means, for
example, that a nominal prefix will not be com-
bined with a verbal stem. The compatibility tables
are based on the compatibility categories appear-
ing in the lexicon tables.

The differences among the many analyzers
based on this model are mostly in features. BAMA
and SAMA have four features: the diacritized sur-

face form, the lemma, the Buckwalter POS tag,
and the English gloss (Buckwalter, 2002; Graff
et al., 2009). ALMOR automatically extends
these features with 17 others: MADA POS tag
(Pasha et al., 2014), four possible proclitics, per-
son, aspect, voice, mood, gender, number, state,
case, enclitic, rationality, stem, and stem cate-
gory. The ALMOR database also includes feature
definitions specifying the values each feature can
take, and default feature values for every POS tag.
CALIMAStar extends on the ALMOR database
feature list as will be discussed in Section 4.

3.2 Analysis Algorithm
The analyzer follows the algorithm description in
Buckwalter (2002). The input of the algorithm
is a word. The output is all the possible out-of-
context analyses for this word. We match the input
word using an orthographically normalized form
of it that is consistent with the look up forms in
the database. Orthographic normalization is nec-
essary because, according to Habash (2010), the
most common spelling errors in Arabic involve
Hamzated Alifs and Alif-Maqsura/Ya confusion,
affecting 11% of all words (or 4.5 errors per sen-
tence) in the PATB. We normalize by removing
diacritics, converting Hamzated Alif occurrences

@ Â, @


Ǎ,

�
@ Ā,3 to bare Alif @ A, Alif-Maqsura ø ý to

Ya ø



y, and Ta-Marbuta �
è h̄ to Ha è h.

The word is then segmented into all possible
prefix-stem-suffix triplets. The segment validity is
restricted by the minimum length of stem and the
maximum lengths of the prefix and suffix which
are inferred from the database, in addition to the

3Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).



143

existence of all segments in their respective lex-
icon tables. Each segmentation triplet is tested
for compatibility using the three-way compatibil-
ity tables in the database. For each valid triplet
combination, the features from the prefix, stem
and suffix are merged to produce a single feature-
set for the word. The merging process involves
four operations depending on the feature: (i) con-
catenation of the Buckwalter POS tag; (ii) con-
catenation and rewriting of the final diacritized
form; (iii) value overwrite for the remaining fea-
tures, where, first, the suffix features overwrite the
stem features, and then the prefix features over-
write all features; and (iv) producing the source
feature by the analyzer depending on whether the
analysis is from the lexicon, a backoff, or a default
analysis of punctuation, digits, or foreign words.
The result of this process is a unique set of out-of-
context analyses for the input word. The first two
operations above are used in BAMA and SAMA;
and all are used in ALMOR. When no valid anal-
ysis is found, a backoff solution suspends the re-
quirement for having a valid stem from the stem
table. However, the prefixes and suffixes must still
be compatible. We discuss the CALIMAStar al-
gorithm extensions beyond ALMOR in Section 5.

3.3 Generation Algorithm

The generation algorithm follows the description
of the generation component in ALMOR (Habash,
2007). It minimally expects a lemma and POS as
input. The other features are handled in one of
two ways. All inflectional features, such as per-
son, gender and number, are considered obliga-
tory, and as such, all their values are generated
if no value was specified. Clitics, on the other
hand, are considered optional, and are only gen-
erated when specified.

For the input lemma and POS, we retrieve
all stems in the database. For each stem, the
stem categories are then used to retrieve all stem-
compatible prefixes and suffixes. Only compatible
prefixes and suffixes (as per the prefix-suffix com-
patibility tables) are used, with the stem, to gener-
ate inflected words and corresponding full analy-
ses. The same merging process used in the analy-
sis component is used here also. The input feature-
list is used in filtering which prefixes and suffixes
to consider. For clitics, this is done before merg-
ing, but for inflectional features, this is done after
merging.

4 CALIMAStar Database

In this section we detail our specific CALIMAStar

database extensions to the basic ALMOR database
structure presented in Section 3.

