@inproceedings{huang-etal-2018-cyberbullying,
title = "Cyberbullying Intervention Based on Convolutional Neural Networks",
author = "Huang, Qianjia and
Inkpen, Diana and
Zhang, Jianhong and
Van Bruwaene, David",
booktitle = "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying ({TRAC}-2018)",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4405",
pages = "42--51",
abstract = "This paper describes the process of building a cyberbullying intervention interface driven by a machine-learning based text-classification service. We make two main contributions. First, we show that cyberbullying can be identified in real-time before it takes place, with available machine learning and natural language processing tools. Second, we present a mechanism that provides individuals with early feedback about how other people would feel about wording choices in their messages before they are sent out. This interface not only gives a chance for the user to revise the text, but also provides a system-level flagging/intervention in a situation related to cyberbullying.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2018-cyberbullying">
<titleInfo>
<title>Cyberbullying Intervention Based on Convolutional Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qianjia</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diana</namePart>
<namePart type="family">Inkpen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianhong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Van Bruwaene</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-aug</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the process of building a cyberbullying intervention interface driven by a machine-learning based text-classification service. We make two main contributions. First, we show that cyberbullying can be identified in real-time before it takes place, with available machine learning and natural language processing tools. Second, we present a mechanism that provides individuals with early feedback about how other people would feel about wording choices in their messages before they are sent out. This interface not only gives a chance for the user to revise the text, but also provides a system-level flagging/intervention in a situation related to cyberbullying.</abstract>
<identifier type="citekey">huang-etal-2018-cyberbullying</identifier>
<location>
<url>https://aclanthology.org/W18-4405</url>
</location>
<part>
<date>2018-aug</date>
<extent unit="page">
<start>42</start>
<end>51</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cyberbullying Intervention Based on Convolutional Neural Networks
%A Huang, Qianjia
%A Inkpen, Diana
%A Zhang, Jianhong
%A Van Bruwaene, David
%S Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)
%D 2018
%8 aug
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F huang-etal-2018-cyberbullying
%X This paper describes the process of building a cyberbullying intervention interface driven by a machine-learning based text-classification service. We make two main contributions. First, we show that cyberbullying can be identified in real-time before it takes place, with available machine learning and natural language processing tools. Second, we present a mechanism that provides individuals with early feedback about how other people would feel about wording choices in their messages before they are sent out. This interface not only gives a chance for the user to revise the text, but also provides a system-level flagging/intervention in a situation related to cyberbullying.
%U https://aclanthology.org/W18-4405
%P 42-51
Markdown (Informal)
[Cyberbullying Intervention Based on Convolutional Neural Networks](https://aclanthology.org/W18-4405) (Huang et al., 2018)
ACL