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Introduction

Welcome to TextGraphs, the Workshop on Graph-Based Methods for Natural Language Processing. The
twelfth edition of our workshop is being organized on June 6, 2018, in conjunction with the 16th Annual
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, being held in New Orleans, Louisiana, USA.

The workshops in the TextGraphs series have published and promoted the synergy between the field of
Graph Theory (GT) and Natural Language Processing (NLP) for over a decade. The target audience of
our workshop comprises of researchers working on problems related to either Graph Theory or graph-
based algorithms applied to Natural Language Processing, social media, and the Semantic Web.

TextGraphs addresses a broad spectrum of research areas within NLP. This is because, besides traditional
NLP applications like parsing, word sense disambiguation, semantic role labeling, and information
extraction, graph-based solutions also target web-scale applications like information propagation in
social networks, rumor proliferation, e-reputation, language dynamics learning, and future events
prediction. Following this tradition, this year’s TextGraphs also presents research from diverse topics
such as lexical and computational semantics, text clustering and classification, and text compresion and
summarization, to name a few.

The selection process was competitive – we received 17 submissions (9 long and 8 short submissions)
and accepted for presentation 8 of them (5 long and 3 short papers), resulting in the overall acceptance
rate of 47%.

We are pleased to have two excellent invited speakers for this year’s event. We thank Gabor Melli and
Maximilian Nickel for their enthusiastic acceptance of our invitation. Finally, we are thankful to the
members of the program committee for their valuable and high quality reviews. All submissions have
benefited from their expert feedback. Their timely contribution was the basis for accepting an excellent
list of papers and making the twelfth edition of TextGraphs a success.

Goran Glavaš, Swapna Somasundaran, Martin Riedl, and Ed Hovy
TextGraphs-12 Organizers
April 2018
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Scientific Discovery as Link Prediction in Influence and Citation Graphs

Fan Luo Marco Valenzuela-Escárcega Gus Hahn-Powell Mihai Surdeanu
University of Arizona, Tucson, AZ, USA

{fanluo, marcov, hahnpowell, msurdeanu}@email.arizona.edu

Abstract

We introduce a machine learning approach for
the identification of “white spaces” in scien-
tific knowledge. Our approach addresses this
task as link prediction over a graph that con-
tains over 2M influence statements such as
“CTCF activates FOXA1”, which were au-
tomatically extracted using open-domain ma-
chine reading. We model this prediction task
using graph-based features extracted from the
above influence graph, as well as from a ci-
tation graph that captures scientific commu-
nities. We evaluated the proposed approach
through backtesting. Although the data is
heavily unbalanced (50 times more negative
examples than positives), our approach pre-
dicts which influence links will be discovered
in the “near future” with a F1 score of 27
points, and a mean average precision of 68%.

1 Introduction

The amount of scientific knowledge that is pub-
licly available has increased dramatically in the
past few years. For example, PubMed, a search
engine of biomedical publications,1 now indexes
over 25 million papers, 17 million of which were
published between 1990 and the present. This in-
formation overload yields two critical problems.
First, this exceeds the human capacity to aggregate
and interpret the fragments of knowledge pub-
lished in these papers, which may result in ex-
isting solutions to critical problems being over-
looked. Swanson (1986) described this problem
as “undiscovered public knowledge”. Second, this
vast amount of available information complicates
the identification of “white spaces” in science,
i.e., topics that are insufficiently studied and may
lead to important scientific discoveries.

While the first problem has been addressed re-
cently with efforts that combine machine read-

1http://www.ncbi.nlm.nih.gov/pubmed

ing and assembly with existing data analysis al-
gorithms (Valenzuela-Escarcega et al., 2017; Poon
et al., 2015, inter alia), the second problem is
largely unstudied.

In this work we propose a first enabling step
towards addressing the problem of white space
discovery from literature (Sebastian et al., 2017;
Cameron, 2014) with an approach inspired from
the field of link prediction (Liben-Nowell and
Kleinberg, 2007; Leskovec et al., 2010). In par-
ticular, our method operates over two graphs: (a)
a graph of positive/negative influence relations
such as the relation “CTCF activates FOXA1”
between the two proteins, which were extracted
using an existing, open-domain machine read-
ing tool (Hahn-Powell et al., 2017) from over
100K biomedical publications2; and (b) the ci-
tation graph between the corresponding papers
where these findings were published. The pro-
posed approach approximates the task of white
space discovery by predicting new influence rela-
tions that do not exist in the influence graph at a
given time (hence the white space) but will emerge
in future (thus somebody identified the missing
knowledge as important).

The contributions of this work are:

(1) We propose a novel machine learning (ML)
framework for this prediction task that uses fea-
tures extracted from both the influence graph (e.g.,
the connectivity of relevant concepts in the graph)
and the citation graph (e.g., the affinity between
related influence relations measured by member-
ship to communities in citation space).

(2) We evaluate the proposed method on an
influence graph extracted from over 100K pa-

2These relations were extracted using a grammar that
identifies causal statements in text. However, we prefer the
term “influence” to “causality” in this work because here we
simply rely on the text and do not demonstrate that these find-
ings are truly causal.
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pers, which contains 1,564,748 concepts (e.g.,
“astrocytes”, “proinflammatory cytokines”) and
2,395,944 influence relations (e.g., “VEGF in-
creases Akt”). Our method obtains an F1 score of
27 points and a mean average precision of 68%.
This outperforms considerably methods that ex-
tract features only from one of the two graphs.

(3) To promote future work on this topic, we
release a dataset containing both the influence and
the citation graphs used in this paper, available at:
https://github.com/clulab/releases/tree/

master/textgraphs2018-discovery.

2 Data

As mentioned, the primary graph this method op-
erates on is a graph of influence relations ex-
tracted from a corpus of 119,667 PubMed Open
Access publications. These papers were previ-
ously selected to be relevant to the topic of chil-
dren’s health, which spans multiple domains, and
includes issues such as stunting, wasting, and mal-
nutrition.

All these papers were processed using the ma-
chine reading and assembly software of Hahn-
Powell et al. (2017). In order to address the multi-
domain nature of the children’s health, Hahn-
Powell et al. followed the OpenIE-style approach
of Banko et al. (2007) for entity extraction by con-
sidering expanded noun phrases as a coarse ap-
proximation of the concepts relevant to the topic.
For event extraction, the authors adapted a sub-
set of REACH grammars (Valenzuela-Escarcega
et al., 2017) from the biomolecular domain that
capture influence statements (e.g., positive and
negative regulations). The adaptation removed
selectional restrictions on the arguments of each
event predicate. That is, they extract any lexi-
calized variation of “A causes B” where A and
B are concepts identified in the entity extraction
step. For example, when processing the sentence
“Chronic infection may lead to malnutrition and
malabsorption”, the system extracts the following
entities: “Chronic infection”, “malnutrition”, and
“malabsorption”. In this particular case, the ex-
tracted entities participate in two promotes re-
lations: the first between “Chronic infection” and
“malnutrition”, and the second between “Chronic
infection” and “malabsorption”.

This machine reading approach was used to
read the entire content of these publications (in-
cluding abstract and body of paper). To reduce

Figure 1: Intuition of the backtesting framework: we predict
if links such as A→ C will be added to the influence graph
after time t, using information that exists before time t such
as A→B, and B→C. Setting t = 2012 yields 5,015 positive
examples, i.e., A→ C links that were added after 2012, and
274,251 negative examples, i.e., A → C links that were not
added to the graph between 2012 and the end of 2017.

noise we kept only relations extracted at least
twice, and which occur between concepts with
an inverse document frequency (IDF) larger than
1. The resulting influence graph (IG) contains
1,564,748 distinct nodes, connected by 2,395,944
influence relations.

Each match to these rules produces a directed
influence relation3 that encodes polarity (i.e., in-
crease or decrease). Finally, the relation instances
are then consolidated through a conservative dedu-
plication procedure.

Because the hypotheses studied in these publi-
cations are generally expressed using causal lan-
guage, we believe this influence graph (IG) cap-
tures the essence of the scientific knowledge in this
domain.

The above IG is accompanied by a citation
graph (CG), which contains outgoing citations
from the above papers, at a total of 5,523,759 cita-
tion links.

We model the discovery of important white
spaces in this knowledge base as link prediction:
we predict which influence links will be added to
the IG after time t, using only information avail-
able before time t. We believe this is a reason-
able approximation for the discovery of impor-
tant white spaces in science knowledge: influence
links that will be added in the future indicate that
somebody identified the missing information to be
important enough to be studied and published. To
limit search space, in this work we focus on the
prediction of A → C influence links, when A →
B and B→ C exist in the graph before time t, for
at least one node B. Figure 1 visualizes this proce-
dure.

3It should be noted that this approach only reads such
statements from publications, and does not attempt to verify
these findings directly through separate modeling. In other
words, the authors statements are assumed to be correct.
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t (year) positive negative

2017 - 998,586
2016 319 979,709
2015 1,706 881,689
2014 3,767 696,406
2013 5,208 481,671
2012 5,015 274,251
2011 3,741 151,460
2010 2,448 73,226
2009 1,521 36,839
2008 782 16,372
2007 444 7,843

Table 1: Total number of positive and negative examples for
different values of the threshold t.

Positive Negative
Examples Examples

Training 3,011 164,551
Development 1,002 54,850
Testing 1,002 54,850

Table 2: Number of positive and negative examples in the
training, development, and testing partitions.

Note that transitivity cannot be assumed to be
true in this graph due to the fact that influence
relations extracted from text usually oversimplify
complex causal processes. We show in Section 4
that relying on this transitivity assumption leads to
poor predictions.

We implemented the above task through back-
testing. That is, we look at an arbitrary point in
time in the past (t), and create positive training ex-
amples from A→C links that were added to IG af-
ter t. Similarly, we create negative examples from
A→ C links that do not appear between time t and
the present. Note that these negative examples are
an approximation: some of these may correspond
to inventions that will be published at future dates
that are beyond the coverage of our dataset. In this
paper we used t = 2012. This choice of t is jus-
tified in Table 1, which shows the distribution of
positive and negative examples for different values
of t. We chose t = 2012 because this provided a
large enough number of positive examples, while
still maintaining a realistic distribution of negative
examples.

The dataset was split into train-
ing/development/testing as indicated in Table 2,
using a 60-20-20% split. During the partitioning,
we made sure that identical influence links coming
from different papers are all allocated to the same
partition.

3 Approach

We model link prediction as i.i.d. classification on
the above dataset, exploring multiple classifiers in
Section 4. One key contribution of this work is the
feature set used by these classifiers, which is sum-
marized in Table 3. At a higher level, these fea-
tures capture the connectivity of both the IG and
CG around a candidate link, under the assumption
that the more connected the corresponding graph
is around A and C, the more likely it is that the
link A → C will be discovered in the near fu-
ture. In particular, from the IG we extract the in-
and out-degrees of the source/destination nodes,
and statistics from the path(s) connecting the two
nodes such as the length of the shortest path con-
necting the source and destination nodes, or the
inverse document frequency (IDF) scores of the
nodes on these paths.

From the CG, we derive features based on
the probabilities that papers containing A → B
(pA→B) and B → C (pB→C) belong to the same
community/ies, motivated by the idea that discov-
eries are easier to be made if the individual frag-
ments that form the puzzle (A → B and B → C
here) come from the same or related discipline(s).
We model the probability that two papers, p1 and
p2, belong to the same community P (p1, p2) us-
ing two configurations of the Coda community de-
tection algorithm (Yang et al., 2014), one in which
detects 100 communities, and another where it de-
tects 300. Because influence links may be re-
ported in more than one paper, we derived the
max/min/avg P(pA→B ,pB→C) features, which are
computed across all possible combinations of pa-
pers pA→B and pB→C .

Lastly, we add a series of features (bottom
part of Table 3) extracted from the collection
of biomedical publications used in these experi-
ments, such as IDF scores of the relevant concept
nodes and the counts for the number of papers that
mention a given influence link.

4 Results

Table 4 lists the results of several classifiers on
the test partition,4 compared against two base-
lines. The first baseline randomly creates positive
links following the distribution of positive exam-
ples from the training partition. The second base-

4All classifier hyper parameters were tuned on the de-
velopment partition. All classification results were averaged
over 5 runs.
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Feature Name Description

CA.outdegree Out-degree of source concept node A, i.e., number of influence relations starting on A

CA.indegree In-degree of source concept node A, i.e., number of influence relations ending on A

CC .outdegree Out-degree of destination concept node C

CC .indegree In-degree of destination concept node C

Cinbetween.outdegree Out-degree of nodes in all the shortest paths that connect A to C but do not pass through B

Cinbetween.indegree In-degree of nodes in all the shortest paths that connect A to C but do not pass through B

shortest path length The length of the shortest path that connects A to C but does not pass through B; 0 if no
such path exists

shortest path count The number of shortest paths that connect A to C but do not pass through B

Cinbetween.avg-idf Average inverse document frequency (IDF) of nodes in-between A and C in all the above
shortest paths

rinbetween.avg-seen Average number of papers containing an edge in the above shortest paths

max P(pA→B ,pB→C )
Maximum probability of papers pA→B and pB→C being related based on their membership
to multi-communities detected by the Coda algorithm; pr refers to any paper that contains
influence relation r.

min P(pA→B ,pB→C ) Minimum probability of papers pA→B and pB→C being related based on their membership
to multi-communities detected by the Coda algorithm

avg P(pA→B ,pB→C ) Average probability of papers pA→B and pB→C being related based on their membership
to multi-communities detected by the Coda algorithm

Jaccard(pA→B ,pB→C ) Jaccard similarity between the set of papers that contain the link A → B (pA→B) and the
set of papers that contain B → C (pB→C )

Inter-citation ratio The number of citations between the two sets pA→B and pB→C normalized by the size of
the union of the two sets.

CA.idf IDF of the lemmatized terms of source concept node A

CB .idf IDF of the lemmatized terms of intermediate concept node B

CC .idf IDF of the lemmatized terms of destination concept node C

r1.seen Number of papers that contain the influence relation A→ B

r2.seen Number of papers that contain the influence relation B→ C

Table 3: List of features used by the link prediction classifier that classifies the candidate link A → C, given an intermediate
node B. The top part of table lists the features derived from the influence graph. The middle part lists features extracted from
the citation graph. The bottom part contains features extracted from the collection of papers.

line assumes that all candidate links are positive,
i.e., candidate A→ C is always correct if A→ B
and B → C exist for some B.

This table yields several observations. First, the
performance of the first (random) baseline is very
low, indicating that this is indeed a hard task that is
exacerbated by the biased label distribution. Sec-
ond, the precision of the second baseline is also
very low, confirming that the transitive closure as-
sumption is not supported on this realistic influ-
ence graph. Third, all classifiers considerably out-
perform the baseline, indicating that capturing the
structure of the IG and CG is indeed indicative of
the likelihood that an influence link will be dis-
covered in the near future. Fourth, a linear support
vector machines (SVM) classifier did not converge
on this data, indicating that, while it is possible to
learn a model for this link prediction task, the re-
sulting model is more complex than a linear func-
tion. All in all, the best non-linear model (Ad-

F1 Precision Recall P@10 MAP

Baseline (random) 0.02 0.02 0.02 - -
Baseline (all positive) 0.035 0.018 1 - -

Neural Network 0.27 0.398 0.206 0.8 0.537
AdaBoost 0.27 0.536 0.178 0.9 0.681
Random Forest 0.23 0.244 0.216 0.5 0.309

Table 4: Unranked scores –precision, recall, and F1– and
ranked scores –precision at 10 (P@10), and mean average
precision (MAP)– of several classifiers for the prediction of
influence links using backtesting at time t = 2012. The base-
line predicts that every A → C link will be discovered after
time t, if A→ B and B → C exist before time t.

aBoost) obtained an F1 score of 0.27, an order of
magnitude higher than the baseline, and a mean
average precision (MAP) of 0.68, indicating that
most correct predictions are ranked closer to the
top.

Table 5 shows the results of an ablation ex-
periment in which we measured the drop in per-
formance when each feature was individually re-
moved from the full AdaBoost model. This exper-
iment indicates that, importantly, both the influ-

4



Removed Feature F1 Precision Recall

Full model 0.268 0.528 0.176

− CA.outdegree 0.234 0.678 0.14
− CA.indegree 0.246 0.44 0.17
− CC .outdegree 0.214 0.248 0.186
− CC .indegree 0.2 0.232 0.172
− Cinbetween.outdegree 0.22 0.272 0.182
− Cinbetween.indegree 0.234 0.3 0.192
− Cinbetween.avg-idf 0.214 0.272 0.18
− rinbetween.avg-seen 0.23 0.29 0.192
− shortest path count 0.222 0.29 0.182
− shortest path length 0.204 0.28 0.16

− max P(pA→B ,pB→C ) (c=100) 0.226 0.3 0.18
− min P(pA→B ,pB→C ) (c=100) 0.228 0.302 0.184
− avg P(pA→B ,pB→C ) (c=100) 0.232 0.306 0.186
− max P(pA→B ,pB→C ) (c=300) 0.232 0.314 0.182
− min P(pA→B ,pB→C ) (c=300) 0.23 0.298 0.18
− avg P(pA→B ,pB→C ) (c=300) 0.232 0.326 0.182
− Jaccard(pA→B ,pB→C ) 0.226 0.29 0.184
− Inter-citation ratio 0.23 0.318 0.18

− CA.idf 0.248 0.478 0.168
− CB .idf 0.216 0.258 0.19
− CC .idf 0.22 0.256 0.194
− r1.seen 0.226 0.284 0.19
− r2.seen 0.228 0.298 0.184

Table 5: Ablation experiment, which removed one feature
at a time from the full AdaBoost model. This experiment was
performed on the development partition.

ence and citation graphs contribute to the overall
performance. Removing individual features from
either group impacts performance. Several fea-
tures have a high impact, including Cinbetween.avg-
idf, shortest path length, which are extracted from
the influence graph, and max P(pA→B ,pB→C) and
Jaccard(pA→B ,pB→C), which are extracted from
the citation graph. These results demonstrate that
the task of scientific discovery requires a multi-
faceted approach that analyzes several graphs, in-
cluding graphs that model the content of publica-
tions (our IG), as well as citation graphs.

Lastly, we rank the discoveries made by the
proposed approach using the NN model, using a
scoring function that combines the classifier con-
fidence and redundancy (i.e., how many times we
saw A → C with different intermediate nodes B)
using a Noisy-Or formula:

Score(A→ C) = (1−
∏

B

(1− prob(A→ C|B)))

where B loops overall intermediate nodes that
support the predicted relation, and prob(A →
C|B) is the classifier’s output probability given
one intermediate node B.5 Table 6 lists the top
10 prediction of our approach under this scoring
function. 80% of these predictions are correct (i.e.,
they are discovered after time t = 2012). Addi-
tionally, the table shows that the predictions are

5This ranking function was also used to generate the
ranked evaluation in Table 4.

Predicted discovery Score Gold label

antibodies→ apoptosis 1 1
apoptosis→ ROS 1 1
TGF-beta→ apoptosis 1 1
TLR→ cascade 1 1
apoptosis→ insulin 1 0
apoptosis→ enzymes 1 0
antibodies→ receptor 1 1
IL-6→ tumor 1 1
mutations→ inflammation 0.999 1
macrophages→ tumor 0.999 1

Table 6: Top 10 predicted links by the neural network model,
sorted in descending order of their informativeness score.

indeed informative: they capture fragments of pro-
tein signaling pathways, and links to biological
processes (e.g., apoptosis). A few predicted links
such as “TLR→ cascade” are not informative, but
this could be attributed to limitations in the ma-
chine reader, which failed to capture meaningful
content from the destination concept (“cascade”).

5 Conclusion

We proposed a novel strategy for the identification
of white spaces in scientific knowledge, which are
topics that are insufficiently studied and may hide
important scientific discoveries. We addressed this
task with a link prediction method that operates
over two graphs: a graph of influence relations that
were automatically extracted from over 100K pa-
pers on children’s health using a machine reading
tool, and which summarize the scientific knowl-
edge in this domain, and a graph of citations orig-
inating from these papers. Using a backtesting
methodology, we showed that our method is capa-
ble of predicting which influence links will be dis-
covered in the future with a F1 score of 27 points,
and a mean average precision of 68%. An ablation
analysis experiment demonstrated that features ex-
tracted from both graphs contribute to overall per-
formance. We believe this work is relevant to
many actors involved in scientific discovery in-
cluding researchers and program managers.
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Abstract

Corpus2graph is an open-source NLP-
application-oriented Python package that
generates a word co-occurrence network
from a large corpus. It not only contains
different built-in methods to preprocess
words, analyze sentences, extract word pairs
and define edge weights, but also supports
user-customized functions. By using paral-
lelization techniques, it can generate a large
word co-occurrence network of the whole
English Wikipedia data within hours. And
thanks to its nodes-edges-weight three-level
progressive calculation design, rebuilding
networks with different configurations is even
faster as it does not need to start all over again.
This tool also works with other graph libraries
such as igraph, NetworkX and graph-tool as
a front end providing data to boost network
generation speed.

1 Introduction

Word co-occurrence networks are widely used in
graph-based natural language processing methods
and applications, such as keyword extraction (Mi-
halcea and Tarau, 2004) and word sense discrimi-
nation (Ferret, 2004).

A word co-occurrence network is a graph of
word interactions representing the co-occurrence
of words in a corpus. An edge can be created
when two words co-occur within a sentence; these
words are possibly non-adjacent, with a maximum
distance (in number of words, see Section 2.2)
defined by a parameter dmax (Cancho and Solé,
2001). In an alternate definition, an edge can be
created when two words co-occur in a fixed-sized
sliding window moving along the entire document
or sentences (Rousseau and Vazirgiannis, 2013).
Despite different methods of forming edges, the
structure of the network for sentences will be the
same for the two above definitions if the maximum

distance of the former is equal to the sliding win-
dow size of the latter. Edges can be weighted or
not. An edge’s weight indicates the strength of
the connection between two words, which is often
related to their number of co-occurrences and/or
their distance in the text. Edges can be directed or
undirected (Mihalcea and Radev, 2011).

While there already exist network analysis
packages such as NetworkX (Hagberg et al.,
2008), igraph (Csardi and Nepusz, 2006) and
graph-tool (Peixoto, 2014), they do not include
components to make them applicable to texts di-
rectly: users have to provide their own word
preprocessor, sentence analyzer, weight function.
Moreover, for certain graph-based NLP applica-
tions, it is not straightforward to find the best net-
work configurations, e.g. the maximum distance
between words. A huge number of experiments
with different network configurations is inevitable,
typically rebuilding the network from scratch for
each new configuration. It is easy to build a word
co-occurrence network from texts by using tools
like textexture1 or GoWvis2. But they mainly fo-
cus on network visualization and cannot handle
large corpora such as the English Wikipedia.

Our contributions: To address these incon-
veniences of generating a word co-occurrence
network from a large corpus for NLP applica-
tions, we propose corpus2graph, an open-source3

NLP-oriented Python package designed to handle
Wikipedia-level large corpora. Corpus2graph sup-
ports many language processing configurations,
from word preprocessing to sentence analysis, and
different ways of defining network edges and edge
attributes. By using our node-edge-weight three-
level progressive calculation design, it can quickly
build networks for multiple configurations.

1http://textexture.com
2https://safetyapp.shinyapps.io/GoWvis/
3available at https://github.com/zzcoolj/corpus2graph
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We are currently using it to experiment with
injecting pre-computed word co-occurrence net-
works into word2vec word embedding computa-
tion.

2 Efficient NLP-oriented graph
generation

Our tool builds a word co-occurrence network
given a source corpus and a maximal distance
dmax. It contains three major parts: word process-
ing, sentence analysis and word pair analysis from
an NLP point of view. They correspond to three
different stages in network construction.

2.1 Node level: word preprocessing

The contents of large corpora such as the whole
English Wikipedia are often stored in thousands
of files, where each file may contain several
Wikipedia articles. To process a corpus, we con-
sider a file as the minimal processing unit. We
go through all the files in a multiprocessing way:
Files are equally distributed to all processors and
each processor handles one file at a time.

To reduce space requirements, we encode each
file by replacing words with numeric ids. Be-
sides, to enable independent, parallel processing
of each file, these numeric ids are local to each
process, hence to each file. A local-id-encoded
file and its corresponding local dictionary (word
→ local id) are created after this process. As this
process focuses on words, our tool provides sev-
eral word preprocessing options such as tokenizer
selection, stemmer selection, removing numbers
and removing punctuation marks. It also supports
user-provided word preprocessing functions.

All these local-id-encoded files and correspond-
ing local dictionaries are stored in a specific
folder (dicts and encoded texts). Once
all source files are processed, a global dictionary
(word→ global id) is created by merging all local
dictionaries. Note that at this point, files are still
encoded with local word ids.

2.2 Node co-occurrences: sentence analysis

To prepare the construction of network edges, this
step aims to enumerate word co-occurrences, tak-
ing into account word distance. Given two words
wi1 and wj2 that co-occur within a sentence at po-
sitions i and j (i, j ∈ {1 . . . l} where l is the
number of words in the sentence), we define their
distance d(wi1, w

j
2) = j − i . For each input

δ Word Pairs
2 (8746, 2357), (2357, 2669), (2669, 4), (4, 309),

(309, 1285), (1285, 7360)
3 (8746, 2669), (2357, 4), (2669, 309), (4, 1285),

(309, 7360)
4 (8746, 4), (2357, 309), (2669, 1285), (4, 7360)
5 (8746, 309), (2357, 1285), (2669, 7360)

Table 1: Word pairs for different values of distance δ
in sentence “8746 2357 2669 4 309 1285 7360”

file, dmax output files will be created to enumer-
ate co-occurrences: one for each distance δ ∈
{1, . . . dmax}. They are stored in the cooc folder.

To prepare the aggregation of individual statis-
tics into global statistics (see Section 2.3), each
process converts local word ids into global word
ids through the combination of its local dictionary
and of the global dictionary. Note that at this point
the global dictionary must be loaded into RAM.

Then, a sentence analyzer goes through this
file sentence by sentence to extract all word co-
occurrences with distances δ ≤ dmax. For in-
stance, sentence “The NLP history started in the
1950s.” may be encoded as “8746 2357 2669 4
309 1285 7360”; the sentence analyzer will extract
word pairs from distance 1 to dmax. The results for
dmax = 5 are shown in Table 1.

User-customized sentence analyzer and dis-
tance computation are also supported so that more
sophisticated definitions of word pair distance can
be introduced. For instance, we plan to provide a
syntactic distance: the sentence analyzer will build
a parse tree for each sentence and compute word
pair distance as their distance in the parse tree.

Besides, in this step, we also provide an option
to count the number of occurrences of each word
occ(w). Given that a large corpus like Wikipedia
has a huge number of tokens, a global word count
is convenient to enable the user to select words
based on a frequency threshold before network
generation. We return to this point in the next sub-
section.

2.3 Edge attribute level: word pair analysis

A word pair (w1, w2) is represented by an edge
linking two nodes in the word co-occurrence net-
work. In this step, we enrich edge information
with direction and weight by word pair analysis.