4.1 Gender and Number Functional Features

Smrž (2007) and Alkuhlani and Habash (2011)
pointed out the common discrepancy between the
form of some Arabic words and their function. A
prime example is the very common broken plu-
ral4 — almost 55% of all plurals look like singu-
lar words, but are functionally plural (Alkuhlani
and Habash, 2011). For example, l�


' @Qå

�
� šrAŷH

‘sections, slices, slivers’ is the broken plural of
the feminine singular word �

ém�'

Qå

�
� šryHh̄ ‘section,

slice, sliver’. ALMOR considers this (functionally
feminine and plural) noun, masculine and singu-
lar because it has the form of a masculine singu-
lar noun. Alkuhlani and Habash (2011) modeled
functional gender and number on a portion of the
PATB, which is based on BAMA/SAMA. Smrž
(2007) and Boudlal et al. (2010) modeled func-
tional gender and number for part of their data.

Our contribution in CALIMAStar is that we ex-
tended all lexical databases, which are based on
SAMA and ALMOR, with functional gender and
number. We built on the work and guidelines by
Alkuhlani and Habash (2011). While Alkuhlani
and Habash (2011) only annotated the inflected
words that appear in the PATB, we wanted to an-
notate our entire database. To do this properly,
we inflected the 31,610 nominal lemmas5 in the
database for gender and number, making sure that
each database stem is used at least once. Our
dataset contained 77,023 inflected words, which
were manually annotated by two annotators for
functional gender and number. This effort took
130 hours to complete.

In our database, we renamed ALMOR’s gen and
num features as form_gen and form_num, and used
gen and num as the names for the functional gen-
der and number features, respectively. To opera-
tionalize the use of the functional gender and num-
ber features in the database, we assigned them the
value - when the corresponding functional feature
matches the form feature for all inflected forms of
the stem. This value is then overwritten by the

4The ‘broken’ part of the name refers to the change in the
template associated with forming these plurals.

5Verbs are regular and have no discrepancy between form
and function gender and number.



144

form feature value coming from the suffix when
producing an analysis. If the functional features
does not match the form feature, then the func-
tional feature is assigned an explicit value in the
database, which can be masculine (m), or femi-
nine (f) for gender, and singular (s), plural (p), or
dual (d) for number. These explicit values in the
stem are not overwritten by the suffix correspond-
ing feature values.

4.2 State and Case Features

We follow the functional classification of the Ara-
bic state feature into definite, indefinite, or con-
struct values as described and implemented by
Smrž (2007). Our contribution here is applying
this classification to the latest SAMA/ALMOR
database which we use in CALIMAStar.

The ALMOR handling of state has two prob-
lems. First, the definite state is only assigned
by the definite article proclitic +È@ Al+. This
is linguistically incorrect, as there are nouns
that can be definite without the definite arti-
cle (e.g., directly addressed vocatives such as
@ñ�PX@ XBð


@ AK
 yA ÂwlAd AdrswA ‘O children,

study’); and the definite article can appear with
construct state adjectives in what is called false
idafa (e.g., �

éÓA
�
®Ë @ ÉK
ñ¢Ë@ AlTwyl AlqAmh̄ ‘The tall

of stature’). Second, a number of nominal suf-
fixes are ambiguous but that ambiguity is not rep-
resented. For example, the suffix +u indicating
nominative case can appear with both definite and
construct states, but ALMOR only assigns it the
construct value. In CALIMAStar we address both
of these issues: (i) we do not allow the definite ar-
ticle to assign a state value and relegate state spec-
ification to the suffixes completely; and (ii) we en-
sure all ambiguous suffix lexicon entries are dupli-
cated and assigned explicit state analyses.

Case is properly handled for the most part in
ALMOR, except for a few cases where it interacts
with state, such as diptotes. Diptotes are nomi-
nals whose genitive case marker is the same as
their accusative case marker when they are in an
indefinite state (Habash, 2010). An example of a
diptote is l�


' @Qå

�
� šrAŷH ‘sections, slices, slivers’.

When it is indefinite, the genitive diacritized form
of this word is �

l�

'
�
@ �Qå

�
�
� šarAŷiHa. The state feature

extension that produces a definite analysis for the
word without a definite article morpheme required
an extension of the case feature to produce the def-
inite genitive diacritized form l

�

�

'
�
@ �Qå

�
�
� šarAŷiHi.

