@inproceedings{xie-etal-2018-cost,
title = "Cost-Sensitive Active Learning for Dialogue State Tracking",
author = "Xie, Kaige and
Chang, Cheng and
Ren, Liliang and
Chen, Lu and
Yu, Kai",
booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5022",
doi = "10.18653/v1/W18-5022",
pages = "209--213",
abstract = "Dialogue state tracking (DST), when formulated as a supervised learning problem, relies on labelled data. Since dialogue state annotation usually requires labelling all turns of a single dialogue and utilizing context information, it is very expensive to annotate all available unlabelled data. In this paper, a novel cost-sensitive active learning framework is proposed based on a set of new dialogue-level query strategies. This is the first attempt to apply active learning for dialogue state tracking. Experiments on DSTC2 show that active learning with mixed data query strategies can effectively achieve the same DST performance with significantly less data annotation compared to traditional training approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2018-cost">
<titleInfo>
<title>Cost-Sensitive Active Learning for Dialogue State Tracking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kaige</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liliang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialogue state tracking (DST), when formulated as a supervised learning problem, relies on labelled data. Since dialogue state annotation usually requires labelling all turns of a single dialogue and utilizing context information, it is very expensive to annotate all available unlabelled data. In this paper, a novel cost-sensitive active learning framework is proposed based on a set of new dialogue-level query strategies. This is the first attempt to apply active learning for dialogue state tracking. Experiments on DSTC2 show that active learning with mixed data query strategies can effectively achieve the same DST performance with significantly less data annotation compared to traditional training approaches.</abstract>
<identifier type="citekey">xie-etal-2018-cost</identifier>
<identifier type="doi">10.18653/v1/W18-5022</identifier>
<location>
<url>https://aclanthology.org/W18-5022</url>
</location>
<part>
<date>2018-jul</date>
<extent unit="page">
<start>209</start>
<end>213</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cost-Sensitive Active Learning for Dialogue State Tracking
%A Xie, Kaige
%A Chang, Cheng
%A Ren, Liliang
%A Chen, Lu
%A Yu, Kai
%S Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue
%D 2018
%8 jul
%I Association for Computational Linguistics
%C Melbourne, Australia
%F xie-etal-2018-cost
%X Dialogue state tracking (DST), when formulated as a supervised learning problem, relies on labelled data. Since dialogue state annotation usually requires labelling all turns of a single dialogue and utilizing context information, it is very expensive to annotate all available unlabelled data. In this paper, a novel cost-sensitive active learning framework is proposed based on a set of new dialogue-level query strategies. This is the first attempt to apply active learning for dialogue state tracking. Experiments on DSTC2 show that active learning with mixed data query strategies can effectively achieve the same DST performance with significantly less data annotation compared to traditional training approaches.
%R 10.18653/v1/W18-5022
%U https://aclanthology.org/W18-5022
%U https://doi.org/10.18653/v1/W18-5022
%P 209-213
Markdown (Informal)
[Cost-Sensitive Active Learning for Dialogue State Tracking](https://aclanthology.org/W18-5022) (Xie et al., 2018)
ACL