Let cooc(δ, w1, w2) the number of co-
occurrences of w1 and w2 with a distance of
δ (Eq. 1). We define the weight w(dmax, w1, w2)
of an edge (w1, w2) as the total number of
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co-occurrences of w1 and w2 with distances
δ ≤ dmax (Eq. 2).

cooc(δ, w1, w2) = |{(wi1, wj2); d(wi1, wj2) = δ}| (1)

w(dmax, w1, w2) =
∑

δ≤dmax

cooc(δ, w1, w2) (2)

For efficiency we use an iterative algorithm
(Eq. 3):

w(d,w1, w2) =





cooc(1, w1, w2), if d = 1

cooc(d,w1, w2)+

w(d− 1, w1, w2), otherwise

(3)

We calculate the edge weight of different window
sizes in a stepwise fashion by applying Eq. 3. For
the initial calculation, we start by counting and
merging all word pair files of distance 1 in the
edges folder generated by step 2 to get a co-
occurrence count file. This file contains informa-
tion on all distinct word pair co-occurrence counts
for distance 1. We then follow the same principle
to obtain a co-occurrence count file for distance 2.
We merge this result with the previous one to get
word pair co-occurrence counts for window size 2.
We continue this way until distance dmax.

If we wish to make further experiments with
a larger distance, there is no need to recompute
counts from the very beginning: we just need to
pick up the word pair co-occurrences of the largest
distance that we already calculated and start from
there. All co-occurrence count files for the differ-
ent distances are stored in the graph folder.

Defining the weight as the sum of co-
occurrences of two words with different distances
is just one of the most common ways used in
graph-based natural language processing applica-
tions. We also support other (built-in and user-
defined) definitions of the weight. For instance,
when calculating the sum of co-occurrences, we
can assign different weights to co-occurrences ac-
cording to the word pair distance, to make the re-
sulting edge weight more sensitive to the word pair
distance information.

For a large corpus, we may not need all edges
to generate the final network. Based on the word
count information from Section 2.2, we may se-
lect those nodes whose total frequency is greater
than or equal to min count, or the most frequent
vocab size number of nodes, or apply both of these
constraints, before building edges and computing
their weights.

3 Efficient graph processing

3.1 Matrix-type representations
Although our tool works with graph libraries like
igraph, NetworkX and graph-tool as a front end,
we also provide our own version of graph pro-
cessing class for efficiency reasons: Most graph
libraries treat graph processing problems in a net-
work way. Their algorithms are mainly based on
network concepts such as node, edge, weight, de-
gree. Sometimes, using these concepts directly in
network algorithms is intuitive but not computa-
tionally efficient. As networks and matrices are
interchangeable, our graph processing class uses
matrix-type representations and tries to adapt net-
work algorithms in a matrix calculation fashion,
which boosts up the calculation speed.

In our matrix representation for graph informa-
tion, nodes, edges and weights are stored in an ad-
jacency matrix A: a square matrix of dimension
|N | × |N |, where N is the number of nodes in the
graph. Each row of this matrix stands for a start-
ing node, each column represents one ending node
and each cell contains the weight of the edge from
that starting node to the ending node.

Note that not all network algorithms are suit-
able for adapting into a matrix version. For this
reason, our graph processing class does not aim to
be a replacement of the graph libraries we men-
tioned before. It is just a supplement, which pro-
vides matrix-based calculation versions for some
of the algorithms.

To give the reader an intuition about the differ-
ence between the common network-type represen-
tation and the matrix-type representation, the com-
ing subsection uses the random walk algorithm as
an example.

3.2 Random walk
Random walks (Aldous and Fill, 2002) are widely
used in graph-based natural language process-
ing tasks, for instance word-sense disambigua-
tion (Moro et al., 2014) and text summariza-
tion (Erkan and Radev, 2004; Zhu et al., 2007).
The core of the random walk related algorithms
calculation is the transition matrix P .

In the random walk scenario, starting from an
initial vertex u, we cross an edge attached to u
that leads to another vertex, say v (v can be u it-
self when there exists an edge that leads from u to
u, which we call a self-loop). Element Puv of the
transition matrix P represents the transition prob-
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ability P (u, v) of the walk from vertex u to vertex
v in one step. For a weighted directed network,
P (u, v) can be calculated as the ratio of the weight
of the edge (u, v) over the sum of the weights of
the edges that start from vertex u.

NetworkX (version 2.0) provides a built-in
method stochastic graph to calculate the transition
matrix P . For directed graphs, it starts by cal-
culating the sum of the adjacent edge weights of
each node in the graph and stores all the results in
memory for future usage. Then it traverses every
edge (u, v), dividing its weight by the sum of the
weights of the edges that start from u.

Based on the adjacency matrix A introduced in
Section 3.1, the transition probability P (u, v) can
be expressed as:

P (u, v) = Auv/
|Au|∑
i=1

Aui

The transition matrix P can be easily calcu-
lated in two steps: First, getting sums of all el-
ements along each row and broadcasting the re-
sults against the input matrix to preserve the di-
mensions (keepdims is set to True); Second, per-
forming element-wise division to get the ratios of
each cell value to the sum of all its row’s cell val-
ues. By using NumPy (Walt et al., 2011), the cal-
culation is more efficient both in speed and mem-
ory. Besides, as the calculations are independent
of each row, we can take advantage of multipro-
cessing to further enhance the computing speed.

4 Experiments

4.1 Set-up
In the first experiment, we generated a word co-
occurrence network for a small corpus of 7416 to-
kens (one file of the English Wikipedia dump from
April 2017) without using multiprocessing on a
computer equipped with the Intel Core i7-6700HQ
processor. Our tool serves as a front end to provide
nodes and edges to the graph libraries NetworkX,
igraph and graph-tool. In contrast, the baseline
method processes the corpus sentence by sentence,
extracting word pairs with a distance δ ≤ dmax
and adding them to the graph as edges (or updat-
ing the weight of edges) through these libraries.
All distinct tokens in this corpus are considered as
nodes.

In the second experiment, we used our tool
to extract nodes and edges for the generation of
a word co-occurrence network on the entire En-
glish Wikipedia dump from April 2017 using 50

logical cores on a server with 4 Intel Xeon E5-
4620 processors , dmax = 5, min count = 5 and
vocab size = 10000.

In the last experiment, we compared the random
walk transition matrix calculation speed on the
word co-occurrence network built from the pre-
vious experiment result between our method and
the built-in method of NetworkX (version 2.0) on
a computer equipped with Intel Core i7-6700HQ
processor.

4.2 Results

NetworkX igraph graph-tool
baseline 4.88 8727.49 77.70
corpus2graph 15.90 14.47 14.31

Table 2: Word network generation speed (seconds)

Table 2 shows that regardless of the library used
to receive graph information generated by cor-
pus2graph, it takes around 15 seconds from the
small Wikipedia corpora to the final word co-
occurrence network. And our method performs
much better than the baseline method with igraph
and graph-tool even without using multiprocess-
ing. We found that in general loading all edges
and nodes information at once is faster than load-
ing edge and node information one by one and it
takes approximately the same time for all graph
libraries. As for NetworkX, the baseline method
is faster. But as the corpora get larger, the base-
line model uses more and more memory to store
the continuously growing graph, and the process-
ing time increases too.

For the second experiment, our tool took around
236 seconds for node processing (Section 2.1),
2501 seconds for node co-occurrence analysis
(Section 2.2) and 8004 seconds for edge informa-
tion enriching (Section 2.3). In total, it took less
than 3 hours to obtain all the nodes and weighted
edges for the subsequent network generation.

Generation of: network transition matrix
NetworkX 447.71 2533.88
corpus2graph 116.15 1.06

Table 3: Transition matrix calculation speed (seconds)

Table 3 shows the results of the third experi-
ment. Loading network information into our graph
processing class is faster than loading into the
graph class of NetworkX. Moreover, our random

10



walk transition matrix calculation method is 2390
times faster than the built-in method in NetworkX.

5 Conclusion

We presented in this paper an NLP-application-
oriented Python package that generates a word co-
occurrence network from a large corpus. Experi-
ments show that our tool can boost network gen-
eration and graph processing speed compared to
baselines.

Possible extensions of this work would be to
support more graph processing methods and to
connect our tool to more existing graph libraries.
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Abstract

Question Answering for complex questions
is often modelled as a graph construction or
traversal task, where a solver must build or tra-
verse a graph of facts that answer and explain
a given question. This “multi-hop” inference
has been shown to be extremely challenging,
with few models able to aggregate more than
two facts before being overwhelmed by “se-
mantic drift”, or the tendency for long chains
of facts to quickly drift off topic. This is a ma-
jor barrier to current inference models, as even
elementary science questions require an aver-
age of 4 to 6 facts to answer and explain. In
this work we empirically characterize the dif-
ficulty of building or traversing a graph of sen-
tences connected by lexical overlap, by eval-
uating chance sentence aggregation quality
through 9,784 manually-annotated judgements
across knowledge graphs built from three free-
text corpora (including study guides and Sim-
ple Wikipedia). We demonstrate semantic drift
tends to be high and aggregation quality low, at
between 0.04% and 3%, and highlight scenar-
ios that maximize the likelihood of meaning-
fully combining information.

1 Introduction

Question answering (QA) is a task where mod-
els must find answers to natural language ques-
tions, either by retrieving these answers from a
corpus, or inferring them by some inference pro-
cess. Retrieval methods model QA as an answer
sentence selection task, where a solver must find
a sentence or short continuous passage of text
in a corpus that answers the question (Moschitti
et al., 2007; Severyn and Moschitti, 2012, inter
alia). These methods often fall short for ques-
tions requiring complex inference, such as those
in the science domain, where nearly 80% of even
4th grade science exam questions require some
form of causal, model-based, or otherwise com-

“a girl means a
human girl”

“humans are living
organisms”

Girl

“a girl means a
human girl”

“humans are living
organisms”

Girl

AND
“eating is when

an organism takes
in nutrients in the

form of food”

Eating

AND
“an apple is a 
kind of fruit”

“fruits are foods”

Apple

Q: Which of the following is an example of an organism
taking in nutrients?

(A) A dog burying a bone
(B) A girl eating an apple

(C) An insect crawling on a leaf
(D) A boy planting tomatoes

Figure 1: An example multiple choice 4th grade sci-
ence question from the NY Regents exam, and a graph
of 5 sentences that answer and explain the answer to
this question. Edges represent lexical overlap.

plex inference to answer and explain (Clark et al.,
2013; Jansen et al., 2016), and a single continuous
passage of text rarely describes the reasoning re-
quired to move from question to correct answer. In
these cases, multiple sentences, often from differ-
ent parts of a text, different documents, or differ-
ent knowledge bases must be aggregated together
to build a complete answer and explanation.

Aggregating knowledge to support inference
and complex question answering is often framed
as a graph construction or traversal problem (e.g.
Khashabi et al., 2016), where the solver must
find paths that link sentences that contain question
terms with sentences that contain answer terms
through some number of intermediate sentences
(see Figure 1). In these knowledge graphs, nodes
represent facts or single sentences, and edges be-
tween nodes represent some signal that the facts
are interrelated, such as having lexical overlap.

Information aggregation or “multi-hop” graph
traversal has been shown to be extremely chal-
lenging, with QA solvers generally showing only
modest performance benefits when aggregating in-
formation, and diminishing returns as the amount
of aggregation increases. In the elementary sci-
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ence domain, current estimates suggest that an av-
erage of 4 to 6 sentences are required to answer
and explain a given question (Jansen et al., 2016,
2018), while recent QA solvers generally strug-
gle to meaningfully aggregate more than two free-
text sentences (Jansen et al., 2017), even when
using alternate representations including semi-
structured tables (Khashabi et al., 2016) or graphs
of words or syntactic dependencies traversed us-
ing monolingual alignment or PageRank variants
in open-domain QA (Fried et al., 2015). Fried et
al. (2015) suggest these performance limitations
are due to “semantic drift”, where as the number
of sentences being aggregated increases, so do the
chances of making a misstep in the aggregation
– for example, aggregating a sentence about seed
funding for a company when making an inference
about the stages of plant growth. This appears
to occur across a variety of solvers, representa-
tions, and methods for aggregation, and is leading
to both the development of datasets specifically
designed for multi-hop QA (Jansen et al., 2016,
2018; Welbl et al., 2017), as well as methods of
controlling for semantic drift in knowledge graphs
constructed from (for example) OpenIE triples us-
ing either support graphs (Khot et al., 2017) or
drift-sensitive random walks (Kwon et al., 2018).

In an effort to better understand the challenges
of inference and explanation construction for QA,
here we characterize the difficultly of the informa-
tion aggregation task in the context of science ex-
ams. The contributions of this work are:

1. We provide the first empirical characteriza-
tion of the difficulty of information aggrega-
tion by manually evaluating sentence aggre-
gation quality using 9,784 annotated judge-
ments across 14 representative exam ques-
tions, highlighting specific patterns of lexical
overlap between question, answer, and can-
didate sentence that maximize the chances of
successful aggregation.

2. We evaluate aggregation difficulty across
three knowledge resources, and empirically
demonstrate that while moving to open do-
main resources increases knowledge cover-
age, it also increases the difficulty of the in-
formation aggregation task by more than an
order of magnitude.

3. We evaluate aggregating up to three sen-
tences that connect terms in the question to

terms in the answer, and show that this suf-
fers both from sparsity (even on Wikipedia-
scale corpora), as well as a very low proba-
bility of producing meaningful aggregations
(0.04% to 3%) through lexical overlap alone.

2 Approach

Questions: Due to the magnitude of manual an-
notation, we drew 14 representative questions an-
notated as likely requiring inference1 from the
432 training questions in the AI2 Open Elemen-
tary Science Questions set2, originally drawn from
standardized science exams in 12 US states. Ques-
tions span 14 common curriculum topics, includ-
ing changes of state, planetary motion, environ-
mental adaptations, the life cycle, inherited traits,
magnetism, and measurement. For context, to
date, the best-performing systems report answer-
ing just under 60% of elementary science ques-
tions correctly (Jauhar et al., 2016).

2.1 Corpora
We generate and evaluate three separate graphs
constructed from three independent corpora:
Science Explanations Corpus: An explanation
corpus of 1,364 sentences from Jansen et al.
(2016) designed to construct high-quality explana-
tions for the AI2 question set through aggregation.
Study Guide Corpus: An in-domain corpus of
2,503 sentences from two study guides for the
New York and Virginia standardized exams.
Simple Wikipedia: A large open-domain cor-
pus of 848,920 sentences retrieved from Simple
Wikipedia and included in the AristoMini corpus2.

2.2 Methods
Here we simulate the graph-based inference pro-
cess by creating short chains of sentences inter-
connected based on shared words between those
sentences. Specifically, two sentences are said to
be connected if they share at least one content
lemma (noun, verb, or adjective) in common. Sen-
tences with the same lemma but different parts of
speech are not connected (e.g. a sentence con-
taining plant VB is not connected to a sentence
containing plant NN). Lemmatization and part-
of-speech tagging are provided by the Stanford
CoreNLP toolkit (Manning et al., 2014).

1Our results did not substantially change when data from
only half the questions were used, suggesting the aggregate
statistics from the 9,784 manual judgements are stable.

2http://allenai.org/data.html
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Q: What is the main purpose of the flowers of a peach tree?
A: to attract bees for pollination.

Example Ratings:
High: The flower helps the plant reproduce because it con-
tains the pollen and eggs.
Possible: Seeds grow in the center of a flower and continue
to develop there after the petals fall off the plant.
Topical/Unlikely: There are four major parts of a plant:
roots, stem, leaves, and flower.
Offtopic: The average life span of a worker bee is 1 year.

Table 1: Example ratings on a 4-point rating scale de-
scribing the perceived utility of each sentence towards
an explanation for why the answer is correct (high, pos-
sible, topical, offtopic). Sentences are from the Study
Guide corpus, and each have lexical overlap with the
question and/or answer.

For a given question, sentences in one corpus
are identified that have lexical overlap with either
the question terms, answer terms, or both ques-
tion and answer terms. We then manually rate the
relevance of each sentence on a 4-point scale us-
ing the following criterion: “What is the likelihood
that this knowledge would contribute to an expla-
nation for why the answer is correct?”. Example
ratings are included in Table 1.

2.3 Connectivity Characterization
Here, we denote the question text as Q, the correct
answer text as A, and a sentence from the corpus
with overlapping terms as Sx, where x is either
Q or A. We characterize the utility of sentences
towards building an explanation in five scenarios:

Direct lexical overlap:

1. Q↔ SQ: Sentences that have lexical overlap
with the question.

2. SA ↔ A: Sentences that have lexical overlap
with the answer.

3. Q ↔ SQA ↔ A: Sentences that have lexical
overlap with both question and answer.

Indirect (aggregating) overlap:

4. Q ↔ SQ ↔ SA ↔ A: Aggregating two
sentences that individually have lexical over-
lap with the question or answer, and that also
have lexical overlap with each other.

5. Q ↔ SQ ↔ SO ↔ SA ↔ A: Aggregating
three sentences: two sentences that individu-
ally have lexical overlap with the question or
answer, and that are connected by a third sen-
tence SO that has lexical overlap with both
SQ and SA, but not with Q or A.

3 Results and Discussion

What proportion of sentences with direct lexi-
cal overlap to the question and answer contain
highly relevant information? The results of the
direct characterization are shown in Table 2. The
overall proportion of corpus sentences containing
relevant information to the question are low, with
5.5% of sentences rated as highly useful in the ex-
planation corpus, 1.7% in the Study Guide corpus,
and only 0.1% in the large Simple Wikipedia cor-
pus. Sentence utility increases as the lexical over-
lap (number of terms matched) increases. Simi-
larly, sentences with terms from the answer are
3 to 5 times more likely to be highly relevant
than sentences with question terms. Sentences that
overlap on both question and answer terms have a
substantially increased probability of being rated
highly relevant compared to sentences with a sin-
gle question or answer term (e.g. 21.4% vs 1.7%
and 5.2%, respectively, for the Study Guide cor-
pus), but are sparse, occurring an average of ap-
proximately once per question.

When aggregating two sentences, what propor-
tion will contain highly relevant information?
The probability of aggregating two sentences that
individually lexically overlap with the question or
answer, and also lexically overlap with each other,
Q ↔ SQ ↔ SA ↔ A, is shown in Table 3. The
likelihood of aggregating two sentences from the
Study Guide corpus that were both highly rated
and that lexically overlap by at least one term is
3.0%, and when expanding this to allow for ag-
gregating sentences with high or possible ratings
(bolded square), this likelihood increases to 6.6%.
For the Simple Wikipedia corpus these probabili-
ties are one to two orders of magnitude lower, at
0.04% and 0.3%, respectively.

When restricting 2-sentence aggregations to
cases of moderate lexical overlap, where SQ ↔
SA overlap by 2 or more lemmas not found in the
question or answer, quality improves substantially

3The scale of the Simple Wikipedia corpus makes man-
ual evaluation intractable. Here we subsample to rate 50
sentences with each pattern of lexical overlap, and limit our
analysis to 7 questions. For example, for the question in in
Table 1, we rate 50 sentences that have lexical overlap only
with the word flowers NN, another 50 that overlap with flow-
ers NN and purpose NN, and so on. In practice, due to the
relative sparsity of multiword matches, we evaluate nearly
all cases where the lexical overlap consists of two or more
words, and the subsampling only affects estimates of single
overlapping lemma matches for this corpus (leftmost columns
in table).
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1 overlapping lemma 2 overlapping lemmas 3+ overlapping lemmas
SQ SA SQA SQ SA SQA SQ SA SQA

Explanation Corpus (1,364 sentences)
Highly likely 5.5% 18.4% - 18.2% 66.7% 65.6% 40.0% - 100%

Possible 4.8% 8.5% - 22.7% 6.7% 9.4% 40.0% - 0%
Topical 14.1% 26.9% - 18.2% 0% 18.8% 0% - 0%

Off topic 75.5% 46.2% - 40.9% 26.7% 6.3% 20.0% - 0%

N (Samples) 992 223 - 44 15 32 5 0 7

Study Guide Corpus (2,503 sentences)
Highly likely 1.7% 5.2% - 6.6% 55.6% 21.4% 27.8% - 58.8%

Possible 2.1% 6.3% - 12.4% 5.6% 12.5% 27.8% - 17.6%
Topical 6.7% 9.6% - 24.1% 16.7% 12.5% 11.1% - 5.9%

Off topic 89.6% 79.0% - 56.9% 22.2% 53.6% 33.3% - 17.6%

N (Samples) 2133 480 - 137 18 56 18 0 17

Simple Wikipedia Corpus (848,920 sentences, subsampled3)
Highly likely 0.1% 0.5% - 0.4% 11.2% 1.7% 0.6% 50.0% 16.1%

Possible 0.2% 1.1% - 1.8% 6.7% 3.3% 2.5% 50.0% 19.4%
Topical 0.8% 3.4% - 3.4% 17.9% 8.2% 5.0% 0.0% 14.5%

Off topic 98.9% 95.0% - 94.4% 64.2% 86.8% 91.9% 0.0% 50.0%

N (Samples) 2102 880 - 1399 134 599 161 2 62

Table 2: Observed frequencies for sentences with given utility ratings for the three categories of direct (lexical
overlap) connections: Q↔ SQ, SA ↔ A, and Q↔ SQA ↔ A, and various degrees of lexical overlap.

Explanation Corpus (1,979 samples)
SA Rating

Highly Possible Topical OffTopic

Highly 13.4% 3.8% 3.4% 1.1%
Possible 3.4% 0.4% 1.1% 0.6%
Topical 7.5% 1.3% 8.0% 4.5%

S
Q

R
at

in
g

Offtopic 16.3% 11.0% 9.1% 14.9%

Study Guide Corpus (8,096 samples)
SA Rating

Highly Possible Topical OffTopic

Highly 3.0% 0.7% 0.7% 1.3%
Possible 2.1% 0.8% 0.8% 1.2%
Topical 3.8% 2.0% 2.7% 4.4%

S
Q

R
at

in
g

Offtopic 17.0% 6.4% 10.9% 42.2%

Simple Wikipedia Corpus (23,750 samples)
SA Rating

Highly Possible Topical OffTopic

Highly 0.04% 0.04% 0.06% 0.0%
Possible 0.1% 0.1% 0.3% 1.7%
Topical 0.1% 0.02% 0.2% 2.1%

S
Q

R
at

in
g

Offtopic 2.4% 2.0% 7.2% 82.9%

Table 3: Observed frequencies for aggregating two
sentences together with specific utility ratings in the
Q ↔ SQ ↔ SA ↔ A condition across each corpus.
Here, one sentence in the pair has overlapping terms in
the question, the other sentence has overlapping terms
in the answer, and both sentences lexically overlap with
each other on one or more terms that are not found in
either the question or answer. Axes represent the indi-
vidual (nonaggregated) ratings of each sentence (Q or
A). The bolded square represents the proportion of lex-
ically connected sentence pairs where utility ratings for
both sentences are either high or possible.

on the Study Guide corpus, with 12.5% of these
aggregates containing sentences both rated highly
relevant (N=1,262), or an average of 11 per ques-
tion. The pattern is similar for the Explanation and
SimpleWiki corpora, but scaled up by a factor of
2-4, and down by a factor of 10-40, respectively.4

When aggregating three sentences, what pro-
portion of intermediate sentences are highly
relevant? To characterize the number of pos-
sible 3-sentence aggregations of the form Q ↔
SQ ↔ SO ↔ SA ↔ A, with each sentence
rated as having a highly relevant or possible util-
ity for explanations, we retrieved all intermediate
sentences SO in the corpus such that (a) SO con-
tains overlapping lemmas with both SQ and SA

that are not found in the question or answer, and
(b) both SQ and SA have ratings of either highly
relevant or possible. The overall number of inter-
mediate sentences meeting this criterion was small
(17 for the Study Guide corpus across all 14 ques-
tions, and 251 for the Simple Wikipedia corpus).
We manually rated these intermediate sentences,
finding a small proportion had favourable utility
ratings, with 1.5% receiving ratings of highly rel-
evant and 2% receiving possible. This suggests
that both sparsity and drift make aggregating three
sentences highly unlikely, even in large million-
sentence-scale corpora such as Simple Wikipedia.

4Due to space limitations, this table is not shown.
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Overall, what is chance performance for com-
bining information to generate real explana-
tions? Previous work suggests that real explana-
tions for elementary science questions require ag-
gregating an average of 4 to 6 separate facts to an-
swer and explain (Jansen et al., 2016, 2018), with
this value ranging between 1 fact to more than a
dozen facts per question, depending on the amount
of question-specific knowledge and world knowl-
edge required. Extrapolating from our empirical
analysis5 suggests that the chance of generating a
4-fact aggregation of the form Q↔ SQ ↔ SO ↔
SO ↔ SA ↔ A is likely to be extremely improb-
able, at approximately 1 in 187,000 for the Study
Guide corpus, and 1 in 17 million with the Simple
Wikipedia corpus, in the case of sentences having
a single overlapping lemma. Where SQ and SA

share two overlapping lemmas with the question,
this increases to approximately 1 in 7,000 for the
Study Guide corpus, and 1 in 207,000 for the Sim-
ple Wikipedia corpus, but is still improbable.

Building graphs based solely on lexical overlap
captures only a fraction of the possible mean-
ingful connections between knowledge in a cor-
pus. How might this limitation affect this em-
pirical analysis? Lexical overlap is a common
method of building knowledge graphs for QA (e.g.
Khashabi et al., 2016; Jansen et al., 2017), as two
sentences having the same words has been re-
garded as a strong signal that they may contain
mutually beneficial content for the inference task.
While other methods of connection, such as Word-
Net synsets to capture synonymy or word embed-
dings to capture associative relations, are likely to
increase the recall of sentences in a corpus relevant
to a given question, we hypothesize that lexical
overlap – as poorly as we have shown it performs
empirically – is likely a higher precision method of
creating meaningful connections than these other
connection methods. In this way we propose lex-
ical overlap can be viewed as a baseline for other
knowledge graph connection methodologies to be
evaluated against.

Evaluating the proportion of meaningful con-
nections in graphs built from specific knowl-
edge resources provides only a partial under-
standing of the challenges of information aggre-

5This extrapolation uses the empirically derived probabil-
ity of a meaningful SO transition to be 3.5% (1.5% highly +
2.0% possible). Similarly, probabilities for SQ and SA add
both highly and possible transition probabilities from Table
2.

gation, because it doesn’t capture how well spe-
cific inference methods may perform on a given
knowledge graph. A central limitation of this
empirical evaluation is that it evaluates the prob-
ability of meaningfully assembling knowledge in
three specific knowledge resources, rather than the
empirical performance of specific inference algo-
rithms on assembling knowledge towards the QA
and explanation construction task with these spe-
cific resources. Combining information to form
inferences is one of the central challenges in con-
temporary question answering, and few models
appear able to consistently aggregate more than
two facts in support of this inference task. While
a variety of different methods of information ag-
gregation have been proposed, our ultimate eval-
uation metric for many of these models has been
the overall proportion of questions answered cor-
rectly, rather than a targeted evaluation of the in-
formation aggregation mechanism. Methods such
as evaluating inference performance as the num-
ber of aggregation steps increases (e.g. Fried et al.,
2015; Jansen et al., 2017) begin to provide insight
on the efficacy of specific methods of informa-
tion aggregation, but these methods must be paired
with a knowledge graph with known connectivity
properties to provide a detailed characterization of
the performance of specific aggregation methods
on the information aggregation task.