4.3 Rationality

Rationality (or +Human) is a lexical feature in
Arabic that affects noun-adjective and subject-
verb agreement. Nouns that are exclusive to
humans, such as 	


	

£ñÓ mwĎf ‘employee’ are
considered rational, while others, such as �

ém�'

Qå

�
�

šryHh̄ ‘slice’ are considered irrational. Rational
nouns take adjectives and verbs that agree with
them in gender and number. Irrational nouns, on
the other hand, agree with their verbs and adjec-
tives when they are singular, however they take the
singular feminine form of a verb or adjective when
they are plural, regardless of what the gender of
the noun is. The plural word l�


' @Qå

�
� šrAŷH ‘slices’

is irrational and as such would take the adjective
�
éªJ


	
P̄ rfyςh̄ ‘thin [feminine singular]’ instead of

�
HAªJ


	
P̄ rfyςAt ‘thin [feminine plural]’.

Alkuhlani and Habash (2011) manually anno-
tated a part of PATB for rationality. ALMOR and
MAGEAD include a rationality feature, but it was
automatically populated and not fully checked.
Our contribution in CALIMAStar is fully annotat-
ing the SAMA/ALMOR database for rationality.
We build on the work of Alkuhlani and Habash
(2011), and use their manual annotation guide-
lines. We manually annotated all the noun and
proper noun lemmas in the database (18,120 en-
tries). This effort took approximately 60 hours.

4.4 Roots and Patterns

Arabic templatic morphology, or the use of roots
and patterns, has been modeled successfully in a
number of systems (Beesley et al., 1989; Smrž,
2007). MAGEAD (Habash and Rambow, 2006;
Altantawy et al., 2010) made extensive use of the
ElixirFM database. However, roots and patterns
are not part of the SAMA/ALMOR database that
we base our work on.

Our contribution is to fully specify the roots
and patterns in the CALIMAStar database. This
manual effort started from the MAGEAD and
ElixirFM lemma root information when available.
The roots are linked to the lemmas directly and
specified in the lexicon stem entries. The pat-
terns we include are concrete patterns (Habash and
Rambow, 2006) that are generated automatically
by subtracting the root from the diacritized stem.

4.5 Phonological Representation

The phonological form has been shown to be par-
ticularly useful for NLP applications, such as Ara-



145

bic speech recognition (Biadsy et al., 2009). In
MSA, most Arabic letters have a one-to-one map-
ping to phonemes. However, there are some ex-
ceptions. The Arabic definite article +È@ Al+ as-
similates to the first consonant in the nominal
it modifies if this consonant is one of the so-
called Sun Letters (Habash, 2010). For instance,
the phonology of the noun �

l�

'
�
@ �Qå

�
�
�Ë @ AlšarAŷiHa

is / a sh sh a r aa 2 i 7 a /,6 as opposed to
*/ a l sh a r aa 2 i 7 a /, because the letter �

� š is a
Sun Letter. Another exception is the silent Alif in
the suffix @ð+ +uwA, which indicates a masculine
plural conjugation in verbs. The phonology of the
masculine plural verb @ñ

�
J.

��
J
�
» katabuwA ‘they wrote’

is / k a t a b uu /, as opposed to */ k a t a b uu aa /.
This feature does not exist in SAMA or AL-

MOR. We extended our database entries with their
respective phonological representation through an
automatic process comparable to Biadsy et al.
(2009). The definite article assimilation is han-
dled through rewrite rules because it involves an
interaction between a stem and a prefix.

4.6 Tokenization Schemes
Tokenization is important for NLP tasks such
as machine translation because it reduces word
sparsity (Habash and Sadat, 2006; Zalmout and
Habash, 2017b). Many tokenization schemes with
different granularities and normalization rules ex-
ist, and the selection of tokenization scheme de-
pends on the task on hand.

In MADAMIRA, tokenization happens after
analysis and disambiguation through an expensive
regeneration process. Our contribution is the in-
sight that since a particular tokenization is com-
pletely dependent on the analysis, we can spec-
ify the tokenization details in the database entry.
This is a tradeoff of a bigger database (space) with
a faster tokenization (time). We specifically add
four tokenization schemes D1, D2, D3 and ATB
(Habash, 2010), in both normalized and unnormal-
ized forms. We refer to the normalized schemes as
tokenization, and to the unnormalized schemes as
segmentation. A normalized ATB tokenization for
the word AëñJ.

�
J» ktbwhA ‘they wrote it’ is Aë+ @ñJ.

�
J»

ktbwA+hA ‘they_wrote +it’, whereas an unnor-
malized ATB tokenization (segmentation) for the
same word would be Aë+ñJ.

