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Abstract

Social media analysis frequently requires tools
that can automatically infer demographics to
contextualize trends. These tools often require
hundreds of user-authored messages for each
user, which may be prohibitive to obtain when
analyzing millions of users. We explore
character-level neural models that learn a
representation of a user’s name and screen
name to predict gender and ethnicity, allowing
for demographic inference with minimal
data. We release trained models1 which may
enable new demographic analyses that would
otherwise require enormous amounts of data
collection.

1 Introduction

Social media analysis offers new opportunities
for research in numerous domains, including
health (Paul and Dredze, 2011), political science
(O’Connor et al., 2010), and other social sciences
(Gilbert and Karahalios, 2009). Data from
social media platforms such as Twitter can
yield key insights into population beliefs and
behaviors, complementing existing methods such
as traditional surveys (Velasco et al., 2014; Dredze
et al., 2015). A downside of social media sources
is that they often lack traditional demographic
information, such as gender, ethnicity, age, and
location. Twitter is one of the most popular
platforms for research, but its users rarely provide
such information.

Numerous existing systems automatically infer
missing demographics, such as gender, ethnicity,
age and location (Mislove et al., 2011; Burger
et al., 2011; Culotta et al., 2015; Pennacchiotti and
Popescu, 2011; Rao et al., 2010; Jurgens et al.,
2015; Dredze et al., 2013; Rout et al., 2013). Most
methods rely on content authored by the user,

1http://bitbucket.org/mdredze/demographer

where words or phrases are strongly associated
with specific demographic traits (Al Zamal et al.,
2012). Friendship and follower relationships in
social networks can also be informative (Chen
et al., 2015; Volkova et al., 2014; Bergsma et al.,
2013); people tend to be friends with people
who live in the same geographic area (Jurgens,
2013) or tend to follow users with similar political
orientations (Conover et al., 2011). Culotta
et al. (2015) leveraged web traffic data to predict
demographics based on who Twitter users follow,
e.g. EPSN.com is popular with men, and the
@ESPN Twitter account is mostly followed by
men.

The principal drawback of these methods
is their need for significant data per user,
which is often time consuming or expensive to
gather. When working with enormous datasets,
researchers often avoid demographic analysis
altogether, or use limited approaches. For
example, a large-scale analysis by Mislove et al.
(2011) inferred gender by simply string-matching
common names, which failed to label 35.8%
of the users studied. Paul and Dredze (2011)
tracked flu and allergy symptoms in a dataset of
1.6 million tweets, in which 71% of users had
only a single tweet and 97% had 5 or fewer.
In a dataset with millions of users, obtaining
sufficient content or network data for each user
may require prohibitively many Twitter API calls.
In production environments, a system may need to
make rapid decisions based on a single message,
rather than waiting until additional data can be
gathered. For these reasons, methods have been
proposed for inferring demographics based on the
user’s name and profile, such as for geolocation,
gender, or social roles (Dredze et al., 2013;
Osborne et al., 2014; Dredze et al., 2016; Knowles
et al., 2016; Volkova et al., 2013; Burger et al.,
2011; Beller et al., 2014).

105



We explore character-level models that learn a
low-dimensional representation of a Twitter user’s
name and screen name, enabling demographic
prediction from only a single tweet. Names are
a reliable source of demographic information;
the name Sarah or username therealjohn
indicate gender, and names like Carlos and Wei
may suggest ethnicity or race. Exact first-name
matching has already been proven helpful for
demographics inferring, but such methods only
work when users use known names (Mislove
et al., 2011; Liu and Ruths, 2013; Karimi et al.,
2016). Neural models provide the flexibility
to learn patterns in character sub-sequences,
especially for Twitter names, which are irregular
and can contain emojis or special characters.
Our model produces more accurate demographic
predictions than previous name-based methods,
and is competitive with approaches that require
more data resources.

2 Models

We hypothesize that character sequences in names
are indicative of demographics, and consider
models that can learn these correlations from
data. Our models encode names and screen names
using either convolutional (CNN) and recurrent
(RNN) neural networks, which can effectively
handle variable-length names. These models
convert the tokens of a name into a fixed-length
representation, which is then passed through two
fully-connected layers to obtain a distribution over
the demographic labels.