4 Conclusion

We empirically demonstrate that aggregating mul-
tiple sentences together to support inference for
QA is extremely challenging. For the in-domain
study guide corpus, only 3% of 2-sentence Q ↔
SQ ↔ SA ↔ A aggregations were rated as
highly useful, while this falls to 0.04% for the
open domain corpus. In spite of the size of Sim-
ple Wikipedia, 3-sentence aggregations are sparse,
and substantially reduce the chance of meaning-
fully aggregating sentences to the point of improb-
ability. Taken together, our analysis suggests the
ability to generate inferences incorporating 4 to 6
facts required for the average question is unlikely
without high-precision means of concept match-
ing beyond lexical overlap, and methods of con-
trolling for drift, or reducing drift through pairing
with close-domain corpora. Our ratings for the
open Explanation and Simple Wikipedia corpora
are available at http://cognitiveai.org/
explanationbank/ .
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3 - Inst. de Computação – Univ. Federal Fluminense (UFF), Niterói – RJ – Brazil
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Abstract
Multi-Sentence Compression (MSC) aims to
generate a short sentence with key informa-
tion from a cluster of closely related sentences.
MSC enables summarization and question-
answering systems to generate outputs com-
bining fully formed sentences from one or sev-
eral documents. This paper describes a new
Integer Linear Programming method for MSC
using a vertex-labeled graph to select different
keywords, and novel 3-grams scores to gen-
erate more informative sentences while main-
taining their grammaticality. Our system is of
good quality and outperforms the state-of-the-
art for evaluations led on news dataset. We
led both automatic and manual evaluations to
determine the informativeness and the gram-
maticality of compressions for each dataset.
Additional tests, which take advantage of the
fact that the length of compressions can be
modulated, still improve ROUGE scores with
shorter output sentences.

1 Introduction

The increased number of electronic devices
(smartphones, tablets, etc.) have made access to
information easier and faster. Websites such as
Wikipedia or news aggregators can provide de-
tailed data on various issues but texts may be long
and convey a lot of information. One solution to
this problem is the generation of summaries con-
taining only key information.

Among the various applications of Natural Lan-
guage Processing (NLP), Automatic Text Summa-
rization (ATS) aims to automatically identify the

relevant data inside one or more documents, and
create a condensed text with the main information.
Summarization systems usually rely on statistical,
morphological and syntactic analysis approaches
(Torres-Moreno, 2014). Some of them use Multi-
Sentence Compression (MSC) in order to produce
from a set of similar sentences a small-sized sen-
tence which is both grammatically correct and in-
formative (Filippova, 2010; Banerjee et al., 2015).
Although compression is a challenging task, it is
appropriate to generate summaries that are more
informative than state-of-the-art extraction meth-
ods for ATS.

The contributions of this article are two-fold. (i)
We present a new model for MSC that extends the
common approach based on Graph Theory, using
vertex-labeled graphs and Integer Linear Program-
ming (ILP) to select the best compression. The
vertex-labeled graphs are used to model a clus-
ter of similar sentences with keywords, while the
optimization criterion introduces a novel 3-grams
score to enhance the correctness of sentences. (ii)
We can set up a maximum length for the com-
pression. The system can generate shorter com-
pressions losing some information, or privilege the
informativeness generating longer compressions.
Evaluations led with both automatic metrics and
human evaluations show that our ILP model con-
sistently generate more informative sentences than
two baselines while maintaining their grammati-
cality. Our approach is able to choose the amount
of information to keep in the compression output,
through the definition of the number of keywords
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to consider in documents.
This paper is organized as follows: we describe

and survey the MSC problem in Section 2. Next,
we detail our approach in Section 3. The exper-
iments and the results are discussed in Sections
4 and 5. Lastly, we provide the Conclusion and
some final comments in Section 6.

2 Related Work

Sentence Compression (SC) aims at producing a
reduced grammatically correct sentence. Com-
pressions may have different Compression Ratio
(CR) levels1, whereby the lower the CR level, the
higher the reduction of the information is. SC can
be employed in the contexts of the summarization
of documents, the generation of article titles or the
simplification of complex sentences, using diverse
methods such as optimization (Clarke and Lapata,
2007, 2008), syntactic analysis, deletion of words
(Filippova et al., 2015) or generation of sentences
(Rush et al., 2015; Miao and Blunsom, 2016).

Multi-Sentence Compression (MSC), also
coined as Multi-Sentence Fusion, is a variation of
SC. Unlike SC, MSC combines the information
of a cluster of similar sentences to generate a
new sentence, hopefully grammatically correct,
which compresses the most relevant data of this
cluster. The idea of MSC was introduced by
Barzilay and McKeown (2005), who developed
a multi-document summarizer which represents
each sentence as a dependency tree; their ap-
proach aligns and combines these trees to fusion
sentences. Filippova and Strube (2008) also used
dependency trees to align each cluster of related
sentences and generated a new tree this time
with ILP to compress the information. In 2010,
Filippova presented a new model for MSC, simple
but effective, which is based on Graph Theory and
a list of stopwords. She used a Word Graph (WG)
to represent and to compress the related sentences
of the document D based on the cohesion of
words. The vertices and the arcs weights of WG
represent the word/POS pairs and the levels of
cohesion between two words in the document
(Equation 1), respectively.

w(i, j) =
cohesion(i, j)

freq(i)× freq(j)
, (1)

1The CR is the length of the compression divided by the
average length of all source sentences

cohesion(i, j) =
freq(i) + freq(j)∑
s∈D diff(s, i, j)−1

, (2)

where freq(i) is the word frequency mapped to the
vertex i and the function diff(s, i, j) refers to the
distance between the offset positions of words i
and j in the sentences s of D containing these two
words. Finally, she chose as the best MSC the path
with the lowest average arc weight among the 50
shortest paths (more details in (Filippova, 2010)).

Inspired by the good results of the Filippova’s
method, many studies have used it in a first step
to generate a list of the N shortest paths, then
have relied on different reranking strategies to an-
alyze the candidates and select the best compres-
sion (Boudin and Morin, 2013; Tzouridis et al.,
2014; Luong et al., 2015; Banerjee et al., 2015).
Boudin and Morin (2013) developed a rerank-
ing method measuring the relevance of a can-
didate compression using keyphrases, obtained
with the TextRank algorithm (Mihalcea and Tarau,
2004), and the length of the sentence. Another
reranking strategy was proposed by Luong et al.
(2015). Their method ranks the sentences from
the counts of unigrams occurring in every source
sentence. ShafieiBavani et al. (2016) also used a
WG model; their approach consists of three main
components: (i) a merging stage based on Mul-
tiword Expressions (MWE), (ii) a mapping strat-
egy based on synonymy between words and (iii)
a reranking step to identify the best compression
candidates generated using a POS-based language
model (POS-LM). Tzouridis et al. (2014) pro-
posed a structured learning-based approach. In-
stead of applying heuristics as Filippova (2010),
they adapted the decoding process to the data by
parameterizing a shortest path algorithm. They de-
vised a structural support vector machine to learn
the shortest path in possibly high dimensional joint
feature spaces and proposed a generalized, loss-
augmented decoding algorithm that is solved ex-
actly by ILP in polynomial time.

We found two other studies that applied ILP to
combine and compress several sentences. Baner-
jee et al. (2015) developed a multi-document ATS
system that generated summaries based on com-
pression of similar sentences. They used Fil-
ippova’s method to generate 200 random com-
pressed sentences. Then they created an ILP
model to select the most informative and gram-
matically correct compression. Thadani and McK-
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eown (2013) proposed another ILP model using an
inference approach for sentence fusion. Their ILP
formulation relies on n-grams factorization and
aims at avoiding cycles and disconnected struc-
tures.

Following previous studies that rely on Graph
Theory with good results, this work presents a new
ILP framework that takes into account keywords
and 3-grams for MSC. We compare our learn-
ing approach to the graph-based sentence com-
pression techniques proposed by Filippova (2010)
and Boudin and Morin (2013), considered as state-
of-the-art methods for MSC. We intend to ap-
ply our method on various languages and not to
be dependent on linguistic resources or tools spe-
cific to languages. This leads us to put aside sys-
tems which, despite being competitive, rely on re-
sources like WordNet or Multiword expression de-
tectors (ShafieiBavani et al., 2016).

3 Our Approach

Filippova’s method chooses the path in a WG with
the lowest score taking into account the level of
cohesion between two adjacent words in the docu-
ment. However, two words with a strong cohesion
do not necessarily have a good informativeness be-
cause the cohesion only measures the distance and
the frequency of words in the sentences. In this
work, we propose a method to concurrently ana-
lyze cohesion, keywords and 3-grams in order to
generate a more informative and comprehensible
compression.

Our method calculates the shortest path from
the cohesion of words and grants bonuses to the
paths that have different keywords and frequent 3-
grams. For this purpose, our approach is based
on Filippova’s method to model a document D as
a graph and to calculate the cohesion of words.
In addition, we analyze the keywords and the 3-
grams of the document to favor hypotheses with
meaningful information.

3.1 Keyword and 3-grams extraction

Introducing keywords in the graph helps the sys-
tem to generate more informative compressions
because it takes into account the words that are
representative of the cluster to calculate the best
path in the graph, and not only the cohesion and
frequency of words. Keywords can be identified
for each cluster with various extraction methods
and we study three widely used techniques: Latent

Semantic Indexing (LSI), Latent Dirichlet Alloca-
tion (LDA) and TextRank. Despite the small num-
ber of sentences per cluster, these methods gen-
erate good results because clusters are composed
of similar sentences with a high level of redun-
dancy. LSI uses Singular-Value Decomposition
(SVD), a technique closely related to eigenvector
decomposition and factor analysis, to model the
associative relationships (Deerwester et al., 1990).
LDA is a topic model that generates topics based
on word frequency from a set of documents (Blei
et al., 2003). Finally, TextRank algorithm analyzes
the words in texts using WGs and estimates their
relevance (Mihalcea and Tarau, 2004). For LDA
whose modeling is based on the concept of top-
ics, we consider that the document D describes
only one topic since it is composed of semanti-
cally close sentences. A same word or keyword
can be represented by one or several nodes in WGs
(see the WG construction in (Filippova, 2010)).
In order to prioritize the sentence generation con-
taining keywords, we add a bonus to the compres-
sion score when the compression contains differ-
ent keywords. This process favors informative-
ness but may neglect grammaticality. Therefore,
we also analyze 3-grams and compute in the graph
their relevance scores.

The presence of a word in different sentences is
assumed to increase its relevance for the MSC (we
do not analyze stopwords). Thus, we define the
relevance of a word i according to Equation 3.

1-grams(i) =
freq(i)
|D|w

× freqs(i)
|D|s

(3)

where freqs(i) is the number of sentences contain-
ing the word i, |D|w and |D|s are the overall num-
ber of word occurrences and the number of sen-
tences in the document D, respectively. Since we
analyze Word Graphs whose basic connections are
arcs associated with 2-grams, we define the rele-
vance of 3-grams2 from the inner 2-grams (Eq. 4
and 5).

3-grams(i, j, k) = freq3(i, j, k)×
2-grams(i, j) + 2-grams(j, k)

2

(4)

2Since clusters are small, they have a limited number of
sequences of an order higher than 3. Therefore, the use of
4-grams increases the complexity of the model without im-
proving the quality of compression.
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2-grams(i, j) =
1-grams(i) + 1-grams(j)

2
(5)

where freq3(i, j, k) is the amount of 3-grams com-
posed of the words i, j and k in the document.
Taking into account frequent 3-grams aims at im-
proving the grammatical quality of MSC while
keeping the relevant information. The 3-grams
bonus is obtained from the relevance of the 3-
grams (Eq. 4).

3.2 Vertex-Labeled Graph
A vertex-labeled graph is a graph G = (V,A) with
a label on the vertices K → {0, ..., nc}, where
nc is the number of different labels. This graph
type has been employed in several domains such
as biology (Zheng et al., 2011) or NLP (Bruckner
et al., 2013). In this last study, the correction of
Wikipedia inter-language links was modeled as a
Colorful Components problem. Given a vertex-
colored graph, the Colorful Components problem
aims at finding the minimum-size edge sets that
are connected and do not have two vertices with
the same color.

In the context of MSC, we want to generate
a short informative compression where keyword
may be represented by several nodes in the word
graph. Labels enable us to represent keywords
in vertex-labeled graphs and generate a compres-
sion without repeated keywords while preserving
the informativeness. In this framework we grant
bonuses only once for nodes with the same label
to prioritize new information in the compression.
To make our model coherent, we added a base
label (label 0) for all non-keywords in the word
graph. The following section describes our ILP
model to select sentences inside WGs by taking
into account 3-grams and labeled keywords.

3.3 ILP Modeling
We denote K as the set of labels, each representing
a keyword, and A as the set of arcs in the WG. T
is defined as the set of the 3-grams occurring more
than once.

There are several algorithms with a polynomial
complexity to find the shortest path in a graph.
However, the restriction on the minimum num-
ber Pmin of vertices (i.e. the minimum number of
words in the compression) makes the problem NP-
hard. Indeed, let v0 be the “begin” vertex. If Pmin
equals |V | and if we add an auxiliary arc from

“end” vertex to v0, our problem is similar to the
Traveling Salesman Problem (TSP), which is NP-
Hard.

For this work we use the formulation known as
Miller-Tucker-Zemlin (MTZ) to solve our prob-
lem (Öncan et al., 2009; Thadani and McKeown,
2013). This formulation uses a set of auxiliary
variables, one for each vertex in order to prevent
a vertex from being visited more than once in the
cycle and a set of arc restrictions.

The problem of production of a compression
that favors informativeness and grammaticality is
expressed as Equation 6. In other words, we look
for a path (sentence) that has a good cohesion and
contains a maximum of labels (keywords) and rel-
evant 3-grams.

min
( ∑

(i,j)∈A
w(i, j) ·xi,j−c ·

∑

k∈K
bk−

∑

t∈T
dt ·zt

)

(6)
where xij indicates the existence of the arc (i, j)
in the solution, w(i, j) is the arc weight between
the words i and j (Equation 1), zt indicates the ex-
istence of the 3-grams t in the solution, dt is the
relevance of the 3-grams t (Equation 4), bk indi-
cates the existence of a word with label (keyword)
k in the solution and c is the keyword bonus of the
graph3.

3.4 Structural Constraints

We describe the structural constraints for the prob-
lem of consistency in compressions and define the
bounds of the variables. First, we consider the
problem of consistency which requires an inner
and an outer arc active for every word used in the
solution, where yv indicates the existence of the
vertex v in the solution.

∑

i∈δ+(v)

xvi = yv ∀v ∈ V, (7)

∑

i∈δ−(v)

xiv = yv ∀v ∈ V. (8)

The second requirement for consistency asso-
ciates 3-grams and 2-grams variables. We have a
3-gram (a, b, c) only if the 2-grams (a, b) and (b, c)
are used.

3The keyword bonus allows the generation of longer com-
pressions that are more informative.
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2zt ≤ xij + xjl, ∀t = (i, j, l) ∈ T. (9)

The constraint (10) controls the minimum num-
ber of vertices (Pmin) used in the solution.

∑

v∈V
yv ≥ Pmin. (10)

The set of constraints (11) matches label vari-
ables (keywords) with vertices (words), where
V (k) is the set of all vertices with label k.

∑

v∈V (k)

yv ≥ bk, ∀k ∈ K. (11)

Equality (12) sets the vertex v0 in the solution.

y0 = 1. (12)

The restrictions (13) and (14) are responsible
for the elimination of sub-cycles, where uv (∀v ∈
V ) are auxiliary variables for the elimination of
sub-cycles and M is a large number (e.g. M =
|V |).

u0 = 1, (13)

ui − uj + 1 ≤M −M · xij ∀(i, j) ∈ A, j 6= 0.
(14)

Finally, equations (15) – (18) define the field of
variables.

xij ∈ {0, 1}, ∀(i, j) ∈ A, (15)

zt ∈ {0, 1}, ∀t ∈ T, (16)

yv ∈ {0, 1}, ∀v ∈ V, (17)

uv ∈ {1, 2, . . . , |V |}, ∀v ∈ V. (18)

We calculate the 50 best solutions according to
the objective (6) having at least 8 words and at
least one verb. Specifically, we find the best so-
lution, then we add a constraint in the model to
avoid this solution and repeat this process 50 times
to find the other solutions.

The optimized score (Equation 6) does not ex-
plicitly take into account the size of the generated

sentence. Contrary to Filippova’s method, sen-
tences may have a negative score because we sub-
tract from the cohesion value of the path the intro-
duced scores for keywords and 3-grams. There-
fore, we use the exponential function to ensure a
score greater than zero. Finally, we select the sen-
tence with the lowest final score (Equation 19) as
the best compression.

scorenorm(s) =
escoreopt(s)

|s| , (19)

where scoreopt(s) is the score of the sentence s
from Equation 6.

4 Experimental Setup

Algorithms were implemented using the Python
programming language with the takahe4 and
gensim5 libraries. The mathematical model was
implemented in C++ with the Concert library and
we used the solver CPLEX 12.66.

We define the keyword bonus as the geometric
average7 of all arc weights in the graph.

4.1 Evaluation Datasets

Various corpora have been developed for MSC and
are composed of clusters of similar sentences from
different source news in English, French, Span-
ish or Vietnamese languages. The corpora used
by Filippova (2010) and Boudin and Morin (2013)
contain clusters of at least 7 or 8 similar sentences,
whereas the data of McKeown et al. (2010) and
Luong et al. (2015) have clusters limited to pairs
of sentences. McKeown et al. (2010) collected 300
English sentence pairs taken from newswire clus-
ters using Amazon’s Mechanical Turk. Like this
previous study, Luong et al. (2015) used the same
experimental setup to accumulate 115 Vietnamese
clusters with 2 sentences by group. Boudin and
Morin (2013), McKeown et al. (2010) and Luong

4http://www.florianboudin.org/
publications.html

5https://radimrehurek.com/gensim/
models/ldamodel.html

6CPLEX is available at: https:
//www-01.ibm.com/software/
websphere/products/optimization/
cplex-studio-community-edition/

7 Each WG has different weight arcs, so it is important
that keyword bonus has a correct value to allow the genera-
tion of slightly longer compressions. We tested several met-
rics (fixed values, arithmetic average, median, and geometric
average of weights arcs of WG) to define the keyword bonus
of WG and empirically found that the geometric average out-
performed the others.

22



et al. (2015) made their corpora publicly avail-
able but only the corpus of Boudin and Morin
(2013) is more suited to multi-document summa-
rization or question-answering because the docu-
ments to analyze are usually composed of many
similar sentences. Therefore, we use this corpus
made of 618 French sentences spread over 40 clus-
ters. Each cluster has 3 sentences compressed by
native speakers, references having a compression
rate of 60%.

4.2 Automatic and Manual Evaluations

The most important features of MSC are infor-
mativeness and grammaticality. Informativeness
measures how informational is the generated text.
As references are assumed to contain the key in-
formation, we calculated informativeness scores
counting the n-grams in common between the
compression and the reference compressions us-
ing the ROUGE system (Lin, 2004). In particu-
lar, we used the F-measure metrics ROUGE-1 and
ROUGE-2, F-measure being preferred to recall
for a fair comparison of various lengths of com-
pressed sentences. Like in (Boudin and Morin,
2013), ROUGE metrics are calculated with stop-
words removal and French stemming8.

Due to limitations of ROUGE systems that only
analyze 1-grams and 2-grams, we also led a man-
ual evaluation with 5 French native speakers. The
native speakers evaluated the compression in two
aspects: informativeness and grammaticality. In
the same way as (Filippova, 2010; Boudin and
Morin, 2013), the native speakers evaluated the
grammaticality in a 3-point scale: 2 points for a
correct sentence; 1 point if the sentence has minor
mistakes; 0 point if it is none of the above. Like
grammaticality, informativeness is evaluated in the
same range: 2 points if the compression contains
the main information; 1 point if the compression
misses some relevant information; 0 point if the
compression is not related to the main topic.

5 Experimental Assessment

Compression rates are strongly correlated with
human judgments of meaning and grammatical-
ity (Napoles et al., 2011). On the one hand,
too short compressions may compromise sentence
structure, reducing the informativeness and gram-
maticality. On the other hand, longer compres-
sions are more interesting for ATS when informa-

8http://snowball.tartarus.org/

tiveness and grammaticality are decisive features.
Consequently, we generate two kinds of compres-
sions according to the number of keywords in the
graph (5 or 10), which acts on the final size of the
output sentences. The result tables are split into
two parts, each having similar CRs and calculated
from LSI, LDA or TextRank methods to identify
the keywords of the clusters.

5.1 Results

Table 1 describes the results for the French corpus
using ROUGE. The first two lines display the eval-
uation of the two baseline systems; the ROUGE
scores measured with our method using either 5 or
10 keywords are shown in the next three lines and
the last three lines respectively.

Globally, our ILP method outperforms both
baselines according to ROUGE F-measures, but
mostly using 10 keywords with higher CRs. The
use of LDA and LSI to determine keywords
gives better results than TextRank. ILP+LDA.5
and ILP+LSI.5 were better than the baselines for
ROUGE-1 but the second baseline system gen-
erated shorter sentences with a better ROUGE-2
score.

We led a further manual evaluation to study the
informativeness and grammaticality of compres-
sions. We measured inter-rater agreement on the
judgments we collected, obtaining the value of
Fleiss’ kappa of 0.303. This result shows that hu-
man evaluation is rather subjective. Questioning
evaluators on how they proceed to rate sentences
reveals that they often made their choice by com-
paring outputs for a given cluster.

Table 1 also shows the manual analysis that rat-
ifies the good results of our system. Informa-
tiveness scores are consistently improved by the
ILP method, whereas grammaticality results mea-
sured on the three systems are similar. Filippova’s
method obtained the highest value for grammatical
quality. However, our system led to informative-
ness scores better than the two baselines using 5
and 10 keywords.

Finally, the reranking method proposed by
Boudin and Morin, based on the analysis of
keyphrases of candidate compressions with Tex-
tRank, improves informativeness, but not to the
same degree as our ILP model. Despite this gain,
the method is limited to candidate sentences gen-
erated by Filippova’s and is dependent on the Tex-
tRank method.
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Methods Automatic Evaluation Informativeness Grammaticality
ROUGE-1 ROUGE-2 0 1 2 Avg. 0 1 2 Avg.

Filippova 0.63837 0.44237 11% 55% 34% 1.23 1% 26% 73% 1.72
Boudin et al. 0.65957 0.46167 6% 56% 38% 1.32 1% 31% 68% 1.68
ILP+LDA.5 0.6591 0.4383 11% 46% 43% 1.33 4% 24% 72% 1.67
ILP+LSI.5 0.6615 0.4368 9% 49% 42% 1.34 3% 28% 69% 1.65
ILP+TR.5 0.6576 0.4382 9% 54% 37% 1.28 4% 27% 69% 1.64
ILP+LDA.10 0.6871 0.4712 7% 45% 48% 1.40 2% 34% 64% 1.62
ILP+LSI.10 0.6862 0.4713 8% 43% 49% 1.40 2% 33% 65% 1.63
ILP+TR.10 0.6495 0.4355 10% 51% 39% 1.28 6% 33% 61% 1.54

Table 1: ROUGE results and manual evaluations on the French corpus. The results in italics represent
the best results with CR closed to the baselines. The best ROUGE results are in bold.

5.2 Discussion

The measures done with both the automatic met-
rics ROUGE and human evaluations bring to light
that the method used to select keyword acts on
the performance of our ILP method. We inves-
tigated this through the analysis of selected key-
words occurring in one of the reference compres-
sions (LDA 5: 91%, LDA 10: 84%, LSI 5: 90%,
LSI 10: 84%, TextRank 5: 69%, TextRank 10:
56%). As expected, a higher percentage of key-
words can be found in the references when the top
5 instead of 10 are considered. In keeping with
the performance evaluations, a significantly higher
rate of keywords existing in the references is ob-
served when using LDA or LSI rather than Tex-
tRank. This shows the prominent role of keyword
selection for our MSC method. Most keywords
identified by LDA and LSI methods are the same
(around 91%) while the intersection of keywords
between LDA and TextRank methods is around
50% (a similar level is measured for the intersec-
tion from LSI and TextRank). This overlap of key-
words justifies the similar results produced by our
method using LDA and LSI methods.

Short compressed sentences are appropriate to
summarize documents; however, they may remove
key information and prejudice the informativeness
of the compression. For instance, for the sen-
tences that would be associated with a higher rele-
vant score by the ATS system, producing longer
sentences would be more appropriate. Generat-
ing longer sentences makes easier to keep infor-
mativeness but often increases difficulties to have
a good grammatical quality while combining dif-
ferent parts of sentences. The experimental results
we presented in Section 5.1 indicate that scores on

3-grams provide a good stability for our method
to generate grammatically correct sentences, even
for longer compressions.

The length of the size of the sentences output
by our ILP method can evolve as needed in two
ways. Firstly, our method can ensure to keep
enough information, through the number of con-
sidered keywords. Increasing this number gener-
ates longer compressions because our method tries
to add more keywords. Table 2 presents the av-
erage size of compressions according to the used
MSC setting. Globally, the size is increased by
2 words when using the second baseline with re-
spect to the first one. Our ILP system generates
sentences of the same size as the second base-
line when labeling 5 keywords in WG and com-
pressions longer by 2 when labeling 10 keywords,
which is still a moderate increase. Moreover, Ta-
ble 2 displays the number of keywords that are
kept in the final compression and shows that for
TextRank, less competitive than LDA and LSI,
several keywords are discarded by the ILP score
that also takes into account cohesion and 3-grams
scores.

Secondly, our ILP model can include an explicit
constraint over the compression size (MaxSize):

∑

v∈V
yv ≤MaxSize. (20)

8Although we used the same system and data as Boudin
and Morin (2013) for the French corpus, we were not able
to exactly reproduce their results. The ROUGE scores
given in their article are close to ours for their system:
0.6568 (ROUGE-1) and 0.4414 (ROUGE-2), but using Filip-
pova’s system we measured higher scores than them: 0.5744
(ROUGE-1) and 0.3921 (ROUGE-2). In spite of these dis-
crepancies, both ROUGE scores and manual evaluations (Ta-
ble 1) led to the same conclusions as them, showing that their
method outperform Filippova’s.
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Figure 1: ROUGE recall for different maximum compression lengths using the French corpus.

Methods Length Keywords CRAvg. Std.Dev.
Filippova 16.9 5.1 —- 52%
Boudin et al. 18.3 4.9 —- 55%
ILP+LDA.5 18.7 7.0 4.6 56%
ILP+LSI.5 18.8 7.1 4.6 57%
ILP+TR.5 18.1 6.9 3.2 55%
ILP+LDA.10 20.7 6.7 8.2 62%
ILP+LSI.10 21.1 6.5 8.4 64%
ILP+TR.10 20.0 7.6 5.5 60%

Table 2: Compression length (#words), standard
deviation and number of used keywords computed
on the French corpus.

We set up our system to generate compressions
with average lengths of 55%, 60%, 65%, 70% and
75% and report the results measured in terms of
ROUGE with each setting in Figure 1. Unlike
Table 1, we measure ROUGE recalls instead of
ROUGE F-measures because these first metrics
have a better correlation with informativeness and
we already take into account the size of the pro-
duced sentences through CR.

First, let us note that the CRs effectively
observed may differ from the fixed value of
MaxSize. For example, a 55% threshold leads
to real CRs of 42% to 44%, while a 65% level cre-
ates new sentences with a real CR between 47%
and 51%. Interestingly, our system obtained bet-
ter ROUGE recall scores than both baselines for

comparable compression lengths. If we priori-
tize meaning, our method with 10 keywords im-
proved the compression quality with a small in-
crease of the compression length (compression ra-
tio between 60% and 64%). Instead, we can limit
the length of compressions and generate compres-
sions that are shorter and have still better ROUGE
scores than the baselines.