�
J» ktbw+hA. In the lex-

6The phonological representation we use follows the
CAMEL Arabic Phonetic Inventory (CAPHI) (Habash et al.,
2018), which is inspired by Arpabet (Shoup, 1980).

icon, the entry for the suffix in this analysis has a
different feature for each of these schemes.

We extended our database with the tokenization
features in a semi-automated process. For each
scheme, we manually determined the list of affixes
that would be detached. For each of these affixes,
we generated the tokenized form. Stems do not
have any parts to detach, but some stems have to
be normalized for some tokenization schemes. We
used our CALIMAStar generator to automatically
get the normalized forms of these stems. The re-
sulting tokenizations of a word are the concatena-
tion of the tokenizations of the prefix, stem, and
suffix of the word’s analysis.

4.7 Multiple POS Tag Sets

There are many Arabic POS tag sets used by
different researchers and in different tools, e.g.,
Buckwalter (Buckwalter, 2002), MADA (Pasha
et al., 2014), Columbia Arabic Treebank (CATiB)
(Habash and Roth, 2009), CATiBex (Marton et al.,
2013), Universal Dependencies (UD) (Nivre et al.,
2016), and Kulick (Kulick et al., 2006). It is de-
sirable to link these POS tag sets to each other.
CALIMAStar currently supports four POS tag
sets: the Buckwalter POS tag set, and the MADA
POS tag set, both of which are part of the AL-
MOR database, as well as the CATiB and UD POS
tag sets. We chose to start our extension with the
CATiB and UD POS tag sets for their importance
to the work on Arabic dependency parsing. This
goal steered us to output the CATiB and UD POS
tags following the ATB tokenization, which is the
commonly used tokenization format in treebank-
ing and parsing. This extension was an automatic
mapping from both the Buckwalter and MADA
POS tag sets. We plan to add more POS tag sets to
our database in the future.

4.8 Lemma and POS Probability

Inspired by Khalifa et al. (2016) who used lemma
and POS tag probabilities for out-of-context dis-
ambiguation, we added three different probability
scores for lemma, POS (MADA POS) and joint
lemma-POS, for each stem entry in the database.
The scores were generated from the train set (Diab
et al., 2013) of the PATB. We used the SRILM
toolkit (Stolcke, 2002) to generate the scores with
no smoothing. In Section 6, we show that these
scores can be used to select the correct POS tag
and lemma out of context with a high accuracy.



146

(a) The analysis output of the word Õæ


Ê�ÊË llslym grouped by

lemma and POS.
(b) The generation output for the nominal lemma �

Hñ
�
J.

�
º

	
J
�
«

ςanokabuwt ‘spider’ as plural with the preposition
�
¼ ka ‘as’.

Figure 1: A screen capture of the CALIMAStar analyzer and generator interfaces.

5 CALIMAStar Engine

The CALIMAStar engine is a new implementa-
tion of the analysis and generation algorithms de-
scribed in Section 3 with some extensions. It uses
the database described in Section 4.

CALIMAStar API The CALIMAStar engine is
implemented in Python. We provide a command-
line tool interface as well as an API. CALIMAStar

is a part of a collection of Arabic NLP tools we
plan to release.

Analysis and Generation Extensions All of the
algorithmic extensions in the CALIMAStar engine
are minor, and intended to accommodate the addi-
tional features in the database. Examples include
the special handling of functional gender and num-
ber as discussed in Section 4.1, the concatenation
of prefix, stem and suffix features for added POS
tags and tokenization schemes. The concatena-
tion of the CAPHI string and the pattern requires
rewrite rules because of prefix-stem interactions.

Reinflection Inspired by the SIGMORPHON
2016 Shared Task on morphological reinflection
(Cotterell et al., 2016), we provide a reinflec-
tion functionality in the CALIMAStar API, which
makes use of the existing analysis and generation
components. The input to the CALIMAStar re-
inflector is an already inflected word and a de-
sired set of feature-value changes. The system an-
alyzes the word, adjusts its features given the input

feature-value pairs, and generates the reinflected
form(s). The reinflector is also used as a backoff
mode for the generator when the input lemma is
not recognized.