We searched over a range of model settings:

Single-sequence vs. Multi-sequence Twitter
users provide both a name and a screen name;
sometimes identical and sometimes completely
different. We considered as input either the name
only or a concatenation of the name and screen
name.

Encoder dimension and depth We considered
hidden dimensions ranging from 128 to 1024,
both for the number of recurrent cells and for the
number of convolutional filters. We additionally
considered stacked CNN or RNN components, up
to a depth of three layers.

RNN settings Our initial experiments found a
Gated Recurrent Unit (GRU) (Cho et al., 2014)
cell more effective than Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). We

considered both bidirectional and unidirectional
RNNs. We evaluated both max-pooling and a
learned weighted average2 to convert the RNN
output states into a fixed dimensional embedding.

CNN settings We set the convolution filter
width at either two or three. Convolutions had
either the ELU activation function (Clevert et al.,
2015) or no activation function. All CNN models
used max-pooling to reduce the convolution
outputs to a fixed dimension. The stacked CNN
models used an exponentially increasing dilation
rate at each layer (Yu and Koltun, 2015).

Training details We trained all models using
cross entropy loss and the Adam optimizer
(Kingma and Ba, 2014), using a learning rate of
0.001 and gradients clipped at 10 (Pascanu et al.,
2013). Each character in the vocabulary was
embedded into a 128-dimension space. Models
were implemented in Tensorflow (Abadi et al.,
2016).

3 Data and evaluation

We collect data from past work to conduct
experiments on gender and ethnicity prediction
tasks. We consider both Twitter data and auxiliary
government-provided data to train our models,
but always evaluate using just Twitter data for
the development and test sets. We split the
Twitter data into training (60%), development
(20%) and test sets (20%). For each task, we
use the datasets described below to construct
three types of training datasets: only auxiliary
data, only Twitter data, and auxiliary plus Twitter
data. When using both auxiliary and Twitter
data, we train on the auxiliary data until the
Twitter development accuracy begins to decline,
then switch to training on the Twitter data.

Gender: We consider gender classification as a
binary3 prediction task between men and women,
following past work.
Twitter: The dataset created by Burger et al.
(2011) (and processed and released by Volkova
et al. (2013)4) provides us with 58,046 users,
30,364 female and 27,682 male. These labels were

2 We use the Tensorflow seq2seq implementation of
Bahdanau et al. (2014) attention, to convert the sequence of
RNN states to a single time-step ‘sequence’ for classification.

3A fuller consideration of of gender identity on Twitter is
needed, but is outside the scope of this work.

4
http://cs.jhu.edu/˜svitlana/data/data_emnlp2013.tar.gz
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obtained for Twitter accounts which linked to a
blog in which the author included gender.
Auxiliary Data: We use gender-labeled name
data from the Social Security Administration5

which contains 68,457 unique first names and their
co-occurrence with gender. We assigned each
name its majority gender label.

Ethnicity: There is limited available training
data for race and ethnicity. Due to the large
class imbalances in available data, we consider
two separate ethnicity tasks. First, we predict
Caucasian vs. African-American (2-way), which
offered the most data per class and a larger
body of past work (Volkova and Bachrach, 2015;
Pennacchiotti and Popescu, 2011). Second, we
predict Caucasian vs. African-American vs.
Hispanic/Latino (3-way) as a more difficult task
following Culotta et al. (2015).
Twitter: From the dataset created by Culotta
et al. (2015) we collect 407 of the original
770 users6: 215 Caucasian, 117 Hispanic/Latino,
and 75 African-American. The labels were
obtained by manual annotation.7 Culotta et al.
estimated inter-annotator agreement at 80%. From
Volkova and Bachrach (2015) we collect 3,862
users of the original 5,000: 1,912 Caucasian,
360 Hispanic/Latino, and 1,309 African American
(and 281 other). The labels were obtained by
crowdsourced annotations of users’ profiles, with
a reported Cohen’s κ of 0.71.
Auxiliary Data: We use ethnicity-labeled name
data from the North Carolina Board of Elections,
8 which contains millions of names labeled with
race (White, Black, and five other labels) and
ethnicity (Hispanic/Latino, not, or undesignated).
We combine race and ethnicity labels into
our three classes (Caucasian, African-American,
Hispanic/Latino).