6 Conclusion

Multi-Sentence Compression aims to generate a
short informative text summary from several sen-
tences with related and redundant information.
Previous works built word graphs weighted by co-
hesion scores from the input sentences, then se-
lected the best path to select words of the output
sentence. We introduced in this study a model
for MSC with two novel features. Firstly, we
extended the work done by Boudin and Morin
(2013) that introduced keywords to post-process
lists of N-best compressions. We proposed to rep-
resent keywords as labels directly on the vertices
of word graphs to ensure the use of different key-
words in the selected paths. Secondly, we pre-
sented a new relevance score for 3-grams to main-
tain grammaticality. We devised an ILP modeling
to take into account these two new features with
the cohesion scores, while selecting the best sen-
tence. The compression ratio can be modulated

25



with this modeling, by selecting for example a
higher number of keywords for the sentences con-
sidered essential for a summary. Automatic mea-
sures with ROUGE package were supplemented
with a manual evaluation carried out by human
judges in terms of informativeness and grammat-
icality. We showed that keywords and relevant
3-grams are important features to produce valu-
able compressed sentences; in particular, testing
three different keyword selectors highlighted their
role in producing relevant sentences. The paths se-
lected with theses features generate results consis-
tently improved in terms of informativeness while
keeping up their grammaticality.

There are several potential avenues of work.
Following the system proposed by ShafieiBavani
et al. (2016), language models over POS can be
added as an additional score to the optimization
criterion to improve grammaticality. Another ob-
jective can be to manage polysemy through the use
of the same label for the synonyms of each key-
word inside the Word Graph. Finally, MSC can be
jointly employed with classical methods of Auto-
matic Text Summarization by extraction in order
to generate better summaries.
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Lluı́s Màrquez, Chris Callison-Burch, Jian Su,
Daniele Pighin, and Yuval Marton, editors, EMNLP.
ACL, pages 360–368.

Katja Filippova and Michael Strube. 2008. Sen-
tence fusion via dependency graph compression. In
EMNLP. pages 177–185.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Workshop Text
Summarization Branches Out (ACL’04). pages 74–
81.

A. V. Luong, N. T. Tran, V. G. Ung, and M. Q. Nghiem.
2015. Word graph-based multi-sentence compres-
sion: Re-ranking candidates using frequent words.
In 7th International Conference on Knowledge and
Systems Engineering (KSE). pages 55–60.

Kathleen McKeown, Sara Rosenthal, Kapil Thadani,
and Coleman Moore. 2010. Time-efficient creation
of an accurate sentence fusion corpus. In HLT-
NAACL. pages 317–320.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In EMNLP. pages 319–328.

R. Mihalcea and P. Tarau. 2004. TextRank: Bringing
order into texts. In EMNLP.

Courtney Napoles, Benjamin Van Durme, and Chris
Callison-Burch. 2011. Evaluating sentence com-
pression: Pitfalls and suggested remedies. In
Workshop on Monolingual Text-To-Text Generation
(MTTG). pages 91–97.
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Abstract

Spectral clustering has received a lot of at-
tention due to its ability to separate non-
convex, non-intersecting manifolds, but its
high computational complexity has signifi-
cantly limited its applicability. Motivated by
the document-term co-clustering framework
by Dhillon (2001), we propose a landmark-
based scalable spectral clustering approach in
which we first use the selected landmark set
and the given data to form a bipartite graph
and then run a diffusion process on it to obtain
a family of diffusion coordinates for cluster-
ing. We show that our proposed algorithm can
be implemented based on very efficient opera-
tions on the affinity matrix between the given
data and selected landmarks, thus capable of
handling large data. Finally, we demonstrate
the excellent performance of our method by
comparing with the state-of-the-art scalable al-
gorithms on several benchmark data sets.

1 Introduction

Given a data set X = {x1, . . . , xn} ⊂ Rd and a
similarity function δ(·, ·) such as the Gaussian ra-
dial basis function (RBF), spectral clustering (von
Luxburg, 2007) first constructs a pairwise similar-
ity matrix

W = (wij) ∈ Rn×n, wij = δ(xi, xj) (1)

and then uses the top eigenvectors of W (after
certain kind of normalization) to embed X into
a low-dimensional space where k-means is em-
ployed to group the data into k clusters. Though
mathematically quite simple, spectral clustering
can easily adapt to nonconvex geometries and ac-
curately separate various non-intersecting shapes.
As a result, it has been successfully applied to
many practical tasks, e.g., image segmentation
(Shi and Malik, 2000) and document clustering
(Dhillon, 2001), often significantly outperforming

traditional methods (such as k-means). Further-
more, spectral clustering has a very rich theory
(von Luxburg, 2007), with interesting connections
to kernel k-means (Dhillon et al., 2004), random
walk (Meila and Shi, 2001), graph cut (Shi and
Malik, 2000) (and the underlying spectral graph
theory (Chung, 1996)), and matrix perturbation
analysis (Ng et al., 2001).

However, spectral clustering is known to suf-
fer from a high computational cost associated with
the n × n matrix W , especially when n is large.
Consequently, there has been considerable effort
to develop fast, approximate algorithms that can
handle large data sets (Fowlkes et al., 2004; Yan
et al., 2009; Sakai and Imiya, 2009; Wang et al.,
2009; Chen and Cai, 2011; Wang et al., 2011; Tas-
demir, 2012; Choromanska et al., 2013; Cai and
Chen, 2015; Moazzen and Tasdemir, 2016; Chen,
2018). Interestingly, a considerable fraction of
them use a landmark set to help reduce the compu-
tational complexity of spectral clustering. Specifi-
cally, they first find a small set of data representa-
tives (called landmarks), Y = {y1, . . . , ym} ⊂ Rd
(with m � n), from the given data in X and
then form an affinity matrix betweenX and Y (see
Fig. 1):

A = (aij) ∈ Rn×m, aij = δ(xi, yj). (2)

Afterwards, different scalable methods use the
matrix A in different ways to cluster the given
data. For example, the column-sampling spec-
tral clustering (cSPEC) algorithm (Wang et al.,
2009) regards A as a column-reduced version of
W and correspondingly use the left singular vec-
tors of A to approximate the eigenvectors of W .
However, they seem to consider only unnormal-
ized spectral clustering, and it is unclear how they
extend their technique to normalized spectral clus-
tering (Shi and Malik, 2000; Ng et al., 2001).
Another example is the landmark-based spectral
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Figure 1: Illustration of landmark-based spectral clus-
tering. Left: given data (in black color) and selected
landmarks (in red); right: the affinity matrixA between
the two sets of points with the blue squares indicating
the largest entries in each row of A. Here, we assume
that both the given data and the landmarks have been
sorted according to the true clusters, so as to reveal the
approximately block diagonal structure of A).

clustering (LSC) algorithm (Cai and Chen, 2015)
which uses a row-sparsified version of the matrix
A as approximate sparse representations of the in-
put data while bypassing the expensive dictionary
learning and sparse coding tasks. It then applies
the L1 normalization to each row of A, followed
by a square-root L1 column normalization. This
method empirically works quite well but clearly
there is a gap between its sparse coding motivation
and the actual implementation. A third example
is the k-means-based approximate spectral clus-
tering (KASP) algorithm (Yan et al., 2009) which
first applies the k-means algorithm to partition the
given data intom small clusters and then performs
spectral clustering to divide their centroids (which
are the landmark points) into k groups. Next, they
extend the clustering of the landmarks to the orig-
inal data by performing 1 nearest neighbor (1NN)
classification. This algorithm runs very fast, but is
sensitive to the k-means clusters as it aggressively
reduces the given data to a small set of centroids.

In this work we propose a novel landmark-based
scalable spectral clustering approach by adapting
the co-clustering framework by Dhillon (Dhillon,
2001) for landmark-based clustering and combin-
ing it with diffusion maps (Coifman and Lafon,
2006). Specifically, with the given data X = {xi}
and a selected landmark set Y = {yj}, we first
construct a bipartite graph G2 with X and Y be-
ing the two parts, and form edges between each xi
and its s nearest neighbors yj in the landmark set
with weights aij = δ(xi, yj). We then compute
the transition probabilities for all the vertices of
G2 and use them to define a random walk on the
bipartite graph, which (when being iterated for-
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Figure 2: A bipartite graph whose two components are
the given data (in black) and a landmark set learned
from it (in red). Here, we form edges between each
given data point and its two closest landmark points.
Initially, no landmark point is connected to the two
points a and b. However, if one simulates a random
walk on the bipartite graph, then through a sequence of
steps between the two components, a, b will be identi-
fied as belonging to the same cluster.

ward) further generates a diffusion process on G2.
We expect the resulting diffusion coordinates to be
able to capture the global geometry of the clusters
at different scales and, as a result, the connectivity
of each cluster will be significantly strengthened
(see Fig. 2). We will show that the diffusion coor-
dinates may be computed directly from the n×m
matrix A = (aij). Lastly, we propose three differ-
ent ways to use the diffusion coordinates for clus-
tering the data in X (depending on the length of
the random walk).

The rest of the paper is organized as follows.
First, in Section 2, we review some necessary
background. We then present our methodology in
Section 3. Experiments are conducted in Section
4 to test our proposed algorithms. Finally, we con-
clude the paper in Section 5.

2 Background

In this section, we first review the Normalized Cut
(Ncut) algorithm (Shi and Malik, 2000) and its
connections to random walk (Meila and Shi, 2001)
and diffusion maps (Coifman and Lafon, 2006).
Next, we will review the co-clustering framework
in the setting of documents data by Dhillon (2001).

2.1 The Ncut algorithm

Given a data set X = {x1, x2, ..., xn} ⊂ Rd
and a notion of similarity δ, we may construct
a weighted graph G by using the data points in
X as vertices and assigning an edge between any
two points xi, xj with associated weight wij =
δ(xi, xj). Let W = (wij) ∈ Rn×n, which is the
weight matrix of G. The degree of xi is the total
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edge weight at that vertex: di =
∑

j wij , which
measures the connectivity of xi. The diagonal ma-
trixD = diag(d1, . . . , dn) is called the degree ma-
trix. The Laplacian of the graph G is defined as
L = D −W , which is a positive semidefinite ma-
trix. One way to normalize L is the following

Lrw = D−1L = I −D−1W. (3)

For any subset of vertices S ⊂ X , we define the
cut between S and its complement S̄ as

cut(S, S̄) =
∑

xi∈S

∑

xj∈S̄
wij . (4)

The volume of S is defined as the total connectiv-
ity of the vertices in S:

vol(S) =
∑

xi∈S
di. (5)

The Ncut algorithm (Shi and Malik, 2000) finds
k clusters from the given data X by minimizing
the following objective function:

Ncut(S1, . . . , Sk) =
k∑

`=1

cut(S`, S̄`)

vol(S`)
(6)

over all possible partitions X = S1 ∪ · · · ∪ Sk.
Such a formulation of clustering is very conve-
nient, however, the resulting optimization prob-
lem is intractable due to its combinatorial nature.
Fortunately, by using a continuous relaxation, the
above problem is reduced to finding the bottom
k− 1 eigenvectors of the normalized graph Lapla-
cian Lrw (corresponding to its smallest positive
eigenvalues)1:

V = [v1 | · · · | vk−1] ∈ Rn×(k−1). (7)

One then regards the rows of V as a low-
dimensional embedding of the original data and
clusters them by using k-means.

2.2 Random walk and diffusion maps
Let P = D−1W, whose row sums are all one. We
can then write Lrw = I − P . Algebraically, the
bottom eigenvectors of Lrw are just the top eigen-
vectors of P . However, since P is row-stochastic,
it can be used as a transition probability matrix to

1It can be easily shown that, for any weighted graph, the
smallest eigenvalue of Lrw is λ0 = 0, with associated eigen-
vector v0 = (1, . . . , 1)t. This eigenpair is skipped by the
Ncut algorithm.

define a random walk on the graph G (Meila and
Shi, 2001). Under such a model, clustering can be
interpreted as a way of finding a partition of the
graph such that the random walk stays long inside
the clusters and rarely moves between them.

If the random walk is moved forward for many
iterations, then a diffusion process is generated on
the graph G. For every integer α ≥ 1, Pα is
the α-step transition matrix. Different values of
α integrate the local connectivity information of
the graph at different scales, with larger α yield-
ing more global descriptions. The rows of Pα de-
fine a family of discrete distributions, one at each
vertex of G, and are called the α-step diffusion
coordinates (Coifman and Lafon, 2006). For prac-
tical purposes, it suffices to use low-dimensional
approximations of them (by exploiting the fast de-
cay of the α-th power of the spectrum of P ):

V (α) = [λα1 v1 | · · · | λαp vp] ∈ Rn×p, (8)

where p ∈ Z+ and λi, vi are the largest eigenval-
ues and eigenvectors of P (excluding the eigen-
value 1 and associated eigenvector). In this work,
we use the rows of V (α) as an embedding of the
data for clustering purposes.

2.3 Dhillon’s co-clustering framework
Dhillon (2001) proposed a spectral clustering
based co-clustering framework in the setting
of documents clustering. Specifically, given a
document-term frequency matrixA ∈ Rn×m, they
first construct a bipartite graphG2 whose two parts
are the documents and terms, respectively, and
then use A to define a weight matrix for G2 as
follows:

W =

(
A

At

)
∈ R(n+m)×(n+m). (9)

The two empty blocks of W are zero matrices
of appropriate sizes (which have been omitted for
simplicity), indicating no connection among doc-
uments or terms. Afterwards, they apply the Ncut
algorithm (along with the above weight matrixW )
to co-cluster documents and terms, and they de-
rived an efficient way to implement Ncut solely
based on operations on the n ×m matrix A (thus
effectively avoiding the larger matrix W in all cal-
culations). We review their derivation below.

We start with some definitions. First, letD1, D2

be two diagonal matrices consisting (resp.) of the
row and column sums of A:

D1 = diag(A 1), D2 = diag(At 1). (10)
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Here, and in what follows, we abuse notation to
use 1 to denote the column vector (with appropri-
ate dimension) with all entries equal to one. Next,
we define three different normalized version of A:

Ã1 = D−1
1 A, Ã2 = AD−1

2 , (11)

Ã = D
−1/2
1 AD

−1/2
2 . (12)

It is easy to see that Ã1, Ã2 are respectively row-
and column-stochastic, while Ã is closely related
to both of them in the following ways:

Ã1 = D
−1/2
1 ÃD

1/2
2 , (13)

Ã2 = D
1/2
1 ÃD

−1/2
2 . (14)

The degree matrix of the bipartite graph is

D = diag(W 1) =

(
D1

D2

)
, (15)

from which we may obtain the following transition
probability matrix for the bipartite graph:

P = D−1W =

(
Ã1

Ã t
2

)
. (16)

The following result, first proved by Dhillon
(2001), indicates the close connection between the
eigenvalue decomposition of P and the SVD of Ã.

Lemma 1. Let v1 ∈ Rn, v2 ∈ Rm and v =
(v1; v2) ∈ Rn+m. Then v is an eigenvector of P if
and only if ṽ1 = D

1/2
1 v1 and ṽ2 = D

1/2
2 v2 are a

pair of left/right singular vectors of Ã.

Proof. Suppose v is an eigenvector of P corre-
sponding to some eigenvalue λ, that is, Pv = λv,
or equivalently,

[
Ã1

Ã t
2

][
v1

v2

]
= λ

[
v1

v2

]
, (17)

From this we obtain

Ã1 v2 = λ v1, Ã t
2 v1 = λ v2 (18)

and also (after plugging in (13) and (14))

ÃD
1/2
2 v2 = λD

1/2
1 v1, (19)

Ã tD
1/2
1 v1 = λD

1/2
2 v2. (20)

This shows that D1/2
1 v1 and D

1/2
2 v2 are the left

and right singular vectors of Ã (corresponding to
the same singular value λ). It is easy to verify that
the converse is also true.

Therefore, to obtain an eigenvector of P , we
just need to first perform the SVD of Ã to find a
pair of its left and right singular vectors

ṽ1 = D
1/2
1 v1, ṽ2 = D

1/2
2 v2, (21)

and then apply the following formula

v =

(
v1

v2

)
=

(
D
−1/2
1 ṽ1

D
−1/2
2 ṽ2

)
= D−1/2ṽ, (22)

where ṽ = (ṽ1; ṽ2) ∈ Rn+m.
Lastly, to complete the co-clustering task, one

just stacks the top k − 1 eigenvectors of P as
columns to form an embedding matrix V ∈
R(n+m)×(k−1) and applies k-means to its rows to
group the documents and terms simultaneously.

3 Methodology

In the previous section we reviewed the co-
clustering framework by Dhillon (2001) which
employs the Ncut algorithm (Shi and Malik, 2000)
to partition a bipartite graph consisting of doc-
uments and terms by directly working on the
document-term matrix. In this section, we extend
their work in two ways. First, we adapt their bipar-
tite graph model for landmark-based clustering by
using instead the given data and a selected land-
mark set as its two parts. Second, we simulate a
diffusion process on the bipartite graph to gather
global information about the graph, however, our
focus is still on clustering the given data for which
we will introduce several ways of using such a bi-
partite graph model.

3.1 Derivation of diffusion coordinates on a
bipartite graph

Given a data set, X = {x1, . . . , xn} ⊂ Rd, to
be partitioned into k clusters, we select from X a
set of landmark points, Y = {y1, . . . , ym} ⊂ Rd
(with m � n), by some sampling method, such
as uniform sampling or k-means clustering. Let
A ∈ Rn×m be the affinity matrix between X and
Y , computed by using a pre-specified similarity
function δ as in (2). Like LSC (Cai and Chen,
2015), we preserve only the largest s (s � m)
entries in each row of A, but our motivation is
to focus on the most similar landmark points for
each given data point. We then construct a bipar-
tite graph GX,Y with X,Y as its two parts and a
weight matrix W of the form in (9) but based on
the affinity matrix A defined above. Again, the
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two empty blocks of W indicate no connection in-
side each component of GX,Y . Also, the s-sparse
rows of A imply that each point in X is only con-
nected to its s nearest neighbors in Y on the bi-
partite graph. See Fig. 2 for an illustration of our
bipartite graph model.

Using the computational framework laid out in
Subsec. 2.3, we may easily obtain various quanti-
ties like Ã1, Ã2, Ã,D, P . In particular, we may
use the transition matrix P to define a random
walk on the bipartite graph and run it forward con-
tinuously to generate a diffusion process. The α-
step transition matrix, Pα has the following form.

Lemma 2. Let α ≥ 1 be any integer.
(1) If α = 2q is even, then

Pα =



(
Ã1Ã

t
2

)q
(
Ã t

2Ã1

)q


 (23)

(2) If α = 2q + 1 is odd, then

Pα =




(
Ã1Ã

t
2

)q
Ã1(

Ã t
2Ã1

)q
Ã t

2


 (24)

This result indicates that after an even number
of steps, the random walk (no matter in which
component of the bipartite graph it is initiated) is
always back to the original component, so that the
original bipartite graph becomes two disconnected
subgraphs, while after an odd number of steps, the
random walk always ends in the other component,
and hence the graph remains bipartite. See Fig. 3
for an illustration. Also, when α = 2q, the α-step
random walk on the bipartite graphGX,Y is equiv-
alent to a q-step random walk within each com-
ponent of GX,Y with the transition matrix Ã1Ã

t
2

or Ã t
2 Ã1. This implies that for even integers α,

one should focus on the two components X,Y of
the bipartite graph separately and in principle may
use the corresponding blocks of Pα as new tran-
sition matrices for clustering the two sets of data
individually. In contrast, for odd integers α, one
still needs to consider the two components X,Y
together as a bipartite graph and simultaneously
cluster the original data and the landmark set.

The actual algorithm we will propose uses a
family of diffusion coordinates (corresponding to
different time steps of the diffusion process) to
embed the input data and/or the landmark points
into low-dimensional spaces for clustering by k-
means. The next result shows that one may obtain
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Figure 3: Simulation of a diffusion process on a bi-
partite graph. Left: initial bipartite graph; middle: the
resulting graph after an even number of random walk
iterations; right: the resulting graph after an odd num-
ber of iterations.

such diffusion coordinates directly from the matrix
Ã (defined in (12)).

Theorem 1. Let α, p ≥ 1 be two integers. The
p-dimensional diffusion coordinates for GX,Y at
time step α are

V(α) = D−1/2Ṽ Λα ∈ R(n+m)×p, (25)

where Λ = diag(λ1, . . . , λp) ∈ Rp×p contains
the largest p singular values of Ã (excluding the
singular value 1), and Ṽ ∈ R(n+m)×p the corre-
sponding pairs of left and right singular vectors of
Ã (one pair in each column).

Proof. This is a direct consequence of Lemma 1
combined with the formula in (8).

Remark. We fix p = k− 1 (where k is the num-
ber of clusters) in the rest of the paper (so as to be
consistent with the Ncut algorithm (Shi and Ma-
lik, 2000)), but other values of p could be used too
(e.g. those determined based on the actual power
decay of the eigenvalues of P ).

Remark. If we extend α to zero in (25), then we
can obtain the embedding used by Dhillon (2001).
This shows that our work extends (Dhillon, 2001).

Remark. When α is even, the top n×p and bot-
tom m× p blocks of V(α), denoted as V(α)

X ,V(α)
Y ,

may be used separately as diffusion coordinates
for the two sets of data X,Y .

3.2 Proposed algorithm
We present several different ways to use the α-
step diffusion coordinates V(α) ∈ R(n+m)×(k−1)

in (25), computed from a landmark-based bipar-
tite graph GX,Y , for clustering the input data X .

We consider the following two cases:
(1) α even: In this case, the initial bipartite graph
becomes two disjoint subgraphs corresponding to
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Algorithm 1 Landmark-based Bipartite Diffusion
Maps (LBDM)
Input: Data set X = {x1, x2, ..., xn} ⊂ Rd,

# clusters k, similarity function δ, landmark
selection method, # landmarks m, # nearest
landmarks s, # diffusion steps α, clustering
method: direct or landmark (for even α), or
co-clustering (for odd α).

Output: A partition of X into k clusters.
1: Find m landmarks Y = {y1, . . . , ym} ⊂ Rd

using the given method.
2: Form the affinity matrix A between the input

dataX and their respective s nearest landmark
points in Y by using the given similarity func-
tion δ.

3: Calculate the row and column sums of A and
use them to normalize A to obtain Ã (as in
(12)).

4: Find the largest k− 1 singular values (exclud-
ing 1) and corresponding left and right singu-
lar vectors of Ã.

5: Compute the diffusion coordinates matrix
V(α) by (25) (with p = k − 1).

6: Use the indicated clustering method to divide
the input data set X into k clusters.

X and Y , respectively. A direct way of clustering
the input data X is to focus on V(α)

X , the α-step
diffusion coordinates for X , and apply k-means to
group them into k clusters. Alternatively, we can
focus on V(α)

Y , the α-step diffusion coordinates for
the landmark set Y , and use k-means to group the
landmark points into k subsets. Afterwards, we
extend the landmark clustering to the input data
through s nearest neighbors (sNN) classification,
where s is the number of closest landmark points
connected to each data point.
(2) α odd: In this case, we are still left with a bi-
partite graph. To cluster the input data X , we pro-
pose to run k-means with the full set of diffusion
coordinates V(α) to divide X ∪ Y into k clusters,
and later remove the landmark points from them.
We refer to the three above-mentioned meth-
ods for clustering the given data respectively as
direct clustering, landmark clustering, and co-
clustering.

We now present our scalable spectral clustering
algorithm in Alg. 1.

Remark. We mention the work of Liu et al.
(2013) in the setting of large graph data, which

constructs a bipartite graph between the original
graph nodes and “supernodes” generated through
graph coarsening and then uses the plain co-
clustering algorithm by Dhillon (2001) to partition
the graph. Though the idea is somewhat similar,
our method directly operates in the Euclidean data
domain and extracts diffusion coordinates from
the bipartite graph for clustering.

3.3 Run time analysis

The landmark selection step of Alg. 1 takes
O(ndm) time when k-means sampling is used, or
O(m) time when uniform sampling is used. The
matrix A can be constructed in O(nm(d + s))
time since it takes O(nmd) time to calculate all
the pairwise distances between X and Y , and
O(nsm) time to find the s nearest landmarks in
Y for each of the n data points in X . It then
takes O(ns) time to obtain Ã, and O(nsk) time
to perform rank-k SVD of Ã. The diffusion co-
ordinates V(α) can be computed in O((n + m)k)
time. The final clustering step may take O(nk2),
or O(mk2 + ns), or O((n+m)k2) time, depend-
ing on the clustering method. Putting everything
together, the total running time is O(nm(d+ s) +
nk(s+ k)).

4 Experiments

In this section, we conduct extensive experiments
to evaluate the practical performance of LBDM
with α = 1, 2. For the odd value α = 1, for which
the co-clustering method has to be used, we denote
the corresponding implementation by LBDM(1).
For the even value α = 2, we use both the di-
rect clustering and landmark clustering methods
and denote them as LBDM(2,X) and LBDM(2,Y ),
respectively.

4.1 Experimental setup

We compare the different LBDM versions with the
following algorithms: KASP (Yan et al., 2009),
LSC (Cai and Chen, 2015), cSPEC (Wang et al.,
2009), and the co-clustering algorithm by Dhillon
(2001) (used similarly as LBDM(1)), in the setting
of Gaussian similarity. We also include the plain
Ncut algorithm (Shi and Malik, 2000) in our study
(as a baseline). We implement all the methods in
MATLAB 2016b (except LSC2) and conduct all

2MATLAB code available at http://www.cad.zju.
edu.cn/home/dengcai/Data/Clustering.html
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the experiments on a compute server with 48GB
of RAM and 2 CPUs with 12 total cores.

We choose six benchmark data sets - usps,
pendigits, letter, protein, shuttle, mnist - from the
LIBSVM website3 (see Table 1 for their summary
statistics). They are originally partitioned into
training and test parts for classification purposes,
but for each data set we have merged the two parts
together for our unsupervised setting. Also, we
provide the true number of clusters k to all algo-
rithms to focus on the clustering task.4

Table 1: Data sets used in our experiments.
Data n d k

usps 9,298 256 10
pendigits 10,992 16 10
letter 20,000 16 26
protein 24,387 357 3
shuttle 58,000 9 7
mnist 70,000 784 10

In order to have a fair comparison between the
different algorithms, we use the same values for
the shared parameters. In particular, we fix m =
500 (for all methods) and s = 5 (for LSC, Dhillon
and LBDM with α = 1, 2). Also, we feed all the
algorithms with the same landmark set found by
k-means (with only 10 iterations), which is ini-
tialized with the centroids obtained by preliminary
k-means clustering on 10% of the data (with 100
iterations, 10 restarts). In the last step of each al-
gorithm (where k-means is applied to cluster data
in the respective embedding space), we use 100
iterations and 10 restarts.

We evaluate the different methods in terms of
clustering accuracy and CPU time (averaged over
50 replications), with the former being calculated
by first finding the best match between the output
cluster labels and the ground truth and then com-
puting the fraction of correctly assigned labels.

4.2 Results

We report the experimental results in Tables 2 (ac-
curacy) and 3 (time).

The following observations on the clustering ac-
curacy are at hand: (1) LBDM(2,Y ) achieved the

3https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

4When k is unknown, one may use methods like the
gap statistic (Tibshirani et al., 2001) or eigenvectors rotation
(Zelnik-Manor and Perona, 2004) to infer its value.

highest accuracy on three data sets (usps, pro-
tein, mnist), while LBDM(2,X) achieved the high-
est accuracy only on letter; (2) LSC and cSPEC
each obtained the best accuracy once but each of
them also performed very badly in at least one
case; (3) The two co-clustering methods (Dhillon,
LBDM with α = 1) were very close and all per-
formed reasonably well but never achieved the
highest accuracy; (4) KASP never achieved the
best accuracy either and performed very poorly in
three cases (pendigits, letter, mnist). Overall, the
LBDM family exhibited very stable performance
(which demonstrates the power of diffusion co-
ordinates), and they also outperformed the plain
Ncut algorithm most of the time.