Web Interface We created a web interface for
the CALIMAStar analyzer and generator – see
Figures 1 (a) and (b), respectively. The analyzer
interface expects an input word and a selected
backoff mode. Options for backoff include no
backoff, proper-noun backoff, or any POS back-
off. The generator interface minimally expects
a lemma and POS for input; feature values can
be specified as needed. The generator interface
changes which features are allowed to select val-
ues for depending on the input POS. For example,
in Figure 1 (b), the verbal features, person, voice,
mood and aspect, are disabled because the input
POS is a noun. There are two output modes for
both analyzer and generator interfaces. The first
output mode is a user-friendly display of words
grouped by lemma, POS tag, root and English
gloss. For each inflected word, the interface shows
its diacritization, phonology, clitics, and inflec-
tional features, in a human-readable form. This
output mode is what Figures 1 (a) and (b) show.
The second mode presents the output in a feature-
value pair format more suitable for debugging and
programming interfaces.

The engine and web interface are linked from
http://resources.camel-lab.com/.

http://resources.camel-lab.com/


147

6 Evaluation

In this section we validate our system and evalu-
ate it against other systems in terms of speed and
coverage.

6.1 Internal Validation

We ran a number of tests to validate our database
extensions. All these tests were run on the PATB
dev set (Diab et al., 2013) from PATB parts 1, 2
and 3, except where indicated.

Analysis This test aimed to validate that we are
producing all the analyses that are produced by
ALMOR. We ran the tokens in the dataset through
ALMOR and CALIMAStar, and verified that ev-
ery analysis produced by ALMOR is also pro-
duced by CALIMAStar. CALIMAStar produced
more analyses on average than ALMOR. And nat-
urally, the CALIMAStar analyses were richer than
the ALMOR analyses.

Generation Since we do not have a manually
annotated version of this data set with all of
our extensions, we relied on automatic match-
ing of CALIMAStar analyses against the ALMOR
analyses used to train and evaluate MADAMIRA
(Pasha et al., 2014).7 This matching allowed us
to extend the ALMOR analyses with functional
gender and number features. We used the lemma
and extended features as input to the CALIMAStar

generation component. CALIMAStar produced
the full diacritized word in all cases.

Reinflection Validating the reinflection compo-
nent required us to have a source inflected word,
and a target inflected word. We grouped the ex-
tended ALMOR analyses from the Generation test
above by lemma and POS tag, and generated all
possible pairs of words that share a lemma and
POS tag. For each pair, we used the features of the
first word to reinflect the second word, and vice
versa. Our system produced the correct diacritized
word in all cases.

Functional Gender and Number Analysis
This test aimed to validate that the database exten-
sion for functional gender and number was con-
sistent with the manual annotation. For this test,
we analyzed every word that was manually anno-
tated for functional gender and number, and con-

7The ALMOR analyses were themselves automatically
matched against the gold PATB annotations in a similar man-
ner to Habash and Rambow (2005).

firmed that the analyzer is producing an analysis
with the expected functional feature values. Our
system produced the expected values in all cases.

Tokenization We tested our D3 tokenization ex-
tensions, as it is the most complex tokeniza-
tion scheme in our database. We ran our test
set in MADAMIRA to produce the D3 tokeniza-
tion. We then compared the tokenization pro-
duced by MADAMIRA to the tokenization pro-
duced by CALIMAStar for the analysis that is
equivalent to MADAMIRA’s top analysis (mod-
ulo our extensions). We matched MADAMIRA’s
diacritized tokenization in 99.5% of the cases,
and we matched the undiacritized tokenization in
99.9% of the cases. The only undiacritized mis-
matches are the result of MADAMIRA tokeniza-
tion errors in words such as �

IJ
m
�'

. bHyθ ‘with/by
+ where; whereby’, which MADAMIRA tok-
enizes as �

IJ
m
�'

. +H. b+ bHyθ instead of �
IJ
k +H.

b+ Hyθ. This validation test also brought to light
some minor cases which we intend to fix in future
releases of the database.

Lemma and POS Probability We carried out
preliminary experiments on the use of the dif-
ferent probability scores (Section 4.8) for out-of-
context POS and lemma selection. We found that
the top-one choice among the CALIMAStar anal-
yses ranked using the joint lemma-POS score pre-
formed the highest with 92%, 90% and 88% accu-
racy in terms of POS, lemma, and POS+lemma,
respectively. The results are comparable to the
maximum likelihood disambiguation baseline re-
ported by Zalmout and Habash (2017a), which
supports the use of morphological analyzers as a
backbone for the different NLP task.