3.1 Baselines

For each task we compare our best neural models
against two baselines representing prior work: a
name-only method and a user content method.

SVM: Knowles et al. (2016) predicts gender
with a linear SVM trained on character n-gram

5
https://www.ssa.gov/OACT/babynames/names.zip

6Many users are no longer available on Twitter.
7While most accounts correspond to a single individual,

some accounts represent entities for which “ethnicity” is not
well-defined, but were labeled regardless.

8
http://dl.ncsbe.gov/index.html?prefix=data/

features extracted from Twitter users’ names. We
used the authors’ released implementation.

Content: Volkova and Bachrach (2015) predicts
gender and ethnicity with a logistic regression
classifier trained on the unigrams in the 200 most
recent tweets of each user. We used our own
implementation, but were unable to test on the
exact same data in the original paper. When we
evaluated our implementation, our AUC scores
were 6-12% lower than those reported by the
authors. This difference may be due to changes
in the datasets as we have different tweets, fewer
users, and different splits.

4 Results

Table 1 shows results on the test data for
the best-performing CNN and RNN architecture
on each task, with and without auxiliary data.
Table 2 shows the results on dev data for each
architecture, including results split by name inputs
and name plus screen name inputs. We used the
dev set performance to pick which architectures to
evaluate on the test data, and early-stopping on dev
data to get final test scores.

The (macro) F1 score is calculated as the
harmonic mean of the average class precision and
recall, across each class. 9 While F1 is usually
quite similar to accuracy in 2-class comparisons,
they diverge in the ethnicity 3-way comparison.

Our models had significantly10 higher accuracy
than the SVM baseline on both gender and
ethnicity tasks. While the content baseline
outperforms our best models on all tasks, it
requires far more data per user.

The use of auxiliary data produced ambiguous
results: it greatly helped the SVM model on the
gender task, but appeared to hurt performance
for all models on the ethnicity tasks. A
possible explanation is that, because the SVM
only considered simple n-gram features, the
informative n-grams for gender are relatively
consistent across Census and Twitter names.
The neural models, however, learn much more
complicated features, and the relevant features

9Knowles et al. (2016) defines F1 as the harmonic mean
of accuracy and coverage, and thus our F1 scores are
substantially lower.

10 Using a two-proportion z-test, our models outperform
the SVM on gender, with p < 0.01; on 2-way ethnicity,
with p < 0.01; and on 3-way ethnicity, with p < 0.02. The
content baseline is significantly better than our best models,
using the same test, with at least p < 0.0001.
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Gender Ethnicity (3-way) Ethnicity (2-way)
Training Model Acc F1 Acc F1 Acc F1

Twitter
SVM 82.3 82.4 56.5 43.9 66.0 62.7
CNN 83.1 83.1 62.0 42.5 73.2 71.7
RNN 84.3 84.3 60.8 40.9 71.9 69.3

Twitter
Auxiliary pre-train

SVM 82.9 83.2 45.9 44.4 58.1 60.9
CNN 83.6 83.5 61.7 40.5 71.7 68.0
RNN 84.1 84.1 60.2 40.1 70.5 67.3

- Content 86.2 86.1 81.0 71.6 88.9 88.1

Table 1: Accuracy and F1 on Twitter test data. The best name-based result in each column is bolded.

Gender Ethnicity (3-way) Ethnicity (2-way)
Training Model Acc F1 Acc F1 Acc F1

Auxiliary
SVM 77.7 77.8 44.3 42.5 59.8 60.1

CNN: (N) 65.8 65.8 53.7 23.3 60.3 44.3
CNN: (N+S) 64.2 64.4 53.7 23.3 58.7 56.2

RNN: (N) 63.3 63.2 53.8 24.4 60.7 57.7
RNN: (N+S) 63.4 63.3 53.7 23.3 60.7 67.3

Twitter

SVM 82.5 82.6 56.1 43.2 64.1 61.1
CNN: (N) 83.3 83.2 61.9 41.9 70.5 67.2

CNN: (N+S) 84.0 84.0 65.9 45.3 73.6 71.7
RNN: (N) 83.5 83.4 60.9 38.4 69.7 63.3

RNN: (N+S) 83.8 83.8 65.1 44.8 72.5 69.7

Twitter
Auxiliary pre-train

SVM 83.6 83.8 49.8 46.8 62.1 63.2
CNN: (N) 83.8 83.8 59.8 46.3 64.8 54.4

CNN: (N+S) 82.1 82.1 64.2 44.3 71.1 67.5
RNN: (N) 84.1 84.1 59.5 45.0 64.2 57.7

RNN: (N+S) 83.6 83.5 63.2 42.8 70.7 67.3
- Content 86.7 86.7 79.7 72.8 87.9 87.4

Table 2: Accuracy and F1 on Twitter development data. “N” indicates name alone, “N+S” indicates name and
screen name. The best name-based result in each column is bolded.