Regarding running time, LBDM(2,Y ) and
KASP are the two fastest methods because they
both cluster the landmark points first and then ex-
tend the clustering to the input data through near-
est neighbor classification. KASP is even faster
because it applies spectral clustering directly to the
landmark points in Rd (the corresponding weight
matrix is only m × m), but it is at the expense
of accuracy. The cSPEC algorithm, on the other
hand, is the slowest among the scalable methods
(because it does not sparsify the matrix A), but it
is still much faster than plain Ncut.

4.3 Parameter sensitivity study

We study in this section the effects of the parame-
ters of LBDM (and relevant methods): m (number
of landmark points), s (number of nearest land-
mark points), and α (diffusion time), using four
data sets from Table 1: usps, letter, protein, and
mnist.

In the first experiment, we focus on the param-
eter m by fixing s = 5 and varying m from 100
to 1000 with a step size of 100 in order to study
its influence on all the scalable methods in Table
2. For each data set and each value ofm, we apply
k-means to sample m landmark points from the
data set and provide the same landmark set to all
the methods being compared to obtain their clus-
tering accuracy and run time. This is then repeated
30 times and we report the average accuracy and
time for each method in Fig. 4. In general, all
methods except KASP and cSPEC improve their
accuracy rates as more landmark points are used,
with LBDM(2,Y ) achieving the highest accuracy
most of the time for three data sets (usps, protein,
mnist). The CPU time of each algorithm seems to
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Table 2: Average clustering accuracy (%) of the various methods obtained on the data sets in Table 1. (Due to
memory issue, we could not run the plain Ncut algorithm on the last two data sets.)

Dataset Ncut KASP LSC cSPEC Dhillon LBDM(1) –(2,X) –(2,Y )

usps 66.21 67.25 66.86 66.89 68.21 67.80 68.10 69.45
pendigits 69.73 68.45 77.93 67.93 73.20 72.95 74.70 73.22
letter 24.93 26.19 31.51 24.98 32.06 32.13 32.21 31.28
protein 43.68 43.85 43.85 44.84 43.35 43.55 43.16 45.88
shuttle 74.52 39.71 82.78 74.24 74.26 74.38 74.49
mnist 57.99 70.28 54.50 72.15 72.43 72.37 73.29

Table 3: Average CPU time (in seconds) used by the various methods on the data sets in Table 1. The CPU time
needed by the initial k-means to sample landmark points from each data set has been separately reported in the
third column of the table (as it is common to all the methods).

Dataset Ncut (k-means) KASP LSC cSPEC Dhillon LBDM(1) –(2,X) –(2,Y )

usps 131.78 7.46 + 0.61 4.44 7.89 4.45 4.39 4.17 1.95
pendigits 246.08 3.13 + 0.55 3.08 5.26 3.14 2.91 3.08 1.65
letter 1180.70 5.30 + 0.77 12.24 25.07 13.51 14.96 12.87 2.78
protein 2024.54 27.04 + 0.41 3.55 7.54 3.93 4.04 3.93 4.40
shuttle 23.89 + 1.23 8.49 61.68 12.35 15.09 12.15 5.88
mnist 299.74 + 0.63 25.07 39.26 27.17 25.69 25.83 16.67
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Figure 4: Effects of the parameter m (with s = 5 fixed all the time). Top row: clustering accuracy; bottom row: CPU time. In
all plots the color and symbol of each method is fixed, so only one legend box is displayed.

depend linearly on m, with KASP always being
the fastest two method.

In our second experiment about the parame-
ter s (which is only needed by LBDM, LSC and
Dhillon), we use the same setup as in the first ex-
periment, except to fix m = 500 while varying
s from 2 to 10 continuously. We plot the aver-
age clustering accuracy and run time of the dif-
ferent methods against the parameter s in Fig. 5.
We see that increasing the value of s tends to de-
crease the clustering accuracy of each algorithm
(with LBDM(2,Y ) being the best in three cases),
while increasing their run time linearly (but very
little for LBDM(2,Y )).

Lastly, we study the α parameter of LBDM
by varying it from 1 to 40 continuously (with
m = 500 and s = 5 fixed). Recall that for
odd values of α, we have to use the co-clustering
method LBDM(α), while for each even value of
α, we can use either the direct clustering method
LBDM(α,X) or the landmark clustering method
LBDM(α,Y ). Their average accuracy (over 30
replications) for each value of α is displayed in
Fig. 6. We can see that increasing the time scale
α may further improve the clustering accuracy for
all three methods on some data sets, demonstrating
the power of diffusion maps.
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Figure 5: Effects of the parameter s (with m = 500 fixed all the time). Top row: clustering accuracy; bottom row: CPU time.
Since KASP fixes s = 1 and cSPEC requires no sparsification, we have respectively plotted their accuracy rates at s = 1 and 0
in each plot.
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Figure 6: Effects of the parameter α on LBDM (with m = 500 and s = 5 fixed all the time).
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Figure 7: Clustering accuracy of LBDM (with 1 ≤ α ≤ 20)
and Dhillon’s method (shown at α = 0) on two text data sets.

4.4 LBDM with bipartite graphs between
documents and terms

In this section we conduct an extra experiment to
show that we can easily adapt LBDM (Alg. 1)
for the original bipartite graph model by Dhillon
(2001), which consists of documents and terms,
by simply treating the terms as the “landmarks”
and using the document-term frequency matrix A
as the affinity matrix between the two compo-
nents of the bipartite graph. We then carry out
the remaining steps of Alg. 1, using either the
direct clustering method (for even α) or the co-
clustering method (for odd α), and still denote
them as LBDM(α,X) and LBDM(α).

We compare these two methods for 1 ≤ α ≤ 20
with Dhillon’s co-clustering algorithm using two

news data sets, TDT2 and Reuters21578.5 Be-
cause of the much varied cluster sizes, we focus on
the top 30 categories in each data set. The cluster-
ing accuracy of the three methods on both data sets
is reported in Fig. 7. It is clear that the use of diffu-
sion coordinates on the bipartite graph (for small
α) considerably improves the documents cluster-
ing accuracy.

5 Conclusions

We presented a landmark-based scalable spectral
clustering approach by a novel combination of dif-
fusion maps and bipartite graphs. Our experiments
showed that the proposed algorithm achieved very
stable and competitive accuracy while running
fast. We conclude that LBDM can be used as a
very promising new alternative to current large-
scale spectral clustering methods.

Acknowledgments

We thank the anonymous reviewers for helpful
feedback. G. Chen was supported by a Simons
Foundation Collaboration Grant for Mathemati-
cians while conducting this research.

5Available at http://www.cad.zju.edu.cn/
home/dengcai/Data/TextData.html

36



References
D. Cai and X. Chen. 2015. Large scale spectral cluster-

ing via landmark-based sparse representation. IEEE
Transactions on Cybernetics, 45(8):1669–1680.

G. Chen. 2018. Scalable spectral clustering with cosine
similarity. In Proceedings of the 24th International
Conference on Pattern Recognition (ICPR), Beijing,
China. To appear.

X. Chen and D. Cai. 2011. Large scale spectral clus-
tering with landmark-based representation. In Pro-
ceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence.

A. Choromanska, T. Jebara, H. Kim, M. Mohan, and
C. Monteleoni. 2013. Fast Spectral Clustering via
the Nyström Method, volume 8139 of Algorithmic
Learning Theory. ALT 2013. Lecture Notes in Com-
puter Science. Springer, Berlin, Heidelberg.

F. R. K. Chung. 1996. Spectral graph theory, vol-
ume 92 of CBMS Regional Conference Series in
Mathematics. AMS.

R. Coifman and S. Lafon. 2006. Diffusion maps.
Applied and Computational Harmonic Analysis,
21(1):5–30.

I. Dhillon. 2001. Co-clustering documents and words
using bipartite spectral graph partitioning. In Pro-
ceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’01, pages 269–274, New York, NY, USA.

I. Dhillon, Y. Guan, and B. Kulis. 2004. Kernel
k-means: Spectral clustering and normalized cuts.
In Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, pages 551–556.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. 2004.
Spectral grouping using the nystr’́om method. IEEE
Trans. Pattern Analysis and Machine Intelligence,
26(2):214–225.

J. Liu, C. Wang, M. Danilevsky, and J. Han. 2013.
Large-scale spectral clustering on graphs. In Pro-
ceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, pages 1486–
1492. AAAI Press.

U. von Luxburg. 2007. A tutorial on spectral cluster-
ing. Statistics and Computing, 17(4):395–416.

M. Meila and J. Shi. 2001. A random walks view
of spectral segmentation. In Proceedings of the
Eighth International Workshop on Artificial Intelli-
gence and Statistics (AISTATS), Key West, Florida,
USA.

Y. Moazzen and K. Tasdemir. 2016. Sampling based
approximate spectral clustering ensemble for parti-
tioning data sets. In Proceedings of the 23rd Inter-
national Conference on Pattern Recognition (ICPR),
Cancun, Mexico. IEEE.

A. Ng, M. Jordan, and Y. Weiss. 2001. On spectral
clustering: Analysis and an algorithm. In Advances
in Neural Information Processing Systems 14, pages
849–856.

T. Sakai and A. Imiya. 2009. Fast Spectral Cluster-
ing with Random Projection and Sampling, volume
5632 of Machine Learning and Data Mining in Pat-
tern Recognition. MLDM 2009. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg.

J. Shi and J. Malik. 2000. Normalized cuts and image
segmentation. IEEE Trans. Pattern Anal. Mach. In-
tell., 22(8):888–905.

K. Tasdemir. 2012. Vector quantization based approx-
imate spectral clustering of large datasets. Pattern
Recognition, 45(8):3034–3044.

R. Tibshirani, G. Walther, and T. Hastie. 2001. Esti-
mating the number of clusters in a data set via the
gap statistic. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 63(2):411–
423.

L. Wang, C. Leckie, R. Kotagiri, and J. Bezdek. 2011.
Approximate pairwise clustering for large data sets
via sampling plus extension. Pattern Recognition,
44:222–235.

L. Wang, C. Leckie, K. Ramamohanarao, and
J. Bezdek. 2009. Approximate Spectral Clustering,
volume 5476 of Advances in Knowledge Discovery
and Data Mining. PAKDD 2009, Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg.

D. Yan, L. Huang, and M. Jordan. 2009. Fast approxi-
mate spectral clustering. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 907–916.

L. Zelnik-Manor and P. Perona. 2004. Self-tuning
spectral clustering. In Advances in Neural Informa-
tion Processing Systems 17, pages 1601–1608.

37



Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12), pages 38–48
New Orleans, Louisiana, June 6, 2018. c©2018 Association for Computational Linguistics

Efficient Graph-based Word Sense Induction
by Distributional Inclusion Vector Embeddings
Haw-Shiuan Chang1, Amol Agrawal1, Ananya Ganesh1,

Anirudha Desai1, Vinayak Mathur1, Alfred Hough2, Andrew McCallum1

1CICS, University of Massachusetts, 140 Governors Dr., Amherst, MA 01003
2Lexalytics, 320 Congress St, Boston, MA 02210

{hschang,amolagrawal,aganesh}@cs.umass.edu,
{anirudhadesa,vinayak,mccallum}@cs.umass.edu

al.hough@lexalytics.com

Abstract

Word sense induction (WSI), which addresses
polysemy by unsupervised discovery of mul-
tiple word senses, resolves ambiguities for
downstream NLP tasks and also makes word
representations more interpretable. This pa-
per proposes an accurate and efficient graph-
based method for WSI that builds a global
non-negative vector embedding basis (which
are interpretable like topics) and clusters the
basis indexes in the ego network of each poly-
semous word. By adopting distributional in-
clusion vector embeddings as our basis for-
mation model, we avoid the expensive step
of nearest neighbor search that plagues other
graph-based methods without sacrificing the
quality of sense clusters. Experiments on three
datasets show that our proposed method pro-
duces similar or better sense clusters and em-
beddings compared with previous state-of-the-
art methods while being significantly more ef-
ficient.

1 Introduction

Word sense induction (WSI) is a challenging task
of natural language processing whose goal is to
categorize and identify multiple senses of poly-
semous words from raw text without the help of
predefined sense inventory like WordNet (Miller,
1995). The problem is sometimes also called
unsupervised word sense disambiguation (Agirre
et al., 2006; Pelevina et al., 2016).

An effective WSI has wide applications. For ex-
ample, we can compare different induced senses
in different documents to detect novel senses over
time (Lau et al., 2012; Mitra et al., 2014) or ana-
lyze sense difference in multiple corpora (Mathew
et al., 2017). WSI could also be used to group and
diversify the documents retrieved from search en-
gine (Navigli and Crisafulli, 2010; Di Marco and
Navigli, 2013). After identifying senses, we can

train an embedding for each sense of a word. Li
and Jurafsky (2015) demonstrate that this multi-
prototype word embedding is useful in several
downstream applications including part-of-speech
(POS) tagging, relation extraction, and sentence
relatedness tasks. Sumanth and Inkpen (2015)
also show that word sense disambiguation could
be successfully applied to sentiment analysis.

Since word sense induction (WSI) methods
are unsupervised, the senses are typically derived
from the results of different clustering techniques.
Like most of the clustering problems, it is usually
challenging to predetermine the number of clus-
ters/senses each word should have. In fact, for
many words, the “correct” number of senses is not
unique. Setting the number of clusters differently
can capture different resolutions of senses. For
instance, race in the car context could share the
same sense with the race in the game context be-
cause they all mean contest, but the race in the
car context actually refers to the specific contest
of speed. Therefore, they can also be separated
into two different senses, depending on the level
of granularity we would like to model.

For graph-based clustering methods, it is easy
and natural to model the multiple resolutions of
senses in a consistent way by hierarchical clus-
tering and defer the difficult problem of choosing
the number of clusters to the end. This makes it
easier to incorporate other information, such as
users’ resolution preference on each hierarchical
sense tree. The flexibility is one of the reasons
why graph-based methods are widely studied and
applied to many downstream applications (Mitra
et al., 2014; Mathew et al., 2017; Navigli and
Crisafulli, 2010; Di Marco and Navigli, 2013).

Nevertheless, graph-based WSI methods usu-
ally require a substantial amount of computational
resources. For example, Pelevina et al. (2016)
build the graph by finding the nearest neighbors
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of the target word in the word embedding space
(i.e., ego network). Thus, constructing ego net-
works for all the words takes at leastO(|V |2) time,
where |V | is the size of the vocabulary, unless
some approximation is made (e.g., approximate
nearest neighbor search such as k-d tree).1 Next,
if our goals include finding less common senses,
the method needs to construct a large graph by in-
cluding more nearest neighbors. For each target
word, computing the pairwise distances between
nodes in the large graph is also computationally
intensive.

To overcome the limitations and make graph-
based WSI more practical, we propose a novel
WSI algorithm that first groups words into a set of
basis indexes (i.e., a set of topics) efficiently and
then, constructs the graph where each node corre-
sponds to a basis index (i.e., a topic) instead of a
word. The motivation behind the approach is that
different senses of a word usually appear in dif-
ferent topics. For example, food and technology
will be at least two distinct topics in most of the
topic models, so we can find senses by clustering
corresponding basis indexes safely when the tar-
get word is apple. If one word could have distinct
senses in one topic, humans will constantly face
difficult word sense disambiguation tasks while
reading a document.

Although the main idea is simple, improving
the efficiency significantly without sacrificing the
quality is difficult. One of the challenges is
that similarity between two basis indexes changes
given different target words. For example, a coun-
try topic should be clustered together with a city
topic if the target word is place. However, if the
query word is bank, it makes more sense to group
the country topic with the money topic into one
sense so that the bank mention in Bank of Amer-
ica will belong to the sense. This means we want
to focus on the geographical meaning of coun-
try when the target word is more about geography,
while focus on the economic meaning of country
when the target word is more about economics.

In order to tackle the issue, we adopt a recently
proposed approach called distributional inclusion
vector embedding (DIVE) (Chang et al., 2018).
DIVE compresses the sparse bag-of-words while
preserving the co-occurrence frequency order, so

1Pelevina et al. (2016) also suggest that JoBimText is
an efficient alternative to estimating word similarity, but the
method still needs time to run a dependent parser and not ev-
ery domain has an efficient and high-quality parser.

DIVE is able to model not only the possibility
of observing one target word in a topic as typical
topic models but also the possibility of observing
one topic of a sentence containing a target word
mention. This allows us to efficiently identify the
topics relevant to each target word, and only focus
on an aspect of each of these topics composed of
the words relevant to both the topic and the target
word.

Experiments show that our method performs
similarly compared with Pelevina et al. (2016),
a state-of-the-art graph-based WSI method, with-
out the need of expensive nearest neighbor search.
Our method is even better for the words without a
dominating sense.

2 Related Work

WSI methods can be roughly divided into two cat-
egories (Pelevina et al., 2016): clustering words
similar to the target/query word or clustering men-
tions of the target word. We address their general
limitations below.

2.1 Clustering Related Words

Graph-based clustering for WSI has a long his-
tory and many different variations (Lin et al.,
1998; Pantel and Lin, 2002; Dorow and Widdows,
2003; Véronis, 2004; Agirre et al., 2006; Bie-
mann, 2006; Navigli and Crisafulli, 2010; Hope
and Keller, 2013; Di Marco and Navigli, 2013;
Mitra et al., 2014; Pelevina et al., 2016). In gen-
eral, the method is to first retrieve words similar or
related to each target word as nodes, measure the
similarity/relatedness between the words to form
an ego graph/network, and either group the nodes
by graph clustering or find hubs or representa-
tive nodes in the graph using HyperLex (Véronis,
2004) or PageRank (Agirre et al., 2006).

As we mentioned in the introduction section,
building word similarity graph and performing
graph clustering is usually computationally expen-
sive unless relying on information other than co-
occurrence statistics such as word snippets from
a search engine (Navigli and Crisafulli, 2010;
Di Marco and Navigli, 2013) or existing high-
quality dependency parse (Mitra et al., 2014;
Pelevina et al., 2016). Depending on the down-
stream applications and word similarity estimation
algorithms available at the time of each work, the
methods strive for the balance between efficiency
and quality in different ways.
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Most of the WSI methods that cluster words use
graph-based algorithms. One notable exception is
Lau et al. (2012). For each target word, they build
a topic model, latent Dirichlet allocation or its ex-
tension, on the contexts of all mentions of target
words. Although computing pairwise similarity is
not required here, the approach is still computa-
tionally expensive because there might be tens of
thousands of mentions of a target word in the cor-
pus and the approach needs to train V different
topic models instead of globally modeling topics
once like our method.

In addition to the scalability concerns, we do not
know how many mentions of a target word are se-
mantically closest to each of its most related words
(i.e., node in its ego-network). The loss of connec-
tion makes balance the cluster size during the clus-
tering difficult. Furthermore, it might be common
that when users would like to adopt fine-grained
senses in the hierarchical clustering tree but realize
that there is no mention in the corpus that would
be categorized into some sense clusters.

2.2 Clustering Mentions

In addition to clustering words similar/related to
the target word, we can also cluster every mention
based on its context words, which co-occur in a
small window. Although this way saves the time
of finding similar words, the samples need to be
clustered drastically increase because each target
word could have tens of thousands of mentions in
the corpus of interest. This makes bottom-up hier-
archical clustering or global optimization such as
spectral clustering (Stella and Shi, 2003) become
infeasible. Without hierarchical sense clustering,
it is hard to inject other sources of information
such as user intervention or prior knowledge to de-
termine the number of clusters.

To efficiently cluster many samples, Schütze
(1992) sub-samples the context of mentions; Mu
et al. (2017) run principle component analysis
(PCA) to compress the contexts of each target
word before clustering; other approaches adopt
iteratively local search algorithms after random
initialization such as expectation maximization
(EM) (Reisinger and Mooney, 2010; Neelakan-
tan et al., 2014; Tian et al., 2014; Piña and Jo-
hansson, 2015; Li and Jurafsky, 2015; Bartunov
et al., 2016) or gradient descent (Athiwaratkun and
Wilson, 2017). Although the random initializa-
tion and local search methods could be very ef-

ficient, the methods might suffer from bad local
minimums. Moreover, the users need to specify
the number of senses or a global hyper-parameter
which controls the level of granularity at the be-
ginning and hope that it will output the sense mod-
els with desired resolution after training finishes.
The lack of a way to browsing different sense res-
olution limits the application of the type of WSI
methods.

3 Method

The flowchart of our method is illustrated in Fig-
ure 1. We will first briefly introduce distribu-
tional inclusion vector embedding (DIVE) (Chang
et al., 2018) in Section 3.1, illustrate how we use
DIVE as a topic model to construct a graph in Sec-
tion 3.2, and after clustering the topics, we explain
the way to converting each topic cluster to a sense
embedding in Section 3.3.

3.1 Distributional Inclusion Vector
Embedding (DIVE)

Distributional inclusion vector embedding (DIVE)
is a variation of skip-gram model (Mikolov et al.,
2013). The two major differences compared
with skip-gram are that (1) all word embeddings
and context embeddings are constrained to be
non-negative, and (2) the weights of negative sam-
pling for each word is inversely proportional to its
frequency. Specifically, the objective function of
DIVE is defined by

lDIV E =
∑

w

∑

c

#(w, c) log σ(wT c) +

kI
∑

w

Z

#(w)

∑

c

#(w, c) E
cN∼PD

[log σ(−wT cN)],
(1)

where the word embedding w ≥ 0, the context
embedding c ≥ 0, cN ≥ 0, #(w, c) are number
of times context word c co-occur with w, #(w) =∑
c
#(w, c), σ is the logistic sigmoid function, kI

is a constant hyper-parameter, Z is the average
#(w) of all words (i.e., Z =

∑
w #(w)
|V | and |V | is

the size of vocabulary), and PD is the distribution
of negative samples. The two modifications do not
change the time and space complexity of training
skip-gram, which is one of the most scalable word
embedding methods (Levy et al., 2015).

DIVE is originally designed to perform un-
supervised hypernymy detection task, and its
goal is to preserve the inclusion relation between
two context features in the sparse bag of words
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Figure 1: The flowchart of the proposed method. The blue boxes are processing steps, the orange boxes are input
and output data of each step, and the gray areas indicate the sections describing the included steps.

(SBOW) representation. When the co-occurred
context histogram of the word y includes that of
the word x, it means that for all context words c in
the vocabulary V , c will co-occur more times with
y than with x. In this paper, the context words
of a target word means the words co-occur with a
target word mention within a small window in the
corpus. The default context window size for DIVE
is 10. Chang et al. (2018) show that the DIVE is
able to compress the sparse bag of words while
approximately preserving the inclusion in the low-
dimensional space. Formally,

∀c ∈ V, #(x, c) ≤ #(y, c)

⇐̃⇒ ∀i ∈ {1, ..., L}, x[i] ≤ y[i],
(2)

where ⇐̃⇒ means approximately equivalent,
#(x, c) and #(y, c) are number of times context
word c co-occurs with x and y, respectively. x
and y are the embeddings of the words x and y,
respectively, x[i] is the embedding value of in ith
dimension (i.e., ith basis index). and L is number
of DIVE basis indexes. See Chang et al. (2018)
for more the derivation of the equation.

In order to satisfy equation (2), each basis in-
dex of DIVE corresponds to a topic and the em-
bedding value at that index represents how often
the word appears in the topic. This is because if
the embedding of one word y has higher value in
every dimension (i.e., higher frequency in every
topic) than the value of another word x, the con-
text words c in the topics usually co-occur more
frequently with y than with x. Inversely, if x ap-
pears more often in one topic than y (i.e., the em-
bedding value of x in the corresponding dimension
is higher than that of y), some context words c in
the topic could co-occur more often with x than

with y.
In Figure 2 (a), we present three mentions of the

word core and its top 15 basis indexes in DIVE.
The word that has a higher value in a basis index
is more frequent in the corresponding topic. For
example, the top 1-5 words in the second column
of the table look more frequent (and usually more
general) than the top 101-105 words.

3.2 Graph-Based Clustering
For each target word, we build an ego network
whose nodes are the basis indexes relevant to the
word. The basis index b is relevant if DIVE of
the target word q has a value wq[b] higher than
a threshold T . The threshold is set to be 1% of
average non-zero wq[b] over basis indexes in our
experiment.

Every pair of nodes are linked by an edge
weighted by the similarity between the two basis
indexes. Each basis index bi is represented by a
feature vector. A naive way to prepare the feature
vector of ith basis index f(bi) is to use the embed-
ding values in that index w[bi] of all the words in
our vocabulary V . That is,

f(bi) = ⊕
w∈V

w[bi], (3)

the operator ⊕ means concatenation. However, as
discussed in Section 1, measuring similarity us-
ing the global features might group topics together
based on the co-occurrence of words which are un-
related to the query words. Instead, we want to
make the similarity dependent on the query word.

To create target-dependent similarity measure-
ment, we only consider the embedding of words
which are related to the query word as the features
of basis indexes. Specifically, given a query word

41
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bj Top 1-5 words Top 101-105 words
1 element, gas, atom, rock, carbon methane, crystalline, complex, surround, proton
2 star, orbit, sun, orbital, planet bright, position, centauri, interaction, universe
3 electron, current, electric, circuit, voltage anode, wire, ac, perform, resistor
4 tank, cylinder, wheel, engine, steel aluminum, automatic, pilot, prevent, remove
5 high, low, temperature, energy, speed atmospheric, fast, blood, m, population
6 acid, carbon, product, use, zinc ph, monoxide, phosphorus, bond, manufacture
7 system, architecture, develop, base, language functional, requirement, processing, compatible, api
8 version, game, release, original, file cassette, virtual, code, project, kb
9 network, user, server, datum, protocol technology, rout, agent, microsoft, command

10 access, need, require, allow, program size, ability, format, run, typically
11 also, well, several, early, see fall, eventually, main, rise, mostly
12 part, almost, see, addition, except incorporate, stage, instead, opening, add
13 several, main, province, include, consist designate, exist, swiss, branch, thai
14 science, philosophy, theory, philosopher, term ethical, advocate, topic, basic, universe
15 school, university, student, education, college doctorate, doctoral, middle, arts, compulsory

… these cold dense 
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bj Top 1-5 words
1 element, gas, atom, rock, carbon
2 star, orbit, sun, orbital, planet
3 electron, current, electric, circuit, voltage
4 tank, cylinder, wheel, engine, steel
5 high, low, temperature, energy, speed
6 acid, carbon, product, use, zinc

11 also, well, several, early, see
12 part, almost, see, addition, except
13 several, main, province, include, consist

7 system, architecture, develop, base, language
8 version, game, release, original, file
9 network, user, server, datum, protocol
10 access, need, require, allow, program

14 science, philosophy, theory, philosopher, term
15 school, university, student, education, college
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(b)
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surface engine
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w[bi]*wq[bj] w[bi]*wq[bj] w[bi]*wq[bj] w[bi]*wq[bj] w[bi]*wq[bj]

…
f(b3,q)

Figure 2: A visualization of finding the senses of the word core.
(a) The DIVE w[bj ] of the word core (only top 15 basis indexes are shown). The words in each row of the table
are sorted by its embedding value in the basis index.
(b) Weighted DIVE of six words on these 15 basis indexes relevant to core as the features for measuring the
similarity between basis indexes. The two red boxes indicate two final clusters we discovered at the end within
which the feature words tend to have similar embedding values.
(c) The ego network constructed for the word core. Each blue box and the corresponding circle represent a basis
index or topic (only 8 out of 15 basis indexes are plotted and their index numbers bj are shown in the blue boxes),
which is a node in the network. Two basis indexes are more similar if more relevant words (i.e., close to core)
occur frequently in both corresponding topics. For example, the topic 7 and 8 are more similar because of the
frequent appearance of the relevant words such as computer in both topics. The larger similarity is represented
by a thicker red line. The ego network is a complete graph but only a subset of edges are plotted in the figure.
(d) The final clustering results when the number of clusters is set to be 4.

q, we only take the top n words of every basis in-
dex j in the set Bj(n) instead of considering all
the words in the vocabulary. Then, we weigh the
feature based on how likely it is to observe the tar-
get word in topic j (wq[bj ]) and concatenate all
features together. That is, the feature vector of the

ith dimension f(bi,q) is defined as:

f(bi,q) =
L
⊕
j=1

⊕
w∈Bj(n)

w[bi] ·wq[bj ], (4)

where n is fixed as 100 in the experiment.
In addition to decreasing the weight of irrele-

vant words, we also lower the influence of irrele-
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vant bases by defining the similarity between two
basis indexes as

SIM(bi, bj , q) = cos(f(bi,q), f(bj ,q))·

log(
min(wq[bi],wq[bj ])

T
),

(5)
where cos(f(bi,q), f(bj ,q)) is the cosine similarity
between the features of two basis indexes, and
the term log(

min(wq [bi],wq [bj ])
T ) is to prevent ir-

relevant basis indexes in the ego network mis-
leading the clustering algorithm. Notice that
SIM(bi, bj , q) ≥ 0 because all features f(b,q) ≥ 0
and every node is a relevant basis index b with
wq[b] > T .