6.2 Comparison with other Systems

We compare CALIMAStar to four other morpho-
logical analyzers: AraMorph,8 SAMA 3.1 (Graff
et al., 2009), ALMOR and MADAMIRA,9 in
terms of coverage (out-of-vocabulary (OOV) rate
and analyses per word) and speed performance
(words, analyses, and features per second). We
ran the experiments on one million words from the
Arabic Gigaword corpus (Parker et al., 2011). The
results of the comparison are in Table 2.

8We used the AraMorph 1.2.1 version, and imple-
mentation of BAMA 1.2 that was optimized by Jon De-
hdari from SourceForge https://sourceforge.net/
projects/aramorph/files/aramorph/1.2.1/.

9We ran MADAMIRA in ‘analyze only’ mode.

https://sourceforge.net/projects/aramorph/files/aramorph/1.2.1/
https://sourceforge.net/projects/aramorph/files/aramorph/1.2.1/


148

System Coverage Speed
Engine Database Features # OOV% Analysis

Word
Word
Second

Analysis
Second

Feature
Second

AraMorph AraMorph 4 1.7 2.1 43.5K 93K 372K
SAMA SAMA 4 1.4 10.2 2.3K 24K 96K

ALMOR ALMOR 22 1.4 10.7 1.1K 12K 269K
MADAMIRA ALMOR 22 1.6 10.7 6.8K 73K 1,742K
CALIMAStar ALMOR 22 1.3 10.7 8.2K 88K 1,938K
CALIMAStar CALIMAStar 40 1.3 18.9 5.4K 102K 4,094K

Table 2: A comparison of five systems, AraMorph, SAMA, ALMOR, MADAMIRA and CALIMAStar,
in terms of coverage (OOV and analyses per word) and speed (word, analyses, features per second).

The first three columns of Table 2 specify the
systems, the databases, and the number of fea-
tures in the databases. AraMorph was run on
the AraMorph database, and SAMA was run
on the SAMA database. Both of these con-
tain four features: the diacritization, Buckwalter
POS tag, lemma, and English gloss. ALMOR
and MADAMIRA both use the ALMOR database,
which produces 22 features: the same four fea-
tures of AraMorph/SAMA in addition to the
MADA POS tag, four proclitic features, person,
aspect, voice, mood, gender, number, state, case,
enclitic, rationality, source, stem, and stem cate-
gory. CALIMAStar was run on the CALIMAStar

database described in Section 4, which has 40 fea-
tures: the 22 ALMOR features in addition to func-
tional gender and number, CAPHI, root, pattern,
tokenization and segmentation in four schemes
(D1, D2, D3, and ATB), CATiB and UD POS tags,
and POS, lemma, and joint lemma-POS probabil-
ity scores. We also ran the CALIMAStar engine
with the ALMOR database as a comparison point.

Coverage The OOV rates of the different an-
alyzers are generally close to each other. The
differences stem from two sources. First,
AraMorph’s database is an older version of
SAMA/ALMOR/CALIMAStar with less lemmas
(∼38K vs ∼40K lemmas). And secondly, differ-
ent engines handle numbers, foreign words, and
digits in different ways, with the CALIMAStar en-
gine outperforming all others.

The number of analyses per word is strongly
connected to the database being used. AraMorph
has less coverage, in terms of affixes and stems,
and that is why it produces a smaller number of
analyses per word. ALMOR and MADAMIRA
both use the same database, thus producing the
same number of analyses per word. CALIMAStar

extends the suffix lexicon to fully cover the state
and case analyses resulting in the largest number
of analyses per word.

Speed The last three columns of Table 2 com-
pare the speed of the systems, in terms of words
per second, analyses per second, and features per
second. In terms of words per second, AraMorph
is the fastest system. Comparing the ALMOR,
MADAMIRA and CALIMAStar engines using
the same database (ALMOR), CALIMAStar is the
fastest of the three. However, using the larger
CALIMAStar database slows the CALIMAStar

engine down to second place in this three-way
comparison. That said, CALIMAStar produces
more analyses per seconds and features per second
than all the other systems.