may not transfer across domains. For the ethnicity
auxiliary dataset, our model quickly overfit to the
auxiliary data, learning features which did not
generalize to the Twitter dataset. With either
aggressive regularization or more sophisticated
pre-training approaches, we might better utilize
the auxiliary data when we have such a limited
amount of Twitter data.

We contextualize our results with similar
previous work that used other resources and
datasets for similar tasks. Rao et al. (2010) reports
an accuracy of 72.3% on gender prediction using
n-grams and sociolinguistic features in users’
tweets. Burger et al. (2011) reports a gender
accuracy of 91.8% using user content and profile
information, as well as a dev-set accuracy of
89.1% using the user’s name field. Our SVM
model reproduces the main features from their
name model. Jaech and Ostendorf (2015) used
character-level morphology induction to learn
sub-units from OkCupid usernames, achieving
a gender classification accuracy of 74.2% using
only a username. Pennacchiotti and Popescu
(2011) reports an F1 score of 65.5% on the 2-way

ethnicity task, using a combination of features
from Twitter profiles, network, and content. In
their model that used exclusively profile features,
they report an F1 score of 60.9%.11 Culotta et al.
(2015) report F1 scores between 60% and 70% on
the 3-way ethnicity comparison using regression
and classification approaches, based on whether
a user follows specific accounts associated with
particular demographics. Although these are not
direct comparisons on the same datasets, they
demonstrate that our models achieve competitive
performance on common demographics tasks
while using just names.

5 Limitations

Our methods are limited by the amount of
data available per category and the diversity of
categories covered. Every dataset we could find
was collected in a manner non-representative of
Twitter in general, and had a bias towards users
in the United States. Such dataset biases may

11The authors collected “users who explicitly mention their
ethnicity in their profile,” implying that profile features could
be unfairly predictive.
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affect our tool’s predictions in ways that are
difficult to measure, and should be a consideration
in downstream analyses (Wood-Doughty et al.,
2017). While the concept of race and ethnicity
is a subject of study in social science research
(Van den Berghe, 1978), we only consider three
of the categories considered by most surveys, due
to the very limited available data. To build a tool
to adequately classify all widely-used race and
ethnicity categories, a great deal of additional data
collection and validation is required.

6 Future Work

Despite its limitations, our model improves on
previous approaches that require only a single
tweet per user by learning a rich representation
of the user’s names. While the content baseline
outperforms our models, our method requires far
less data and can be used in settings when it is
too slow or costly to download new data. An
exploratory experiment found that incorporating
our name-based predictions into the content
model produced a gender classification accuracy
of 91.0%. That this hybrid model improves
dramatically over the use of content alone
indicates that the two approaches make different
kinds of errors and thus could successfully
complement each other(Liu and Ruths, 2013). The
question of whether different predictors of Twitter
user demographics have correlated errors based
on user behavior is considered in Wood-Doughty
et al. (2017), which offers other suggestions for
more robust models.

Further work could also examine how names
vary across different domains; while auxiliary
government data did not consistently improve
performance in our experiments, we expect
that username-based features may transfer across
different sites (e.g. from Twitter to Reddit) better
than content-based features. In the empirical
setting of datasets with a single tweet per user,
there is still more information we can leverage to
infer demographics; Twitter user profiles include
optional fields for description, location, and a
profile picture.

While extensions may make our methods more
accurate or widely applicable, the present work
demonstrates that neural character-level models
of names can be successfully leveraged for
difficult demographic predictions. We hope that
these models will make possible low-resource

demographic inference in varied domains. Our
code and trained classifiers are available as
an update to the Demographer package at
http://bitbucket.org/mdredze/demographer.
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