After the ego network is constructed, we could
apply any hierarchical graph clustering. In this pa-
per, we just choose spectral clustering with fixed
number of clusters for simplicity. In our experi-
ment, DIVE with 100 dimensions produces only
6.4 relevant basis indexes on average which needs
to be clustered for each target word. This number
goes to only 19 for DIVE with 300 dimensions.
Thus, we are allowed to use spectral clustering
to perform global optimization without inducing
large computational overhead in this step.

In Figure 2, we use the target word core as an
example to illustrate our clustering algorithm. Af-
ter DIVE is trained in (a), we visualize six di-
mensions of features for each basis index f(bi,q)
in (b). Using the features, we can build the ego
network as shown in (c). The figure highlights
the novelty of our approach. Instead of directly
clustering words as other graph-based methods,
we group the words first and cluster the groups
to form senses. Since the basis is global, we do
not have to retrain it given a different target word.
DIVE provides us an easy and efficient way to
ignore the irrelevant words being far away from
core in (c), such as province or space, and clus-
ter based on the words close to the target word
such as main or computer. The target-dependent
similarity measurement preserves the main spirit
of existing graph-based approaches.

3.3 From Basis Index Clusters to Sense
Embeddings

As shown in Figure 2 (d), every sense is repre-
sented by a group of basis indexes each of which
has a weight based on its relevancy to the target
word (e.g., the relevancy of bith basis index is
wq[bi]). In order to apply existing WSI evaluation

and potentially other downstream applications, we
convert the basis index clusters to sense embed-
ding.

First, we train a word embedding. Any existing
embeddings could be used and we choose skip-
gram due to its efficiency. Based on the trained
word2vec, we first create a topic embedding for
each basis index by averaging skip-gram embed-
ding of the top 1000 words Bi(1000) weighted by
the DIVE w[bi] of the words at bith basis index as
given as:

tbi =

∑
w∈Bi(1000)

exp(w′[bi]) · ew∑
w∈Bi(1000)

exp(w′[bi])
, (6)

where ew is the skip-gram embedding for the word
whose DIVE are w, and w′ is normalized DIVE

such that its average
∑

w∈Bi(1000)
w′[bi]

1000 = 1. We
take exponential on w′[bi] to focus on the words
that are more important to the bi basis index be-
cause DIVE roughly models the log of word fre-
quency in each topic (Chang et al., 2018).

To generate kth sense embedding sqk for a tar-
get word q, we take the average of all the topic
embeddings in the kth sense cluster (found in Sec-
tion 3.2) weighted by the relevancy between every
topic and the target word. Specifically,

sqk =

∑
bi∈Sq

k
exp(w′

q[bi]) · tbi∑
bi∈Sq

k
exp(w′

q[bi])
, (7)

where Sq
k is the set of basis indexes that belongs

to the kth cluster, w′
q is normalized DIVE of the

target word such that its average
∑

bi∈N w′q [bi]
|N | =

1, and N is the set of nodes in the ego network.
When converting clusters into embeddings,

the previous graph-based WSI methods, such as
Pelevina et al. (2016), average the embedding of
related words. The average is effective in terms
of discriminating the contexts of target word men-
tions, but it might not be a good embedding for the
sense of target word itself. For instance, one sense
embedding of core could be close to the embed-
ding of computer, but the computer embedding
does not represent the sense of core in computer
context as well as the embedding of cpu. Our
method suffers the similar problem.

To solve the issue, we use the sense embed-
dings from clusters as the initialization of an ex-
pectation maximization (EM) refinement. At E-
step, we predict the sense of every target token
by checking which sense embedding the average
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word embedding of the current sentence is clos-
est to, and assign the sense to the target token
(e.g., bank → bank 1). At M-step, we retrain
the skip-gram using the updated corpus. Our re-
finement process could be seen as a simplified ver-
sion of multi-sense skip-gram (MSSG) (Neelakan-
tan et al., 2014), which can be easily implemented
using existing word embedding library.

4 Experiments

We first conduct a qualitative experiment to ver-
ify that our clustering algorithm performs well on
some typical polysemy, and show the results in Ta-
ble 1. As we can see, our method can not only
separate two senses in very different contexts but
also can distinguish more subtle sense difference
such as identifying the car context and competi-
tion context as two different senses of the target
word race.

Intuitively speaking, our method could be espe-
cially useful when it comes to increase the recall
of less common senses (like discovering the edu-
cational meaning of core), but it is hard to verify
the claim using existing WSI benchmarks because
the common senses, especially the most frequent
sense, often dominate in the benchmarks unless
using the datasets where the bias is removed. In
the following sections, we will first introduce the
setup and then the experiments on 3 datasets.

4.1 Experimental Setup

We train DIVE on first 51.2 million tokens of
WaCkypedia (Baroni et al., 2009), the dataset sug-
gested by Chang et al. (2018), and the default
hyper-parameter setting is used except the num-
ber of embedding dimensions L (i.e., number of
basis indexes). We train two DIVEs, one with 100
dimensions and the other with 300 dimensions to
study how the granularity of basis affects the per-
formance. For all other steps or baselines, we train
them on the whole WaCkypedia where the stop
words are removed.

For our clustering module, we use all the default
hyper-parameters of the spectral clustering library
in Scikit-learn 0.18.2 (Pedregosa et al., 2011) ex-
cept the number of clusters is fixed at 2. Setting a
number larger than 2 makes it harder to compare
with the results generated from other baselines
whose default hyper-parameters usually make av-
erage number of senses between 1 and 2. Dur-
ing EM, we train the skip-gram embedding on the

whole WaCkypedia where we treat every consec-
utive 20 tokens as a sentence, and the refinement
stops after 3 EM iteration. In the tables of this sec-
tion, our methods using DIVE with 100 and 300
dimensions are denoted as DIVE (100) and DIVE
(300), respectively.

In all quantitative experiments, we compare our
method with Pelevina et al. (2016), a state-of-the-
art graph-based clustering which builds ego graphs
based on words similar to the target words, so we
call it word graph (WG). To train the model, we
first train skip-gram on whole WaCkypedia and
use all the default hyper-parameters in their re-
leased code to get sense embeddings.2 We also ap-
ply our EM refinement step to their output embed-
ding to make the comparison fair and call this vari-
ation WG+EM. We also compare our method with
the baseline which randomly assigns two senses
to every token and performs EM to refine the em-
bedding (i.e., only adopting our post-processing
step). The method is similar to multiple-sense
skip-gram (Neelakantan et al., 2014), so we call
it MSSG in our tables.

In all datasets, evaluation involves the similarity
measurement between a sense of the target word
and a context. For each query, we compute co-
sine similarity between the context embedding and
the sense embedding of the target word, where the
context embedding ec is the average embedding of
word in the context. Notice that each word in the
context could also be polysemous. In these cases,
we adopt the sense embedding of the context word
that is closest to the sense of the target word (i.e.,
highest cosine similarity).

4.2 Word Context Relevance (WCR)

Given a target word, the task (Arora et al., 2016;
Sun et al., 2017) is to identify the true context cor-
responding to a sense of the target word out of
10 other randomly selected false contexts, where
a context is presented by similar words. For ex-
ample, two of the true contexts for the target
word bank are water,land,river,... and institu-
tion,deposits,money.... We use the R1 dataset
from Sun et al. (2017), which consists of 137 word
types and 535 queries.

For each query pair (target word wq, context c),
we compute the similarity between each sense of
target word sqk and the context ec, and choose the

2https://github.com/tudarmstadt-lt/
sensegram
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Query CID Top 5 words in the top dimensions

rock
1

element, gas, atom, rock, carbon sea, lake, river, area, water
find, specie, species, animal, bird point, side, line, front, circle

2
band, song, album, music, rock write, john, guitar, band, author
early, work, century, late, begin include, several, show, television, film

bank
1

county, area, city, town, west several, main, province, include, consist
building, build, house, palace, site sea, lake, river, area, water

2
money, tax, price, pay, income company, corporation, system, agency, service

united, states, country, world, europe state, palestinian, israel, right, palestine

apple
1

food, fruit, vegetable, meat, potato goddess, zeus, god, hero, sauron
war, german, ii, germany, world write, john, guitar, band, author

2
version, game, release, original, file car, company, sell, manufacturer, model

system, architecture, develop, base, language include, several, show, television, film

star
1

film, role, production, play, stage character, series, game, novel, fantasy
wear, blue, color, instrument, red write, john, guitar, band, author

2
element, gas, atom, rock, carbon star, orbit, sun, orbital, planet

give, term, vector, mass, momentum light, image, lens, telescope, camera

tank
1

tank, cylinder, wheel, engine, steel industry, export, industrial, economy, company
acid, carbon, product, use, zinc network, user, server, datum, protocol

2
army, force, infantry, military, battle aircraft, navy, missile, ship, flight
however, attempt, result, despite, fail war, german, ii, germany, world

race
1 win, world, cup, play, championship two, one, three, four, another
2 railway, line, train, road, rail car, company, sell, manufacturer, model
3 population, language, ethnic, native, people female, age, woman, male, household

run
1 system, architecture, develop, base, language access, need, require, allow, program
2 railway, line, train, road, rail also, well, several, early, see
3 game, team, season, win, league game, player, run, deal, baseball

tablet
1 bc, source, greek, ancient, date book, publish, write, work, edition
2 use, system, design, term, method version, game, release, original, file
3 system, blood, vessel, artery, intestine patient, symptom, treatment, disorder, may

Table 1: Examples of sense clusters on polysemous words. When the number of clusters is set to be 2, we present
the top 4 basis indexes bj in each sense cluster, which have the highest values on the target word embedding wq[bj ].
Otherwise, the top 2 basis indexes are presented. CID refers to sense cluster ID. The top 5 words with the highest
values of each basis index w[bj ] are presented.

senses of the target word with maximal similarity
(i.e., SIM(wq, ec) = maxk cos(s

q
k, ec)). Then,

we rank the similarity of 11 query pairs, which
consist of 1 true context and 10 false contexts. The
performance of different methods is evaluated by
checking whether the top 1 (i.e., the pair with the
highest similarity) is true. The metric (Sun et al.,
2017) is called Precision@1.

The results are shown in Table 2. Since the
task is to identify the related contexts, skip-gram
is a good baseline (Sun et al., 2017). In this
dataset, each sense is equally important, regard-
less how often the sense appears in the corpus.
The significantly better performance from DIVE
demonstrates our capability of modeling more
fine-grained senses of polysemous words.

4.3 TWSI Evaluation

The Turk bootstrap Word Sense Inventory (TWSI)
task (Biemann, 2012) is based on a large dataset,

Skip-gram WG WG+EM
52.7 42.1 59.1

MSSG DIVE (100) DIVE (300)
60 63.2 62.6

Table 2: Precision@1 on the WCR R1 (%).

which consists of 1,012 nouns accompanied with
145,140 context sentences. The task is to identify
the correct sense of the target nouns, and all WSI
algorithms choose the sense whose embedding is
most similar to the context embedding.

Dataset is heavily skewed with 79% of contexts
being assigned to the most frequent senses. To re-
move this bias, we follow the procedure described
in Pelevina et al. (2016) to create balanced TWSI.
Specifically, we only keep the first 5 contexts of
each sense of every target word to make every
sense count equally. The procedure yields 8710
pairs of senses and contexts.
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Model
TWSI balanced TWSI

P R F1 P R F1
MSSG rnd 66.1 65.7 65.9 33.9 33.7 33.8

MSSG 66.2 65.8 66.0 34.3 34.2 34.2
WG 68.6 68.1 68.4 38.7 38.5 38.6

WG+EM 68.3 67.8 68.0 38.4 38.2 38.3
DIVE rnd 63.4 63.0 63.2 33.4 33.2 33.3

DIVE (100) 67.6 67.2 67.4 39.7 39.5 39.6
DIVE (300) 67.4 66.9 67.2 39.0 38.8 38.9

Table 3: Results obtained on the TWSI task (%), where
P is precision and R is recall. MSSG rnd and DIVE
rnd are baselines which randomly assign sense given
inventory built by MSSG and DIVE, respectively.

Model JI Tau WNDCG FNMI FB-C
All-1 19.2 60.9 28.8 0 62.3
Rnd 21.8 62.8 28.7 2.8 47.4

MSSG 22.2 62.9 29.0 3.2 48.9
WG 21.2 61.2 29.0 1.6 58.1

WG+EM 21.0 61.5 29.0 1.3 57.8
DIVE (100) 21.9 61.9 29.3 3.1 50.6
DIVE (300) 22.1 62.8 29.1 3.5 49.9

Table 4: Results obtained on the SemEval 2013 task
(%), where JI is Jaccard Index, FNMI is Fuzzy NMI,
and FB-C is Fuzzy B-Cubed. All-1 is to assign all
senses to be the same and Rnd is to randomly assign
all senses to 2 groups.

When evaluating on TWSI, each method needs
to represent the sense by a sparse bag-of-word
context feature called sense inventory. The eval-
uation script3 first maps each sense predicted by
each algorithm to a ground truth sense. Then, the
problem becomes a classification task, which can
be evaluated by precision, recall, and F1.

In Table 3, we can see that DIVE performs
slightly worse than WG (Pelevina et al., 2016) in
full TWSI, but becomes slightly better in balanced
TWSI. We suspect this is because our number of
sense is 2 but the WG generates the output where
the average number of senses is around 1.5, which
might do better when a sense of each word oc-
curs most of the time. Notice that the compari-
son in balanced TWSI is fair because the experi-
ments in Pelevina et al. (2016) show that WG per-
forms worse when increasing number of clusters.
The results also suggest that a sufficient number
of basis vectors seldom group two senses together
(otherwise, increasing the resolution/dimension of
DIVE should be helpful).

3https://github.com/tudarmstadt-lt/
context-eval

4.4 SemEval-2013 task 13 Evaluation

SemEval-2013 task 13 (Jurgens and Klapaftis,
2013) provides a smaller dataset which consists of
50 words which include nouns, verbs, and adjec-
tives. The context prediction is done in the same
way as TWSI, and the meaning of each metric
could be found in Jurgens and Klapaftis (2013). In
Table 4, we can see our method performs roughly
the same compared with other baselines.

5 Conclusions

We propose a novel graph-based WSI approach.
In order to save the time of performing a near-
est neighbor search, we first group words into ba-
sis/topics using distributional inclusion vector em-
bedding (DIVE), compute target-dependent sim-
ilarity between basis indexes, and then perform
graph clustering. Our experimental results show
that the method achieves the state-of-the-art per-
formances and is able to capture less common
senses with higher accuracy.
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Abstract

Contrary to the traditional Bag-of-Words
approach, we consider the Graph-of-
Words (GoW) model in which each doc-
ument is represented by a graph that en-
codes relationships between the different
terms. Based on this formulation, the
importance of a term is determined by
weighting the corresponding node in the
document, collection and label graphs,
using node centrality criteria. We also
introduce novel graph-based weighting
schemes by enriching graphs with word-
embedding similarities, in order to reward
or penalize semantic relationships. Our
methods produce more discriminative fea-
ture weights for text categorization, out-
performing existing frequency-based cri-
teria. Code and data are available online1.

1 Introduction

With the rapid growth of the social media and net-
working platforms, the available textual resources
have been increased. Text categorization or clas-
sification (TC) refers to the supervised learning
task of assigning a document to a set of two or
more predefined categories (or classes) (Sebas-
tiani, 2002). Well-known applications of TC in-
clude sentiment analysis, spam detection and news
classification.

In the TC pipeline, each document is modeled
using the so-called Vector Space Model (Baeza-
Yates and Ribeiro-Neto, 1999). The main issue
here is how to find appropriate weights regard-
ing the importance of each term in a document.
Typically, the Bag-of-Words (BoW) model is ap-
plied and a document is represented as a multiset
of its terms, disregarding co-occurence between

1Code and data: github.com/y3nk0/Graph-Based-TC
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Word
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(w2v)

Label GoWs

ICW
(w2v)

ICW-LW LW(w2v)

ICW-LW
(w2v)

Figure 1: Blending different types of GoWs and
word vector similarities in one framework.

the terms; using this model, the importance of a
term in a document is mainly determined by the
frequency of the term. Although several variants
and extensions of this modeling approach have
been proposed (e.g., the n-gram model (Baeza-
Yates and Ribeiro-Neto, 1999)), the main weak-
ness comes from the underlying term indepen-
dence assumption, where the order of the terms is
also completely disregarded.

After the introduction of deep learning models
for TC (Blunsom et al., 2014; Kim, 2014), recent
work by Johnson and Zhang (2015) shows how
we could effectively use the order of words with
CNNs (LeCun et al., 1995). In many cases though,
space and time limitations may arise due to com-
plex neural network architectures. As stated in
work by Joulin et al. (2017), computation can still
be expensive and prohibitive.

In this paper, we explore fast term weighting
criteria for TC that go beyond the term indepen-
dence assumption. The notion of dependencies
between terms is introduced via a Graph-of-Words
(GoW) representation model. Under this model,
each term is represented as a node in the graph
and the edges capture co-occurrence relationships
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of terms with a specified distance in the document.
We implicitly consider information about n-grams
in the document as well as the collection of doc-
uments – expressed by paths in the graph – with-
out increasing the dimensionality of the problem.
Furthermore, we introduce word-embedding sim-
ilarities as weights in the GoW approach, in order
to further boost the performance of our methods.
Finally, we successfully mix document, collection
and label GoWs along with word vector similari-
ties into a single powerful graph-based framework.
An overview of our approach is shown in Fig. 1.

2 Related Work

Term weighting schemes. A core aspect in the
Vector Space Model for document representation,
is how to determine the importance of a term
within a document. Many criteria have been
introduced with the most prominent ones being
TF, TF-IDF (Salton and Buckley, 1988; Sing-
hal et al., 1996; Baeza-Yates and Ribeiro-Neto,
1999; Robertson, 2004) and Okapi BM25 (Robert-
son et al., 1995), while some recent ones in-
clude N-gram IDF (Shirakawa et al., 2015). Lan
et al. (2005) conducted a comparative study of
frequency-based term weighting criteria for text
categorization; one of their outcomes was that, in
many cases, the IDF factor is not significant for
the categorization task, leading to no improvement
of the performance. It is interesting to point out
here that, more specialized approaches have been
proposed for specific classification tasks, such as
the Delta TF-IDF method that constitutes an ex-
tension of TF-IDF for sentiment analysis (Mar-
tineau and Finin, 2009). However, most of the pre-
viously proposed frequency-based weights con-
sider the document as a Bag-of-Words; that way,
any structural information about the ordering or in
general, syntactic relationship of the terms, is ig-
nored by the weighting process.

Text categorization. A number of diverse ap-
proaches have been proposed for TC (Joachims,
1998; McCallum and Nigam, 1998; Nigam et al.,
2000; Sebastiani, 2002; Kim et al., 2006). The
first step of TC concerns the feature extraction
task, i.e., which features will be used to repre-
sent the textual content. Typically, the straight-
forward Bag-of-Words approach is adopted, where
every document is represented by a feature vector
that contains boolean or weighted representation
of unigrams or n-grams in general. In the case

of weighted feature vectors, various term weight-
ing schemes have been used, with the most well-
known ones being TF (Term Frequency), TF-IDF
(Term Frequency - Inverse Document Frequency).
Although these weighting schemes were initially
introduced in the NLP and IR fields, they have
also been applied in the TC task. Paltoglou and
Thelwall (2010) reported that, in the case of senti-
ment analysis, extensions of the TF-IDF weighting
schemes introduced in the IR field, can further im-
prove the classification accuracy. A comprehen-
sive review of this area is offered in the article by
Sebastiani (2002).

Deep Learning for TC. With the rise of deep
learning models, CNNs were applied for text clas-
sification (Blunsom et al., 2014; Kim, 2014; John-
son and Zhang, 2015). Next, Zhang et al. (2015)
presented Character-level CNNs for the task of
TC. Finally, Joulin et al. (2017) proposed a novel
text classifier which achieves equivalent perfor-
mance to state-of-the-art TC models, with faster
learning times. Our work does not focus on the
classifier part, as the aforementioned methods, but
on the extraction of better features.

Graph-based text categorization. In the re-
lated literature, most of the graph-based method
for TC, rely on graph mining algorithms that are
applied to extract frequent subgraphs, which are
then used to produce feature vectors for classifi-
cation (Deshpande et al., 2005; Jiang et al., 2010;
Rousseau et al., 2015; Nikolentzos et al., 2017).
The basic shortcoming of those methods stems
from the computational complexity of the frequent
subgraph mining algorithm. Furthermore, most of
these methods require from the user to set the sup-
port parameter, which concerns the frequency of
appearance of a subgraph. Close to our work are
the approaches followed by Hassan et al. (2007)
and Malliaros and Skianis (2015); they explored
how random walks and other graph centrality cri-
teria can be applied to determine the importance
of a term.

Graph-based text mining, NLP and IR. Rep-
resenting documents as graphs is a well-known ap-
proach in NLP and IR. TextRank algorithm, pro-
posed by Mihalcea and Tarau (2004), was among
the first works that considered a random walk
model similar to PageRank, over a graph repre-
sentation of the document, in order to extract rep-
resentative keywords and sentences. Later, sev-
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Figure 2: Example of document, collection-level and label GoWs for a collection composed by two
documents and window size w = 3. Weights on the edges of Gd1 and Gd2 correspond to the similarity
of two terms in the vector space. Here, Label GoWs are the same with Document GoWs (one document
per class-label).

eral methods for those tasks were followed (Erkan
and Radev, 2004; Litvak and Last, 2008; Boudin,
2013; Lahiri et al., 2014; Rousseau and Vazirgian-
nis, 2015). Another domain where graph-based
term weighting schemes have been applied is the
one of ad hoc Information Retrieval (Rousseau and
Vazirgiannis, 2013). An interesting survey can be
found in the work of Blanco and Lioma (2012) for
a detailed description of graph-based methods in
the text domain.

3 Preliminaries and Background

Let D = {d1, d2, . . . , dm} be a collection of doc-
uments and let C = {c1, c2, . . . , c|C|} be the set of
predefined categories. Text categorization is con-
sidered the task of assigning a boolean value to
each pair (di, ci) ∈ D × C, i.e., assigning each
document to one or more categories (Sebastiani,
2002). The main point here is how to find appro-
priate weights for the terms within a document. As
we will present below shortly, our approach uti-
lizes network centrality criteria.

Node Centrality Criteria. Centrality2 repre-
sents a central notion in graph theory and network
analysis in general; it constitutes of measures that
capture the relative importance of the node in the
graph based on specific criteria (Newman, 2010).
One important characteristic of the centrality mea-
sures is that they consider either local information

2en.wikipedia.org/wiki/Centrality.

of the graph (e.g., degree centrality, in-degree/out-
degree centrality in directed networks, weighted
degree in weighted graphs, clustering coefficient)
(Newman, 2010), or more global information – in
the sense that the importance of a node is deter-
mined by the properties of the node globally in
the graph (e.g., PageRank, closeness). Let G =
(V,E) be a graph (directed or undirected), and let
|V |, |E| be the number of nodes and edges respec-
tively. Next, we define basic centrality criteria that
are used in the proposed methodology.

Degree centrality. The degree centrality is one
of the simplest local node importance criteria,
which captures the number of neighbors that each
node has. Let N (i) be the set of nodes con-
nected to node i. Then, the degree centrality can
be derived based on the following formula: de-
gree centrality(i) = |N (i)|

|V |−1 .

Closeness centrality. Let dist(i, j) be the shortest
path distance between nodes i and j. The close-
ness centrality of a node i is defined as the inverse
of the average shortest path distance from the node
to any other node in the graph: closeness(i) =

|V |−1∑
j∈V dist(i,j) .

PageRank centrality. PageRank counts the num-
ber and quality of edges to a node to determine
a rough estimate of how important the node is:
PR(i) = 1−α

|V | + α
∑
∀(j,i)∈E

PR(j)
out-deg(j) , where α

is the teleportation probability and out-deg(i) de-
notes the out degree on node i.
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4 Proposed Framework

In this section, we present the components of the
proposed graph-based framework for TC.

4.1 Graph Construction

We model documents as graphs that capture de-
pendencies between terms. More precisely, each
document d ∈ D is represented by a graph
Gd = (Vd, Ed), where the nodes correspond to
the terms t of the document and the edges capture
co-occurrence relationships between terms within
a fixed-size sliding window of size w. That is, for
all the terms that co-occur within the window, we
add edges between the corresponding nodes of the
graph. Note that, the windows are overlapping
starting from the first term of the document; at
each step, we simply remove the first term of the
window and add the new one from the document.
As graphs constitute rich modeling structures, sev-
eral parameters about the construction phase need
to be specified, including the directionality of the
edges, the addition of edge weights, well as the
size w of the sliding window. Fig. 2 gives a toy
example of the construction of GoW for a collec-
tion composed by two documents.

To summarize, the key point of the graph-based
representation for TC is the fact that it deals with
the term independence assumption. Even if we
consider the n-gram model, still information about
the relationship between two different n-grams is
not fully captured – as happens in the case of
graphs. This has also been noted in other applica-
tion domains (e.g., IR (Rousseau and Vazirgiannis,
2013)).

4.2 Term Weighting

Having the graph, the importance of a term in a
document can be inferred by the importance of
the corresponding node in the graph. In the previ-
ous section, we presented local and global central-
ity criteria that have been widely used for graph
mining and network analysis purposes; here, we
propose that those criteria can also be used for
weighting terms in the TC task. That way, sim-
ilar to TF, we can define the Term Weight (TW)
weighting scheme as TW(t, d) = centrality(t, d),
where centrality(t, d) corresponds to the score of
term (node) t in the graph representation Gd of
document d. The interesting point here is that TW
can be used along with any centrality criterion in
the graph, local or global.