7 Conclusion and Future Work

CALIMAStar is an Arabic analyzer and genera-
tor that supports a large number of morphologi-
cal features. It has as an API and a web interface,
and will be released publicly. Compared with four
commonly used Arabic analyzers, CALIMAStar

has better coverage and is very competitive speed-
wise.

In the future, we will extend our database in
terms of lexical entries, features, and dialects. We
will also integrate our system into existing disam-
biguators and parsers (Pasha et al., 2014; Shahrour
et al., 2016; Zalmout and Habash, 2017a). Fi-
nally, we plan on conducting task-based evalua-
tions where we can assess the added value of some
of the new features.

Acknowledgments We thank the annotators
who helped with gender, number and rationality
features: Linda Alamir-Salloum and Sara Hassan.



149

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 11–16, San Diego, California.

Imad A. Al-Sughaiyer and Ibrahim A. Al-Kharashi.
2004. Arabic morphological analysis techniques:
A comprehensive survey. Journal of the Ameri-
can Society for Information Science and Technology,
55(3):189–213.

Sarah Alkuhlani and Nizar Habash. 2011. A Corpus
for Modeling Morpho-Syntactic Agreement in Ara-
bic: Gender, Number and Rationality. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics (ACL’11), Portland,
Oregon, USA.

Mohamed Altantawy, Nizar Habash, and Owen Ram-
bow. 2011. Fast Yet Rich Morphological Analysis.
In Proceedings of the 9th International Workshop
on Finite-State Methods and Natural Language Pro-
cessing (FSMNLP 2011), Blois, France.

Mohamed Altantawy, Nizar Habash, Owen Rambow,
and Ibrahim Saleh. 2010. Morphological Analy-
sis and Generation of Arabic Nouns: A Morphemic
Functional Approach. In Proceedings of the seventh
International Conference on Language Resources
and Evaluation (LREC), Valletta, Malta.

Kenneth Beesley, Tim Buckwalter, and Stuart New-
ton. 1989. Two-Level Finite-State Analysis of Ara-
bic Morphology. In Proceedings of the Seminar on
Bilingual Computing in Arabic and English.

Kenneth R. Beesley. 1996. Arabic finite-state morpho-
logical analysis and generation. In Proceedings of
COLING-96, the 16th International Conference on
Computational Linguistics, Copenhagen.

Fadi Biadsy, Nizar Habash, and Julia Hirschberg. 2009.
Improving the Arabic Pronunciation Dictionary for
Phone and Word Recognition with Linguistically-
Based Pronunciation Rules. In Proceedings of Hu-
man Language Technologies: The 2009 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
397–405, Boulder, Colorado.

Mohamed Boudchiche, Azzeddine Mazroui, Mohamed
Ould Abdallahi Ould Bebah, Abdelhak Lakhouaja,
and Abderrahim Boudlal. 2017. AlKhalil Morpho
Sys 2: A robust Arabic morpho-syntactic analyzer.
Journal of King Saud University-Computer and In-
formation Sciences, 29(2):141–146.

Abderrahim Boudlal, Abdelhak Lakhouaja, Azzeddine
Mazroui, Abdelouafi Meziane, MOAO Bebah, and
M Shoul. 2010. Alkhalil Morpho Sys1: A mor-
phosyntactic analysis system for Arabic texts. In
International Arab conference on information tech-
nology, pages 1–6. Benghazi Libya.

Tim Buckwalter. 2002. Buckwalter Arabic Morpho-
logical Analyzer Version 1.0. Linguistic Data Con-

sortium, University of Pennsylvania, 2002. LDC
Catalog No.: LDC2002L49.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task on
morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
ogy, pages 10–22.

Mona Diab, Nizar Habash, Owen Rambow, and Ryan
Roth. 2013. LDC Arabic treebanks and associated
corpora: Data divisions manual. arXiv preprint
arXiv:1309.5652.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky.
2004. Automatic Tagging of Arabic Text: From
Raw Text to Base Phrase Chunks. In Proceed-
ings of the 5th Meeting of the North American
Chapter of the Association for Computational Lin-
guistics/Human Language Technologies Conference
(HLT-NAACL04), pages 149–152, Boston, MA.

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash. 2007. Arabic Morphological Repre-
sentations for Machine Translation. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods. Springer.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publish-
ers.