Furthermore, we can extend this weighting
scheme by considering information about the in-
verse document frequency (IDF factor) of the term
t in the collection D. That way, we can derive the
TW-IDF model as follows:

TW-IDF(t, d) = TW(t, d)× IDF(t,D). (1)

In fact, TW and TW-IDF constitute suites for
graph-based term-weighting schemes and thus,
can be applied in any text analytics task. Some
of them have already been explored in graph-
based IR (Rousseau and Vazirgiannis, 2013) and
keyword extraction (Mihalcea and Tarau, 2004;
Rousseau and Vazirgiannis, 2015).

The proposed weights are inferred from the in-
terconnection of features (i.e., terms) – as sug-
gested by the graph – and therefore information
about n-grams is implicitly captured. That way,
the feature space of the learning problem is kept
to the one defined by the unique unigrams of our
collection (instead of using simultaneously as fea-
tures all the possible unigrams, bigrams, 3-grams,
etc.), but the produced term weights incorporate
n-gram information through the graph-based rep-
resentation.

4.3 Inverse Collection Weight (ICW)

In this paragraph, we introduce the concept of In-
verse Collection Weight (ICW) – a graph-based
criterion to penalize the weight of terms that are
“important” across the whole collection of docu-
ments. The main concept behind ICW is the col-
lection level graph G – an extension of the Graph-
of-Words in the collection of documents D.

Definition 1 (Collection Level Graph G) Let
{G1, G2, . . . , Gd}|D| be the set of graphs that
correspond to all documents d ∈ D. The col-
lection level graph G is defined as the union of
graphs G1 ∪G2 ∪ . . . ∪Gd over all documents in
the collection.

The union of two graphs G = (VG, EG) and H =
(VH , EH) is defined as the union of their node and
edge sets, i.e.,G∪H = (VG∪VH , EG∪EH). The
number of nodes in graph G is equal to the number
of unique terms in the collection, while the number
of edges is equal to the number of unique edges
over all document-level graphs (see also Fig. 2).

This graph captures the overall dependencies
between the terms of the collection; the relative
overall importance of a term in the collection will
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be proportional to the importance of the corre-
sponding node in G. Following similar method-
ological arguments as used for IDF (Robertson,
2004), we define a probability distribution over the
nodes of G (or equivalently, the unique terms of
D), with respect to a centrality (term-weighting in
our case) criterion; then, the probability of node
(term) t will be:

Pr(t) =
TW(t,D)∑
v∈D TW(v,D) . (2)

Note that, in Eq. (2), we use D instead of G; we
consider that the space defined by the document
collection D is equivalent to the one defined by
graph G with respect to the unique terms of the
collection. This way, the notion of TW(t,D) used
here is consistent with what was described earlier.
Based on this, we define the ICW measure as:

ICW(t,D) = maxv∈D TW(v,D)
TW(t,D) . (3)

Instead of selecting the maximum centrality in the
collection level (Eq. (3)), the sum of all centralities
also yields good results.

ICW shares common intuition with the in-
verse total term frequency described in Robertson
(2004). In fact, it can be considered as an exten-
sion of the total collection frequency of a term,
to the graph-based document representation. Fur-
thermore, similar to TW, it can be used along with
any node centrality criterion.

Using ICW as a graph-based collection-level
term penalization factor, we derive a new class of
term-to-document weighting mechanism, namely
TW-ICW. This weighting scheme is derived com-
bining different local (i.e., document-level) and
global (i.e., collection-level) criteria as follows:

TW-ICW(t, d) = TW(t, d)× log(ICW(t,D)).

In the case of TW and ICW, any centrality crite-
rion can be applied. However, the computational
complexity is a crucial factor that should be taken
into account. Nevertheless, as we have noticed
from the experimental evaluation, even using sim-
ple and easy-to-compute local criteria (e.g., de-
gree), we achieve good classification performance.

4.4 Label Graphs
Shanavas et al. (2016) introduced supervised term
weighting (TW-CRC) as a method to integrate
class information with graphs. Similarly, we cre-
ate a graph for each class (label), where we add all

words of documents belonging to the respective
class as nodes and their co-occurrence as edges.
Our weighting scheme is a variant of TW-CRC;
we define LW for a term t as:

LW(t) =
max(deg(t, L))

max(avg(deg(t, L)),min(deg(L))
,

where the maximum degree of term t in all label
graphs (L) is divided by the max of two values:
the average degree of the term in all label graphs
(except the one having the max degree) and the
min degree of all the terms in all the label graphs.
Then, we obtain ICW-LW as follows:

ICW-LW(t, d) = log(ICW(t,D)× LW(t)),

and multiply it with TW(t, d) to get TW-ICW-LW.
Notice that, supervised frequency-based methods
have also been proposed in previous work (Debole
and Sebastiani, 2004; Huynh et al., 2011).

4.5 Edge Weighting using Word Embeddings

With our proposed framework, we can now use
word embeddings (Bengio et al., 2003) in order to
extract similarities between terms. Our goal is to
integrate these similarities in the graph represen-
tation as weights on the edge between two words.
The key idea behind our approach is that we want
to reward semantically close words in the graph-
document level (TW) and penalize them in the col-
lection level (ICW).

The most commonly used similarity between
two words t1 and t2 in the word-embedding space
is cosine similarity, which ranges between -1 and
1. In order to have a valid distance metric, we need
to bound this between 0 and 1. We use the angu-
lar similarity to represent the weight of an edge
between two words, and since the vector elements
may be positive or negative, the formula becomes:

weight(t1, t2) = 1− arccos(sim(t1, t2))
π

. (4)

The best performance was given by using
Google’s pre-trained word embeddings (Mikolov
et al., 2013) and not by learning them by the
datasets. Since the words included in the pre-
trained version of word2vec are case sensitive
and not stemmed, we did not apply any of these
transformations. For words that do not appear
in word2vec, we add a small value as similarity.
Other distances (e.g. inverse euclidean, fractional)
did not yield any further improvement.
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Table 1: Datasets’ statistics: #ICW shows the
number of edges in the collection-level graph;
#w2v: number of words that exist in pre-trained
vectors.

Train Test Voc Avg #w2v #ICW

IMDB 1,340 660 32,844 343 27,462 352K
WEBKB 2,803 1,396 23,206 179 20,990 273K
20NG 11,293 7,528 62,752 155 54,892 1.7M

AMAZON 5,359 2,640 19,980 65 19,646 274K
REUTERS 5,485 2,189 11,965 66 9,218 163K

SUBJ. 6,694 3,293 8,639 11 8,097 58K

A similar approach for generic keyphrase ex-
traction can be tracked in work by Wang et al.
(2015). Providing more information in the
weights, like number of co-occurrences between
words, did not yield better results.

4.6 Classification Algorithms

Since the goal of this paper is to introduce new
term weighting schemes, we rely on widely used
classification algorithms. Specifically, we have
used linear SVMs, due to their superior perfor-
mance in TC (Joachims, 1998). Furthermore, as
discussed in Leopold and Kindermann (2002), the
choice of the kernel function of SVM is not very
crucial, compared to the significance of the term
weighting schemes.

5 Experiments

We have evaluated our method on six freely avail-
able standard TC datasets, covering multi-class
document categorization, sentiment analysis and
subjectivity. Specifically: (1) 20NG3: news-
group documents belonging to 20 categories, (2)
REUTERS3: 8 categories of Reuters-21578, (3)
WEBKB3: 4 most frequent categories of web-
pages from Computer Science departments, (4)
IMDB (Pang and Lee, 2004): positive and nega-
tive movie reviews; (5) AMAZON (Blitzer et al.,
2007): product reviews acquired from Amazon
over four different sub-collections; (6) SUBJEC-
TIVITY (Pang and Lee, 2004): contains subjec-
tive sentences gathered from Rotten Tomatoes and
objective sentences gathered from IMDB. A sum-
mary of the datasets can be found in Table 1.

In the experiments, linear SVMs were used with
grid search cross-validation for tuning the C pa-
rameter. We also examined logistic regression,
and observed similar performance. In the text

3web.ist.utl.pt/acardoso/datasets/

preprocessing step, we have removed stopwords.
No stemming or lowercase transformation was ap-
plied in order to match the words in word2vec.

For evaluation we use macro-average F1 score
and classification accuracy on the test sets; that
way, we deal with the skewed class size dis-
tribution of some datasets (Sebastiani, 2002).
For the notation of the proposed schemes, we
use TW (centrality measure) (e.g., TW (degree))
to indicate the centrality and TW-ICW (central-
ity at G, centrality at G) (e.g., TW-ICW (de-
gree, degree)) for the local and collection-level
graphs respectively. In TW-IDF (w2v), we com-
pute the weighted degree centrality on the docu-
ment level, with word-embedding similarities as
weights. Similarly, in TW-ICW (w2v) we com-
pute both weighted centralities for document and
collection graphs. Finally, we denote as TW-ICW-
LW the blending of TW, ICW and label graphs
(LW). In label graphs we only make use of the de-
gree centrality, since it is fast and performs best.

5.1 Results

Table 2 presents the results concerning the cate-
gorization performance of the proposed schemes
for the six datasets. As discussed previously, the
size of the window considered to create the graphs
is one of the model’s parameters. From the ex-
tensive experimental evaluation that we have per-
formed, we have concluded that small window
sizes give the most persistent results across var-
ious datasets and weighting schemes. For com-
pleteness in the presentation, we report results for
two window sizes. In order to capture more in-
formation, we need larger window sizes for small
datasets (e.g. SUBJECTIVITY). Also, since for the
baseline methods (TF, TF binary, TF-IDF, w2v,
TF-IDF-w2v) there is no notion of window size,
the results for w = {2, 3} are the same. We
have also examined several centrality criteria (us-
ing both undirected and directed graphs); undi-
rected giving better results.

Comparing TF to the graph-based ones, namely
TW (degree), in almost all cases TW gives higher
F1 and accuracy results. Similar observations can
be made in the case where the IDF penalization
is applied. In most of the datasets, the TW-IDF
(degree) scheme performs quite well. The inter-
esting point here, which is confirmed by the re-
lated literature (Lan et al., 2005), is that TF-IDF
is in general inferior to TF in TC. However, when

54



Table 2: Macro-F1 and accuracy for window size w. Bold shows the best performance on each window
size and blue the best overall on each dataset. * indicates statistical significance of improvement over TF
at p < 0.05 using micro sign test. MAX and SUM state the best nominator for ICW in Eq. (3).

20NG (MAX) IMDB (SUM) SUBJECTIVITY (MAX)

Methods w = 3 w = 4 w = 2 w = 3 w = 6 w = 7

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

TF 80.88 81.55 - 84.23 84.24 - 88.42 88.43 -
w2v 74.43 75.75 - 82.57 82.57 - 87.67 87.67 -
TF-binary (ngrams) 81.64 82.11* - 83.02 83.03 - 87.51 87.51 -
TW (degree) 82.37 83.00* 82.21 82.83* 84.82 84.84 84.67 84.69 88.33 88.33 89.00 89.00*
TW (w2v) 81.88 82.51* 82.21 82.87* 84.66 84.69 84.52 84.54 87.75 87.57 87.66 87.67

TF-IDF 82.44 83.01* - 83.33 83.33 - 89.06 89.06* -
TF-IDF-w2v 82.52 83.09* - 82.87 82.87 - 89.91 89.91* -
TW-IDF (degree) 84.75 85.47* 84.80 85.46* 82.86 82.87 83.02 83.03 89.33 89.34* 89.33 89.34*
TW-IDF (w2v) 84.66 85.32 84.46 85.13 83.47 83.48 83.31 83.33 86.42 86.42 86.51 86.51

TW-ICW (deg, deg) 85.24 85.80* 85.41 86.05* 84.98 85.00 85.13 85.15 89.30 89.31* 89.61 89.61*
TW-ICW (w2v) 85.33 85.93* 85.29 85.90* 85.12 85.15 84.82 84.84 89.61 89.61* 87.30 87.30

TW-ICW-LW (deg) 85.01 85.66* 85.02 85.66* 85.73 85.75 85.28 85.30 90.12 90.13* 90.27 90.28*
TW-ICW-LW (w2v) 82.56 83.11* 82.24 82.81* 85.29 85.30 84.39 84.39 87.70 87.70 87.70 87.70
TW-ICW-LW (pgr) 83.92 84.66 83.80 84.54 84.97 85.00 85.73 85.75 86.60 86.60 86.45 86.45
TW-ICW-LW (cl) 84.61 85.22 84.71 85.27 87.27 87.27* 86.06 86.06 89.97 89.97* 90.09 90.10*

AMAZON (MAX) WEBKB (SUM) REUTERS (MAX)

Methods w = 2 w = 3 w = 2 w = 3 w = 2 w = 3

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

TF 80.68 80.68 - 90.31 91.91 - 91.51 96.34 -
w2v 79.05 79.05 - 84.54 86.58 - 91.35 96.84 -
TF-binary (ngrams) 79.84 79.84 - 91.22 92.85 - 86.33 95.34 -
TW (degree) 80.07 80.07 91.69 92.64 91.45 92.49 93.58 97.53* 93.08 97.25*
TW (w2v) 80.07 80.07 79.54 79.54 91.70 92.64 91.00 92.06 93.09 97.35* 93.43 97.25*

TF-IDF 80.26 80.26 - 87.79 89.89 - 91.89 96.71 -
TF-IDF-w2v 80.49 80.49 - 88.18 90.18 - 91.33 96.80 -
TW-IDF (degree) 81.47 81.47* 81.55 81.55* 90.38 91.70 90.47 91.84 93.80 97.30* 93.13 97.35*
TW-IDF (w2v) 79.61 79.62 77.60 77.61 90.81 92.20 90.60 91.91 93.38 97.44* 93.87 97.44*

TW-ICW (deg, deg) 82.08 82.08* 82.02 82.02* 91.72 92.78 91.42 92.49 92.91 97.35 93.59 97.39*
TW-ICW (w2v) 80.86 80.87* 78.82 78.82 91.58 92.64 91.84 92.85 93.57 97.30* 92.96 97.25

TW-ICW-LW (deg) 82.72 82.72* 82.91 82.91* 91.86 92.92 91.95 92.92 93.88 97.53* 93.48 97.35*
TW-ICW-LW (w2v) 80.56 80.56 78.32 78.33 90.74 91.99 90.01 91.34 92.51 96.89 92.14 96.98
TW-ICW-LW (pgr) 82.23 82.23* 82.46 82.46* 91.18 92.20 92.23 93.07 93.38 97.35* 93.37 97.35*
TW-ICW-LW (cl) 82.90 82.91* 83.02 83.03* 92.72 93.57* 92.86 93.57* 93.12 97.25 92.87 97.21

the IDF penalization factor is applied on the TW
term-to-document weighting, a powerful mecha-
nism is derived. In the case of purely graph-based
schemes, we can observe that some of them pro-
duce very good classification results. In almost all
cases, TW-ICW-LW (degree or closeness) achieve
the best performance.

Significant improvement is observed by adding
the w2v similarities as weights in the document,
collection level and label graphs in almost all
datasets. In fact, we have obtained better results
in 20NG (TW-ICW (w2v)), WebKB (TW-ICW
(w2v)) and Reuters (TW-IDF(w2v)), by boosting
semantically close words in the document level
and penalizing them in the collection level.

TF n-gram binary scheme (TF binary) has also

been examined, i.e., all the possible n-grams of
the collection with binary weights (up to 6-grams
in our experiments). For comparison reasons, the
size of the unigram feature space considered by
our framework is equal to the unique terms in
the collections and much smaller compared to the
n−grams ones. Moreover, graph-based weighting
is able to outperform TF (binary) in all datasets.

We clearly see that by fusing document, collec-
tion and label graphs we obtain the best results in
almost in 5 out of 6 datasets. Label graphs in-
formation consist a powerful weighting method,
when combined with our proposed collection level
graph approach. Adding word2vec similarities as
weights, when label graphs are used, does not im-
prove the accuracy. This implies that important
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20NG IMDB SUBJ. AMAZON WEBKB REUTERS

CNN (no w2v, 20 ep.) (Kim, 2014) 83.19 74.09 88.16 80.68 88.17 94.75
FastText (100 ep.) (Joulin et al., 2017) 79.70 84.70 88.60 79.50 92.60 97.00

TextRank (Mihalcea and Tarau, 2004) 82.56 83.33 84.78 80.49 92.27 97.35
Word Attraction (Wang et al., 2015) 61.24 70.75 86.60 78.29 79.46 91.34

TW-CRC (Shanavas et al., 2016) 85.35 85.15 89.28 81.13 92.71 97.39

TW-ICW-LW (ours) 86.05 87.27 90.28 83.03 93.57 97.53

Table 3: Comparison in accuracy(%) to state-of-the-art deep learning and graph-based approaches.
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Figure 3: F1 score (left) and accuracy (right) of
TW, TW-ICW and TW-ICW-LW (all degree) on
REUTERS, WEBKB and SUBJECTIVITY, for win-
dow size w = {2, . . . , 10}.

terms concerning different labels can be close in
the word vector space. Choosing closeness in the
document level GoW yields the best performance
in 3 datasets. Closeness can only have an affect
in larger document lengths and when used along
with label graphs.

To further investigate the effectiveness of our
approach, we have compared our results with cur-
rent state-of-the-art graph-based and non graph-
based methods. In Table 3 we compare against
CNN for text classification ,without pre-trained
word vectors (Kim, 2014), FastText (Joulin et al.,
2017), TextRank (Mihalcea and Tarau, 2004),
Word Attraction weights based on word2vec sim-
ilarities (Wang et al., 2015) and Supervised Term
Weighting (TW-CRC) by Shanavas et al. (2016).
Our work produces comparable to state-of-the-art
results. Since the implementation of most models
is our own, their performance is not optimal.

Selecting the window size w is also impor-
tant. As we observed, the maximum accuracy
is achieved while using small window sizes. In
any case, even if larger values of w were able to
get slightly better results, a smaller window size
would be preferable, due to the overall overhead

that could be introduced (increase of the density
of the graph). Figure 3 depicts the F1 score and
accuracy on the WEBKB, REUTERS and SUBJEC-
TIVITY datasets, using the TW, TW-ICW and TW-
ICW-LW(deg) schemes for various window sizes.
We notice also that larger sliding windows are only
improving accuracy in datasets with small docu-
ment length (e.g. SUBJECTIVITY).

6 Conclusion & Future Work

In this paper, we proposed a graph-based frame-
work for TC. By treating the term weighting task
as a node ranking problem of interconnected fea-
tures defined by a graph, we were able to deter-
mine the importance of a term using node central-
ity criteria. Building on this formulation, we intro-
duced simple-yet-effective weighting schemes at
the collection and label level, in order to penalize
globally important terms (as analogous to “glob-
ally frequent terms”) and reward locally impor-
tant terms respectively. We also incorporate ad-
ditional word-embedding information as weights
in the graph-based representations.

Our proposed methods could also be applied
in IR. In fact, document-level graph-based term
weighting has already been applied there, so it
would be interesting to examine the performance
of the proposed collection-level (ICW) penaliza-
tion mechanism. In the unsupervised scenario,
where label information is not available, commu-
nity detection algorithms may be applied to iden-
tify clusters of words or documents in collection
graphs. Graph-based representations of text could
also be fitted into deep learning architectures fol-
lowing the idea of Lei et al. (2015). Lastly, one
could examine a Graph-of-documents approach,
in which we create a graph, where nodes rep-
resent documents and edges correspond to sim-
ilarity between them. In this case, graph ker-
nels could be utilized for graph comparison and/or
Word Mover’s distance (Kusner et al., 2015) be-
tween two documents as weights.
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Abstract

Natural language text exhibits hierarchical
structure in a variety of respects. Ideally, we
could incorporate our prior knowledge of this
hierarchical structure into unsupervised learn-
ing algorithms that work on text data. Recent
work by Nickel and Kiela (2017) proposed us-
ing hyperbolic instead of Euclidean embed-
ding spaces to represent hierarchical data and
demonstrated encouraging results when em-
bedding graphs. In this work, we extend their
method with a re-parameterization technique
that allows us to learn hyperbolic embeddings
of arbitrarily parameterized objects. We ap-
ply this framework to learn word and sen-
tence embeddings in hyperbolic space in an
unsupervised manner from text corpora. The
resulting embeddings seem to encode certain
intuitive notions of hierarchy, such as word-
context frequency and phrase constituency.
However, the implicit continuous hierarchy in
the learned hyperbolic space makes interrogat-
ing the model’s learned hierarchies more diffi-
cult than for models that learn explicit edges
between items. The learned hyperbolic em-
beddings show improvements over Euclidean
embeddings in some – but not all – down-
stream tasks, suggesting that hierarchical or-
ganization is more useful for some tasks than
others.

1 Introduction

Many real-world datasets exhibit hierarchical
structure, either explicitly in ontologies like Word-
Net, or implicitly in social networks (Adcock
et al., 2013) and natural language sentences (Ev-
eraert et al., 2015). When learning representations
of such datasets, hyperbolic spaces have recently
been advocated as alternatives to the standard Eu-
clidean spaces in order to better represent the hier-
archical structure (Nickel and Kiela, 2017; Cham-

∗Work done while interning at Google Brain.

Figure 1: Two examples of hierarchical structure in natural
language. Left: A constituent parse tree. Right: A frag-
ment of WordNet. Arrows represent the direction in which
the nodes become semantically more specific.

berlain et al., 2017). Hyperbolic spaces are non-
Euclidean geometric spaces that naturally repre-
sent hierarchical relationships; for example, they
can be viewed as continuous versions of trees (Kri-
oukov et al., 2010). Indeed, Nickel and Kiela
(2017) showed improved reconstruction error and
link prediction when embedding WordNet and sci-
entific collaboration networks into a hyperbolic
space of small dimension compared to a Euclidean
space of much larger dimension.

In this work, we explore the use of hyper-
bolic spaces for embedding natural language data,
which has natural hierarchical structure in terms
of specificity. For example, sub-phrases in a sen-
tence can be arranged into a consituency-based
parse tree where each node is semantically more
specific than its parent (Figure 1 left). This hier-
archical structure is not usually annotated in text
corpora. Instead, we hypothesize that this struc-
ture is implicitly encoded in the range of natural
language contexts in which a concept appears: se-
mantically general concepts will occur in a wider
range of contexts than semantically specific ones.
We use this intuition to formulate unsupervised
objectives for learning hyperbolic embeddings of
text objects. By contrast, Nickel and Kiela (2017)
only embedded graphs with an explicit hierarchi-
cal structure.
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Further, Nickel and Kiela (2017) only consid-
ered the non-parametric case where each object to
be embedded is assigned its representation from
a lookup table1. This approach is impractical for
embedding natural language because there are too
many sentences and phrases for such a table to
fit in memory. For natural language, we must
adopt a parametric approach where we learn the
parameters θ of an encoder function fθ that maps
sequences of text to their embeddings. When
training their non-parametric model, Nickel and
Kiela (2017) relied on a projection step to keep
their embeddings within their model of hyper-
bolic space. Specifically, they embedded their data
in the Poincaré ball model of hyperbolic space,
which consists of points in the unit ballBd = {x ∈
Rd : ‖x‖ < 1}, but their Reimannian gradient-
descent algorithm was not guaranteed to keep their
embeddings within the unit ball. To address this
issue, they applied a projection step after each gra-
dient step to force the embeddings back into the
unit ball, but this projection is not possible when
the representations are the output of an encoder fθ.

Our main contribution is to propose a simpler
parametrization of hyperbolic embeddings that al-
lows us to train parametric encoders. We avoid
the need for a projection step by separately pa-
rameterizing the direction and norm of each em-
bedding and applying a sigmoid activation func-
tion to the norm. This ensures that embeddings al-
ways satisfy ‖e‖ < 1 (as required by the Poincaré
ball model of hyperbolic space), even after arbi-
trary gradient steps. Once the embeddings are
constrained in this way, all that is needed to in-
duce hyperbolic embeddings is an appropriate dis-
tance metric (see Equation 1) in the loss function
in place of the commonly used Euclidean or cosine
distance metrics. In addition to allowing paramet-
ric encoders, this parameterization has an added
benefit that instead of Riemannian-SGD (as used
in Nickel and Kiela, 2017), we can use any of
the popular optimization methods in deep learn-
ing, such as Adam (Kingma and Ba, 2014). We
show that re-parameterizing in this manner leads
to comparable reconstruction error to the method
of Nickel and Kiela (2017) when learning non-
parametric embeddings of WordNet.

We test our framework by learning unsuper-

1Note that the term “non-parametric” has a different
meaning here than in the case of Bayesian non-parametric
statistics. Here it refers to the fact that the embeddings are
not output by a parameterized function.

vised embeddings for two types of natural lan-
guage data. First, we embed a graph of word
co-occurrences extracted from a large text corpus.
The resulting embeddings are hierarchically orga-
nized such that words occurring in many contexts
are placed near the origin and words occurring in
few contexts are placed near the boundary of the
space. Using these embeddings, we see improved
performance on a lexical entailment task, which
supports our hypothesis that co-occurrence fre-
quency is indicative of semantic specificity. How-
ever, this improvement comes at the cost of worse
performance on a word similarity task. In the
second experiment, we learn embeddings of sen-
tences (and sub-sentence sequences) by applying
the hyperbolic metric to a modified version of
the Skip-Thoughts model (Kiros et al., 2015) that
uses embeddings to predict local context in a text
corpus. Since most sentences are unique, there
is no clear notion of co-occurrence frequency in
this case. However, we find a high correlation
(0.67) between the norms of embedded constituent
phrases from Penn Treebank (Marcus et al., 1993)
and the height at which those phrases occur in
their parse trees. We conclude that hyperbolic sen-
tence embeddings encode some of the hierarchical
structure represented by parse trees, without being
trained to do so. However, experiments on down-
stream tasks do not show consistent improvements
over baseline Euclidean embeddings.

2 Background – Poincaré Embeddings

In this section we give an overview of the
Poincaré embeddings method from Nickel and
Kiela (2017). A similar formulation was also pre-
sented in Chamberlain et al. (2017).

A hyperbolic space is a non-Euclidean geomet-
ric space obtained by replacing Euclid’s parallel
postulate with an alternative axiom. The parallel
postulate asserts that for every line L and point P
not on L, there is a unique line co-planar with P
and L that passes through P and does not inter-
sect L. In hyperbolic geometry, this axiom is re-
placed with the assertion that there are at least two
such lines passing through P that do not intersect
L (from which one can prove that there must be in-
finitely many such lines). In this geometry, some
familiar properties of Euclidean space no longer
hold; for example, the sum of interior angles in a
triangle is less than 180 degrees. Like Euclidean
geometry, hyperbolic geometry can be extended to
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d-dimensions. d-dimensional hyperbolic space is
unique up to a “curvature” constant K<0 that sets
the length scale. Without loss of generality we as-
sume K=−1.

In hyperbolic space, circle circumference
(2π sinh r) and disc area (2π(cosh r − 1)) grow
exponentially with radius, as opposed to Euclidean
space where they only grow linearly and quadrati-
cally. This makes it particularly efficient to embed
hierarchical structures like trees, where the num-
ber of nodes grows exponentially with depth (Kri-
oukov et al., 2010). We hope that such embed-
dings will simultaneously capture both the similar-
ity between objects (in their distances), and their
relative depths in the hierarchy (in their norms).

There are several ways to model hyperbolic
space within the more familiar Euclidean space.
Of these, the Poincaré ball model is most suited
for use with neural networks because its dis-
tance function is differentiable and it imposes
a relatively simple constraint on the representa-
tions (Nickel and Kiela, 2017). Specifically, the
Poincaré ball model consists of points within the
unit ball Bd, in which the distance between two
points u,v ∈ Bd is

d(u,v) = cosh−1

(
1 + 2

‖u− v‖2
(1− ‖u‖2)(1− ‖v‖2)

)
. (1)

Notice that, as ‖u‖ approaches 1, its distance
to almost all other points increases exponentially.
Hence, an effective tree representation will place
root nodes near the origin and leaf nodes near the
boundary to ensure that root nodes are relatively
close to all points while leaf nodes are relatively
distant from most other leaf nodes.

In order to learn representations Θ = {θi}ni=1

for a set of objects S = {si}ni=1, we must define
a loss function L(Θ, d) that minimizes the hyper-
bolic distance between embeddings of similar ob-
jects and maximizes the hyperbolic distance be-
tween embeddings of different objects. Then we
can solve the following optimization problem

Θ̂ = arg min
Θ

L(Θ, d) s.t. ‖θi‖ < 1 ∀θi ∈ Θ

(2)
Nickel and Kiela (2017) use Riemannian-SGD

to optimize Equation 2. This involves computing
the Riemannian gradient (which is a scaled ver-
sion of the Euclidean gradient) with respect to the
loss, performing a gradient-descent step, and pro-
jecting any embeddings that move out of Bd back
within its boundary. In the following section, we

propose a re-parametrization of Poincaré embed-
dings that removes the need for the projection step
and allows the use of any of the popular optimiza-
tion techniques in deep learning, such as Adam.

3 Parametric Poincaré Embeddings

Our goal is to learn a function f : S → Bd
that maps objects from a set S to the Poincaré
ball Bd. However, the encoders typically used in
deep learning, such as LSTMs, GRUs, and feed-
forward networks, may produce representations in
arbitrary subspaces of Rd′ . We introduce a re-
parameterization technique that maps Rd′ to Bd
and can be used on top of any existing encoder. Let
e(s) ∈ Rd′ denote the output of the original en-
coder for a given s ∈ S. The re-parameterization
involves computing a direction vector v and a
norm magnitude p from e(s) as follows:

v̄ = φdir(e(s)), v =
v̄

‖v̄‖ ,

p̄ = φnorm(e(s)), p = σ(p̄),

where φdir : Rd′ → Rd, φnorm : Rd′ → R can
be arbitrary parametric functions, whose parame-
ters will be optimized during training, and σ is the
sigmoid function that ensures the resulting norm
p ∈ (0, 1). We will introduce specific instanti-
ations of φdir and φnorm in the subsections be-
low. The re-parameterized embedding is defined
as θ = pv, which lies in Bd.

Let w denote the model parameters in e(s),
φdir, and φnorm. We wish to optimize a loss func-
tion L(w, d) that minimizes the hyperbolic dis-
tance d between embeddings of similar objects
and maximizes the hyperbolic distance between
embeddings of dissimilar objects. Since the em-
beddings θ are guaranteed to lie in Bd, we can use
any of the optimization methods popular in deep
learning – we use Adam (Kingma and Ba, 2014).

Next we discuss specific instantiations of en-
coders, re-parameterization functions and loss
functions for three types of problems.

3.1 Non-Parametric Supervised Embeddings
First, we test our re-parametrization by embed-
ding the WordNet hierarchy with a non-parametric
encoder – the same task considered by Nickel
and Kiela (2017). The dataset is represented by
a set of tuples D = {(u, v)}, where each pair
(u, v) denotes that u is a parent of v. Since u
and v come from a fixed vocabulary of objects,
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we use a lookup table L as the base encoder, i.e,
e(u) = L(u) ∈ Rd+1. We set φdir = x1:d and
φnorm = xd+1 to be slicing functions that extract
the first d and the (d + 1)-th dimensions respec-
tively.

We use the same loss function as Nickel
and Kiela (2017), which uses negative samples
N (u) = {v : (u, v) /∈ D, v 6= u} to maximize dis-
tance between embeddings of unrelated objects:

L(w, d) = −
∑

(u,v)∈D
log

e−d(u,v)

∑
v′∈N (u)∪{v} e

−d(u,v′)
.

Note that this loss function makes no use of
the direction of the edge (u, v), because d(u, v) is
symmetric. Nevertheless, we expect it to recover
the hierarchical structure of D.

3.2 Non-Parametric Unsupervised Word
Embeddings

Next, we consider the problem of embedding
words from a vocabulary SV given a text corpus
T = (w1, . . . , w|T |), where wi ∈ SV .

Traditional unsupervised methods, like
word2vec (Mikolov et al., 2013b) and GloVe
(Pennington et al., 2014), are optimized for
preserving semantic similarity: the embeddings
of similar words should be close, and the embed-
dings of semantically different words should be
distant. Remarkably, these unsupervised embed-
dings also exhibit structural regularities, such as
vector offsets corresponding to male-to-female
or singular-to-plural transformations (Mikolov
et al., 2013c,b). In this work, by embedding
in hyperbolic space, we hope to encode both
semantic similarity (in the hyperbolic distances
between embeddings) and semantic specificity
(in the hyperbolic norms of embeddings). Our
hypothesis is that words denoting more general
concepts will appear in varied contexts and hence
will be placed closer to the origin – similar to how
nodes close to the root in WordNet are placed
close to the origin in Nickel and Kiela (2017).
Tasks that rely on a hierarchical relationship
between words might benefit from embeddings
with these properties.

The idea of using specialized vector space mod-
els for encoding various lexical relations was pre-
viously explored by Henderson and Popa (2016).
While they looked exclusively at the entailment re-
lation, the notion we study here is that of semantic
specificity, which is more general but also difficult

to define formally. One example is that “musician”
is related to “music” and more specific than it, but
not necessarily entailed by it.

Both word2vec and GloVe embed words using
co-occurrences of pairs of words occur within a
fixed window size in T . Here, we construct a co-
occurrence graph G = {(w, v)} that consists of all
pairs of words that occur within a fixed window of
each other. Certain pairs co-occur more frequently
than others, and we preserve this information by
allowing repeated edges in G: each pair (w, v) oc-
curs f c times in G, where f is the frequency of that
pair in T and c < 1 is a downsampling constant.
We embed G in the Poincaré ball in the manner
described in Section 3.1.

3.3 Parametric Unsupervised Sentence
Embeddings

Finally, we consider embedding longer units of
text such as sentences and phrases. We denote
the set of all multi-word expressions of interest
as SZ . Our goal is to learn an encoder function
f : SZ → Bd in an unsupervised manner from a
text corpus T = (s1, . . . , s|T |), where si ∈ SZ .

Sentence embeddings are motivated by the phe-
nomenal success of word embeddings as general
purpose feature representations for a variety of
downstream tasks. The desiderata of multi-word
embeddings are similar to those of word embed-
dings: semantically similar units should be close
to each other in embedding space, and complex se-
mantic properties should map to geometric proper-
ties in the embedding space. Our hypothesis is that
embedding multi-word units in hyperbolic space
will capture the hierarchical structure of speci-
ficity of the meanings of these units.

We start with Skip-Thoughts (Kiros et al.,
2015), an unsupervised model for sentence em-
beddings that is trained to predict sentences sur-
rounding a source sentence from its representa-
tion. Skip-Thoughts consists of an encoder and
two decoders, all of which are parameterized as
Gated Recurrent Units (GRUs) (Cho et al., 2014).
The encoder produces a fixed-size representation
fθ(si) for si ∈ SZ , and the two decoders recon-
struct the previous sentence si−1 and the next sen-
tence si+1 in an identical manner, as follows:

ht = GRU(w<t, fθ(si)),

P (wt|w<t, fθ(si)) ∝ exp(vTwt
ht),

where (w1, . . . , wT ) is the sequence of words
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in si−1 or si+1 and vw denotes an out-
put embedding for w. The loss minimizes
−∑t logP (wt|w<t, fθ(si)).

In order to learn hyperbolic embeddings, the
loss must depend directly on the hyperbolic dis-
tance between the source and target embeddings.
As an intermediate step, we present a modified
version of Skip-Thoughts where we remove the
GRU from the decoding step and instead directly
predict a bag-of-words surrounding the source
sentence, as follows:

ct =
1

2K

K∑

k=1

v′wt−k
+ v′wt+k

,

P (wt|w 6=t, fθ(si)) ∝ exp (vTwt
fθ(si) + vTwt

ct).

Here, ct is an average word embedding of the bi-
directional local context around the word to be
predicted. We found it was important to condi-
tion the prediction on ct in order to learn a good
quality encoder model fθ, since it can take care
of uninteresting language modeling effects. Em-
pirically, the sentence encoder trained in this man-
ner gives around 1% lower average performance
on downstream tasks (discussed in Section 4.3)
than the original Skip-Thoughts model, while be-
ing considerably faster. More importantly, the pre-
diction probability now directly depends on the in-
ner product between vwt and fθ(si). We can now
introduce a hyperbolic version of the likelihood as
follows:

P (wt|w 6=t, fθ(si)) ∝
exp (−λ1d(vwt , fθ(si))− λ2d(vwt , ct)).

Here, d is the hyperbolic distance function (Equa-
tion 1) and λ1, λ2 are learned coefficients that con-
trol the importance of the two terms. After train-
ing, we observed that λ2 > λ1, which supports
our intuition that local context is more important
in predicting a word.

To ensure that vwt , fθ(si), ct ∈ Bd, we use the
following parameterization:

φdir(x) = W T
1 x, φnorm(x) = W T

2 x,

where x = {v̂wt , ĉt, f̂θ(si)}; v̂wt is the Euclidean
output embedding for word wt, obtained from a
lookup table; ĉt is the Euclidean local context em-
bedding, obtained by averaging Euclidean word
vectors from a window aroundwt; and f̂θ is a bidi-

Method Dim

5 20 100

From Nickel and Kiela (2017)

Euclidean Rank 3542.3 1685.9 1187.3
MAP 0.024 0.087 0.162

Poincaré Rank 4.9 3.8 3.9
MAP 0.823 0.855 0.857

This work

Poincaré (re-parameterized) Rank 10.7 6.3 5.5
MAP 0.736 0.875 0.818

Table 1: Reconstruction errors for various embedding di-
mensions on WordNet.

rectional GRU encoder over the words of si:

hfT =
−−→
GRU(si), hb1 =

←−−
GRU(si)

f̂θ(si) = hfT ‖hb1

Similar to Skip-Thoughts, the loss minimizes
−∑t logP (wt|w 6=t, fθ(si)).

4 Experiments & Results

4.1 WordNet

The WordNet noun hierarchy is a collection of
tuples D = {(u, v)}, where each pair (u, v)
denotes that u is a hypernym of v. Following
Nickel and Kiela (2017), we learned embeddings
using the transitive closure D+, which consists
of 82,114 nouns and 743,241 hypernym-hyponym
edges. We compared our results to the original
method from Nickel and Kiela (2017) across three
different embedding sizes. In each case, we evalu-
ated the embeddings by attempting to reconstruct
the WordNet tree using the nearest neighbors of
the nodes. For each node, we retrieved a ranked
list of its nearest neighbors in embedding space
and computed the mean rank of its ground truth
children, and also computed the Mean Average
Precision (MAP), which is the average precision
at the threshold of each correctly retrieved child.
Results are presented in Table 1.

The re-parameterized Poincaré embeddings
method has comparable reconstruction error to
the original Poincaré method, whereas both are
significantly superior to the Euclidean embed-
dings method. Figure 2 shows reconstruction er-
ror after each epoch when training the original
and re-parameterized Poincaré embeddings, along
with the elapsed wall time in minutes2. The

2For the original method we used the official code release
at https://github.com/facebookresearch/
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Figure 2: Mean Rank for reconstructing the WordNet graph
after each training epoch (up to epoch 35) for the original
Poincaré embeddings method (Nickel and Kiela, 2017) and
our re-parameterized version. Wall time elapsed in minutes
is also shown against the curves. Dimension d = 10.

Word Nearest neighbors

vapor boiling, melting, evaporation, cooling, vapour

towering eruptions, tsunamis, hotspots, himalayas, volcanic

mercedes dmg, benz, porsche, clk, mclaren

forties twenties, thirties, roaring, koniuchy, inhabitant

eruption caldera, vents, calderas, limnic, volcano

palladium boron, anion, uranium, ceric, hexafluoride

employment incentives, benefits, financial, incentive, investment

weighed tonnes, weigh, weighs, kilograms, weighing

Table 2: Nearest Neighbors in terms of cosine distance for
Poincaré embeddings of words (d = 20).

re-parameterized method converges much faster,
with its best error achieved around epoch 20,
compared to the original method that reaches its
best error after hundreds of epochs. This is de-
spite using a larger batch size of 1024 for the re-
parameterized method than the original method,
which uses batch size 50. We hypothesize that
the speed-up is largely due to using the Adam op-
timizer which is made possible by the fact that
the re-parameterization ensures the embeddings
always lie within the Poincaré ball.

4.2 Word Embeddings

We used the TEXT8 corpus3 to evaluate our tech-
nique for learning non-parametric unsupervised
word embeddings (Section 3.2). Though small
(17M tokens), the TEXT8 corpus is a useful bench-
mark for quickly comparing embedding methods.

For hyperbolic embeddings, the nearest neigh-

poincare-embeddings with the recommended hy-
perparameter settings. Our re-parameterized model is
implemented in TensorFlow (Abadi et al., 2016). Wall time
was recorded on a CPU with 8-core AMD Opteron 6376
Processor.

3http://mattmahoney.net/dc/text8.zip

bors of most words by hyperbolic distance (Equa-
tion 1) are all uninteresting common words (e.g.
numbers, quantifiers, etc), because points near the
origin are relatively close to all points, whereas
distances between points increases exponentially
as the points approach the boundary of Bd. In-
stead, we find nearest neighbors in hyperbolic
space using cosine distance, which is motivated
by the fact that the Poincaré ball model is confor-
mal: angles between vectors are identical to their
Euclidean counterparts. Some nearest neighbors
of hyperbolic word embeddings are shown in Ta-
ble 2. The closest neighbors typically represent
one of several semantic relations with the query
word. For example, “boiling” produces “vapor”,
“towering” is a quality of “eruptions”, “dmg” is
the parent company of “mercedes”, “tonnes” is a
measure of “weighed”, and so on. This is a con-
sequence of embedding the word-cooccurrence
graph, which implicitly represents these relations.

Table 3 shows lists of related words that contain
a particular substring in order of increasing hyper-
bolic norm. We also show the counts in the corpus
of these words, which are correlated to the num-
ber of contexts they occur in. As expected, words
occurring in fewer contexts have higher hyperbolic
norm, and this corresponds to increased specificity
as we move down the list; for example “bulldogs”
has a higher norm than “dog”, and “greatest” has
a higher norm than “great”. The Spearman corre-
lation between 1/f , where f is the frequency of a
word in the corpus, and the norm of the embedding
is 0.77.

We quantitatively evaluate hyperbolic embed-
dings on two tasks against the baseline Skip-
Gram with Negative Sampling (SGNS) embed-
dings (Mikolov et al., 2013a)4. The first task
is Word-Similarity on the WordSim-353 dataset
(Finkelstein et al., 2001), which measures whether
the embeddings preserve semantic similarity be-
tween words as judged by humans. We compute
Spearman’s correlation between ground truth sim-
ilarity scores and cosine distances in embedding
space between all pairs of words in the dataset.
The second task is HyperLex (Vulić et al., 2017),
which measures the extent to which embeddings
preserve lexical entailment relationships of the
form “X is a type of Y”. These are precisely the

4We use the code available at https://github.
com/tensorflow/models/tree/master/
tutorials/embedding, which was tuned for the
TEXT8 corpus.
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“bank” “music” “dog” “great”

Word Count Norm Word Count Norm Word Count Norm Word Count Norm

bank 1076 2.56 music 4470 1.58 dog 566 3.21 great 4784 2.11
bankruptcy 106 4.61 musical 1265 2.56 dogs 184 4.27 greater 1502 2.51

banking 185 5.92 musicians 435 4.07 dogme 16 6.52 greatest 753 2.97
bankrupt 28 5.93 musician 413 4.32 bulldogs 8 7.08 greatly 530 3.46

banks 407 6.45 musicals 38 5.76 endogenous 5 7.55 greatness 12 6.41
banknote 13 6.62 musicology 18 6.38 sheepdog 5 7.73

Table 3: Words in order of increasing hyperbolic norm which contain the substring indicated in the top row. Their counts in
the TEXT8 corpus are also shown. Dimension size d = 20.

Task Method Dimension

5 20 50 100

WordSim-353 SGNS 0.350 0.566 0.676 0.689
Poincaré 0.305 0.451 0.451 0.455

HyperLex SGNS -0.002 0.093 0.124 0.140
Poincaré 0.259 0.246 0.246 0.248

Table 4: Spearman’s ρ correlation coefficient for Word Simi-
larity and Lexical Entailment tasks using SGNS and Poincaré
embeddings of various sizes.

kind of relations we hope to capture in the norm
of hyperbolic embeddings. Given a pair (x, y) of
words, we compute the score for the relationship
is-a(x, y) in the same way as Nickel and Kiela
(2017):

score(is-a(x, y)) = −(1 + α(‖y‖ − ‖x‖))d(x, y).

If x and y are close and ‖y‖<‖x‖, the above score
will be positive, implying x is a type of y.

Table 4 shows the scores on these two tasks for
both SGNS and Poincaré embeddings for various
embedding sizes. SGNS embeddings are superior
for preserving word similarities, while Poincaré
embeddings are superior for preserving lexical en-
tailment. However, the best score for Poincaré
embeddings is only 0.259, which is quite low. In
comparison to the unsupervised baselines studied
in Vulić et al. (2017), Poincaré embeddings rank
second behind the simple Frequency Ratio base-
line which, achieves 0.2795.

4.3 Sentence Embeddings

We use the BookCorpus (Zhu et al., 2015) to learn
sentence and phrase embeddings. We pre-process
the data into triples of the form (si−1, si, si+1)
consisting of both full sentences, as in the orig-
inal Skip-Thoughts model, and sub-sentence se-
quences of words sampled according to the same
lengths as sentences in the corpus. We found that

5This does not include baselines that use extra informa-
tion like WordNet while learning the embeddings.

Sentence Norm

a creaky staircase gothic . 6.21
it ’s a rare window on an artistic collaboration . 6.32
a dopey movie clothed in excess layers of hipness . 6.35
an imponderably stilted and self-consciously arty movie . 6.65
there’s a delightfully quirky movie ... , but brooms isn’t it . 6.83
a trifle of a movie, with a few laughs ... unremarkable soft center . 6.86

Table 5: Sentences from Movie Reviews dataset with their
norms. Each row represents a nearest neighbor to and with a
greater norm than the sentence in the row above.

augmenting the dataset in this manner led to con-
sistent improvements on downstream tasks.

Similar to word embeddings, we expect that
sentence (phrase) embeddings will be organized
in a hierarchical manner such that sentences
(phrases) that appear in a variety of contexts are
closer to the origin. However, unlike word embed-
dings where we could compare hyperbolic norm to
frequency in the corpus, this effect is hard to mea-
sure directly for sentences (phrases) because most
only appear a small number of times in the corpus.
Instead, we check whether the embeddings exhibit
a known hierarchical structure: constituent parses
of sentences. We take Section 23 from the Wall
Street Journal subset of Penn Treebank (Marcus
et al., 1993), which is annotated with gold stan-
dard constituent parse tree structures, and embed
each node from each tree using the learned para-
metric encoder fθ. The Spearman correlation be-
tween the norm of the resulting embedding and the
height of the node in its tree, computed over all
nodes in the set, is 0.671. Figure 3 shows some
example parses with the hyperbolic norm at each
node. The norms generally increase as we move
upwards, indicating that the learned embeddings
encode some of this particular form of hierarchi-
cal structure. Table 5 shows examples from the
Movie Review corpus (Pang et al., 2002), in which
we generated a chain of sentences with increas-
ing norm by iteratively searching for the nearest
neighbor with norm greater than the previous sen-
tence.
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Figure 3: Constituent parse trees from the Penn Treebank with hyperbolic norms of the phrase embeddings at each node.

Encoder Dim Word Dim Method Perplexity CR SUBJ MPQA MR MultiNLI SNLI

10 100 Euclidean 117 0.639 0.582 0.689 0.546 0.419 0.483
Poincaré 110 0.640 0.623 0.769 0.534 0.417 0.480

100 200 Euclidean 61 0.719 0.882 0.823 0.694 0.534 0.692
Poincaré 53 0.722 0.890 0.848 0.696 0.537 0.684

1000 620 Euclidean 61 0.804 0.925 0.860 0.742 0.617 0.741
Poincaré 46 0.792 0.921 0.880 0.746 0.620 0.746

2400 620 Skip-Thoughts –∗ 0.836 0.938 0.889 0.795 0.650 0.766

Table 6: Held out set perplexity and downstream task performance for sentence embeddings of various sizes. ∗Perplexity of
the Skip-Thoughts model is not comparable to our methods since it only uses uni-directional local context.

Next, following common practice for evaluating
sentence representations, we evaluate the trained
Poincaré encoder as a black-box feature extrac-
tor for downstream tasks. We choose four binary
classification benchmarks from the original Skip-
Thoughts evaluation – CR, MR, MPQA and SUBJ
– and two entailment tasks – MultiNLI (Williams
et al., 2017) and SNLI (Bowman et al., 2015).
For the binary classification tasks we train SVM
models with a kernel based on hyperbolic dis-
tance between sentences, and for the entailment
tasks we train multi-layer perceptrons on top of
the premise and hypothesis embeddings and their
element-wise products and differences. As a base-
line, we compare to embeddings trained using the
Euclidean distance metric. Table 6 reports the re-
sults of these evaluations for various embedding
dimensions. Poincaré embeddings achieve a lower
perplexity in each case, suggesting a more efficient
use of the embedding space. However, both sets
of embeddings perform similarly on downstream
tasks, except for the MPQA opinion polarity task
where Poincaré embeddings do significantly bet-
ter. Training with embedding sizes greater than
1000 did not show any further improvements in
our experiments.

4.4 Discussion
The goal of this work was to explore whether hy-
perbolic spaces are useful for learning embeddings
of natural language data. Ultimately, the useful-

ness of an embedding method depends on its per-
formance on downstream tasks of interest. In that
respect we found mixed results in our evaluation.
For word embeddings, we found that hyperbolic
embeddings preserve co-occurrence frequency in-
formation in their norms, and this leads to im-
proved performance on a lexical entailment task.
However, decreased performance on a word sim-
ilarity task means that these embeddings may not
be useful across all tasks. In general, this suggests
that different architectures are needed for captur-
ing different types of lexical relations. We ex-
perimented with several other loss functions, pre-
processing techniques and hyper-parameter set-
tings, which we did not describe in this paper due
to space constraints, but the conclusions remained
the same.

For sentence embeddings, we found evidence
that hyperbolic embeddings preserve phrase con-
stituency information in their norms. A deeper
investigation of the learned hierarchy is difficult
since our encoder is a parametric function over a
(practically) infinite set and there is no clear notion
of edges in the learned embeddings. On down-
stream tasks, we saw a small improvement over
the Euclidean baseline in some cases and a small
degradation in others, again highlighting the need
for specialized embeddings for different tasks. We
hope that our initial study can pave the way for
more work on the applicability of the hyperbolic
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metric for learning useful embeddings of natural
language data.

5 Related Work

Tay et al. (2018) used the hyperbolic distance met-
ric to learn question and answer embeddings on
the Poincaré ball for question-answer retrieval.
The main difference to our work is that we ex-
plore unsupervised objectives for learning generic
word and sentence representations from a text cor-
pus. Furthermore, we show that by using re-
parameterization instead of projection to constrain
the embeddings, we can view the distance metric
as any other non-linear layer in a deep network and
remove the need for Riemannian-SGD.

Several works have attempted to learn hierarchi-
cal word embeddings. Order Embeddings (Ven-
drov et al., 2015) and LEAR (Vulić and Mrkšić,
2017) are supervised methods that also encode hi-
erarchy information in the norm of the embed-
dings by adding regularization terms to the loss
function. In comparison, our method is unsuper-
vised. HyperVec (Nguyen et al., 2017) is a su-
pervised method which ensures that the hyper-
nymy relation is assigned a higher similarity score
in the learned embeddings than other relations
such as synonymy. The vector space model for
distribution semantics introduced by Henderson
and Popa (2016) is unsupervised and re-interprets
word2vec embeddings to predict entailment rela-
tions between pairs of words. DIVE (Chang et al.,
2017) is also unsupervised, and achieves a score of
32.6% on the lexical entailment task, but it is un-
clear how well the embeddings preserve semantic
similarity.

For sentence embeddings, several works have
looked at improved loss functions for Skip-
Thoughts to make the model faster and light-
weight (Tang et al., 2017c,a,b). Ba et al. (2016) in-
troduced a layer normalization method that shows
consistent improvements when included in the
GRU layers in Skip-Thoughts, and we used this
in our encoder. More recently, improved sen-
tence representations were obtained using dis-
course based objectives (Jernite et al., 2017; Nie
et al., 2017) and using supervision from natural
language inference data (Conneau et al., 2017).

6 Conclusion

We presented a re-parameterization method that
allows us to learn Poincaré embeddings on top

of arbitrary encoder modules using arbitrary
distance-based loss functions. We showed that
this re-parameterization leads to comparable per-
formance to the original method from Nickel and
Kiela (2017) when explicit hierarchical structure
is present in the data. When we applied this
method to natural language data at the word- and
sentence-level, we found evidence of intuitive no-
tions of hierarchy in the learned embeddings. This
led to improvements on some – but not all – down-
stream tasks. Future work could either focus on
alternative formulations for unsupervised hyper-
bolic embeddings, or alternative downstream tasks
where hierarchical organization may be more use-
ful.
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word vectors for lexical entailment. arXiv preprint
arXiv:1710.06371.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19–27.

A Implementation Details

A.1 WordNet Experiments

For our re-parameterized Poincaré embeddings we
used a batch size 1024, learning rate 0.005, and no
burn-in period. The loss was optimized using the
Adam optimizer. Embeddings were initialized in
U [−0.001, 0.001]. We sampled 10 negatives on
the fly during training independently for each pos-
itive sample. We clipped gradients to a norm of
5. Embeddings were initialized to a small norm
around σ(−5).

A.2 Word Embedding Experiments

The TEXT8 corpus contains around 17M tokens
preprocessed such that all tokens are lowercase,
numbers are spelled out, and any characters not
in a-z are replaced by whitespace. We removed
stopwords and constructed the word-cooccurrence
graph G by adding an edge between words ap-
pearing within 5 tokens of each other in the re-
sulting corpus. We used c = 0.25 for subsam-
pling frequent edges, and trained our embedding
model using the Adam optimizer with batch size
512 and learning rate 0.005. We sampled 50 nega-
tives per step for the loss. We initialized the norms
of the word embeddings around σ(−5). All hyper-
parameters were tuned to maximize performance
on the word similarity task.

A.3 Sentence Embedding Experiments
During preprocessing, only the top 20,000 most
frequent types were retained and the rest were re-
placed with the UNK type. We optimized the loss
function using Adam optimizer with a batch size
of 64. The initial learning rate was tuned be-
tween 0.005, 0.0008, 0.0001 which was then de-
cayed exponentially to half its value in 100,000
steps. When decoding we utilize a local context
from a window of K = 2 words around the tar-
get word. The embedding norms are initialized
around σ(−2).
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