Nizar Habash, Fadhl Eryani, Salam Khalifa, Owen
Rambow, Dana Abdulrahim, Alexander Erdmann,
Reem Faraj, Wajdi Zaghouani, Houda Bouamor,
Nasser Zalmout, et al. 2018. Unified guidelines and
resources for Arabic dialect orthography. In Pro-
ceedings of the International Conference on Lan-
guage Resources and Evaluation (LREC).

Nizar Habash, Ramy Eskander, and Adbelati Hawwari.
2012. A Morphological Analyzer for Egyptian
Arabic. In NAACL-HLT 2012 Workshop on Com-
putational Morphology and Phonology (SIGMOR-
PHON2012), pages 1–9.

Nizar Habash and Owen Rambow. 2005. Arabic to-
kenization, part-of-speech tagging and morphologi-
cal disambiguation in one fell swoop. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 573–
580, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
A Morphological Analyzer and Generator for the
Arabic Dialects. In Proceedings of ACL, pages 681–
688, Sydney, Australia. Association for Computa-
tional Linguistics.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS



150

tagging, stemming and lemmatization. In Proceed-
ings of the Second International Conference on Ara-
bic Language Resources and Tools. The MEDAR
Consortium.

Nizar Habash and Ryan M Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages
221–224.

Nizar Habash and Fatiha Sadat. 2006. Arabic Pre-
processing Schemes for Statistical Machine Transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Companion Vol-
ume: Short Papers, pages 49–52, New York City,
USA.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods. Springer.

Salam Khalifa, Sara Hassan, and Nizar Habash. 2017.
A morphological analyzer for Gulf Arabic verbs.
In Proceedings of the Workshop for Arabic Natural
Language Processing 2017 (co-located with EACL
2017), Valencia, Spain.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2016. YAMAMA: Yet Another Multi-Dialect Ara-
bic Morphological Analyzer. In Proceedings of
the International Conference on Computational Lin-
guistics (COLING): System Demonstrations, pages
223–227.

Seth Kulick, Ryan Gabbard, and Mitch Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Improve-
ments. In Proceedings of the 5th Conference on
Treebanks and Linguistics Theories, pages 31–32.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus.
In NEMLAR Conference on Arabic Language Re-
sources and Tools, pages 102–109, Cairo, Egypt.

Yuval Marton, Nizar Habash, and Owen Rambow.
2013. Dependency parsing of Modern Standard
Arabic with lexical and inflectional features. Com-
putational Linguistics, 39(1):161–194.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Portorož, Slovenia.

Robert Parker, David Graff, Ke Chen, Junbo Kong, and
Kazuaki Maeda. 2011. Arabic Gigaword Fifth Edi-
tion. LDC catalog number No. LDC2011T11, ISBN
1-58563-595-2.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan M Roth.
2014. MADAMIRA: A Fast, Comprehensive Tool
for Morphological Analysis and Disambiguation of

Arabic. In Proceedings of the Language Resources
and Evaluation Conference (LREC), Reykjavik, Ice-
land.

Anas Shahrour, Salam Khalifa, Dima Taji, and Nizar
Habash. 2016. CamelParser: A system for Arabic
syntactic analysis and morphological disambigua-
tion. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: System Demonstrations, pages 228–232.

June E Shoup. 1980. Phonological aspects of speech
recognition. Trends in speech recognition, pages
125–138.

Otakar Smrž. 2007. ElixirFM — Implementation of
Functional Arabic Morphology. In Proceedings of
the 2007 Workshop on Computational Approaches
to Semitic Languages: Common Issues and Re-
sources, pages 1–8, Prague, Czech Republic.

Andreas Stolcke. 2002. SRILM an Extensible Lan-
guage Modeling Toolkit. In Proceedings of the In-
ternational Conference on Spoken Language Pro-
cessing.

Michelle Vanni and Rémi Zajac. 1996. The Temple
Translator’s Workstation Project. In Proceedings of
a workshop on held at Vienna, Virginia: May 6-8,
1996, pages 101–106.

Nasser Zalmout and Nizar Habash. 2017a. Don’t throw
those morphological analyzers away just yet: Neural
morphological disambiguation for Arabic. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 704–
713, Copenhagen, Denmark.

Nasser Zalmout and Nizar Habash. 2017b. Optimizing
tokenization choice for machine translation across
multiple target languages. The Prague Bulletin of
Mathematical Linguistics, 108(1):257–269.


