
S Bandyopadhyay, D S Sharma and R Sangal. Proc. of the 14th Intl. Conference on Natural Language Processing, pages 23–32,
Kolkata, India. December 2017. c©2016 NLP Association of India (NLPAI)

Reference Scope Identification for Citances Using
Convolutional Neural Network

Saurav Jha
MNNIT Allahabad, India
mail@sauravjha.com.np

Aanchal Chaurasia
NIT Rourkela, India

aanchal21194@gmail.com

Akhilesh Sudhakar
IIT (BHU), Varanasi, India
akhileshs.s4@gmail.com

Anil Kumar Singh
IIT (BHU), Varanasi, India

nlprnd@gmail.com

Abstract

In the task of summarization of a
scientific paper, a lot of information
stands to be gained about a refer-
ence paper, from the papers that cite
it. Automatically generating the ref-
erence scope (the span of cited text)
in a reference paper, corresponding to
citances (sentences in the citing pa-
pers that cite it) has great signifi-
cance in preparing a structured sum-
mary of the reference paper. We
treat this task as a binary classi-
fication problem, by extracting fea-
ture vectors from pairs of citances
and reference sentences. These fea-
tures are lexical, corpus-based, sur-
face and knowledge-based. We extend
the current feature set employed for
reference-citance pair identification in
the current state-of-the-art system.
Using these features, we present a
novel classification approach for this
task, that employs a deep Convolu-
tional Neural Network along with two
boosting ensemble algorithms. We
outperform the existing state-of-the-
art for distinguishing between cited
spans and non-cited spans of text in
the reference paper.

1 Introduction
Citation sentences or ‘citances’ that cite a
reference paper (RP) can give valuable infor-
mation about the larger context in which the
RP is written, key ideas behind the RP and
a concise synopsis of it. All of this is impor-
tant for a task like scientific paper summa-
rization, which not only requires the content
of a paper but also meta-information about

it. This kind of information would otherwise
have to be obtained from sources such as lit-
erature reviews and surveys about the paper,
which in turn is time-consuming and labor-
intensive. This goal has also been outlined
in a recent shared task on scientific paper
summarization, the 3rd Computational Lin-
guistics Scientific Document Summarization
Shared Task1.

The first step towards building a system
that can obtain information about an RP
from a citing paper (CP) that cites it, is to
find spans of text in the RP that are cited by
a particular citance in the CP. In the context
of the above-mentioned shared task, this first
step is referred to as Task 1A. Task 1A, thus
offers a good foundation for the goal men-
tioned above, by identifying the relevant ref-
erence sentences for a citance. We present a
novel approach to Task 1A. While we build
on previous work by Yeh et al. (2017), our
major contributions can be described as:

• We model a new feature set to rep-
resent a citance-reference sentence pair
along with building a classification sys-
tem that uses a binary classification
technique for classifying a <CP sen-
tence, RP sentence> pair according to
whether the CP sentence cites the RP
sentence or not.

• We show performance gains over the
results of Yeh et al. (2017)(which is
the current state-of-the-art) by achiev-
ing better F1-scores, using a feature set
that has lesser number of features than
that used in the above work.

• We explore various measures for evaluat-
ing similarity between texts while build-

1http://wing.comp.nus.edu.sg/ cl-scisumm2017/
23



ing this feature set. Feature representa-
tions extracted (as described later), are
used to train three binary classifiers - an
Adaptive Boosting Classifier (ABC), a
Gradient Boosting Classifier (GBC) and
a CNN classifier.

The datasets provided for this year’s as well
as last year’s shared task have been used.

2 Related Work
There has been a large amount of work
on the task of summarizing scientific docu-
ments. However, as is clear from review sur-
veys and papers such as Jones (2007), Teufel
and Moens (2002) and Nenkova (2011), just
using citances of a paper does not taken into
account the context of a user or place the
paper in a larger perspective of related work.
Most of the related work on the task of iden-
tifying text spans in the RP that correspond
to a particular citance, have been presented
at the shared task mentioned in the previ-
ous section. We highlight some relevant work
and various methods used for this task.

Yeh et al. (2017) also used a binary clas-
sification approach for Task 1A, as we do.
They used five classification algorithms to
learn the binary classification model, with
L2-SVM performing the best. Moraes et
al. (2016) used SVM with subset tree ker-
nel, a type of convolution kernel. They com-
puted similarities between three tree repre-
sentations of the citance and reference text.
Li et al. (2016) used an SVM classifier with a
topical lexicon to identify the best matching
reference spans for a citance, using IFD simi-
larity, Jaccard similarity and context similar-
ity. The PolyU system by Cao et al. (2016),
for Task 1a, used SVM-rank with lexical
and document structural features to rank
reference text sentences for every citance.
Klampfl et al. (2016) applied a modified ver-
sion of an unsupervised summarization tech-
nique (TextSentenceRank) to the reference
document. Nomoto (2016) treated the prob-
lem as a ranking problem, learning one com-
ponent of the similarity through a neural net-
work and using TF-IDF scores for the other
component. Aggarwal and Sharma (2016a)
employed lexical and syntactic dependency
cues in writing rules to extract text spans

in the RP for a given CP citance. Malen-
fant and Lapalme (2016) presented a novel
approach to solve this task. They first per-
formed another task of identifying the facet
of each sentence of the RP. These facets be-
longed to a predefined set of facets, such
as introduction, abstract, results, etc. They
then used the facet information to match
each sentence to a citance having the same
facet in the CP.

3 Method

The structure of the dataset is described in
Section 4.1. Citances and their actual refer-
ence texts are extracted from gold-standard
annotations. Citances in CPs are paired with
each sentence in the RPs, along with a bi-
nary label indicating their actual reference
relations - 0 if the citance actually refers to
the RP sentence and 1 if it doesn’t. For each
such pair, a feature vector is extracted that
describes the relatedness between the given
citance and the reference sentence. These
feature vectors, along with their correspond-
ing labels, are used to train the binary clas-
sifiers.

3.1 Feature Extraction
As mentioned in the section on related work,
most approaches to this task have either been
based on ranking of possible cited sentences
in the RP for a given CP citance, or on
binary classifying each RP sentence as rel-
evant or irrelevant to a given CP citance.
We use the latter approach. Our method is
based on the assumption that a CP sentence
and corresponding RP sentence should be se-
mantically and lexically similar, represent-
ing similar meaning, idea or abstract con-
cept. This is a natural assumption to make,
since modeling the problem based on this
assumption helps to separate relevant sen-
tences (to the CP citance) in the RP from
irrelevant ones. Inspired by the idea of Yeh
et al. (2017), the feature set for each citance-
reference pair is divided into three different
classes of citation-dependent features (i.e.,
lexical, knowledge-based and corpus-based)
and one class of citation-independent fea-
tures (i.e., surface). However, we must men-
tion here that our work is significantly dif-

2

24



ferent from Yeh et al. (2017), when it comes
to the set of features used. Through control
experiments (Section 5.1), we show the effect
of using our set of feature over theirs. We in-
corporate several modified and newly added
features.

The features marked by an asterisk (∗) are
the ones that are borrowed, but modified.
The features marked by two asterisks (∗∗) are
the newly added features in this work. For
features that have been borrowed from Yeh
et al. (2017), more elaborate details about
them can be seen in their work.

3.1.1 Lexical features
This class deals with the features represent-
ing similarity measure of words for each pair
of citance and reference sentence. As sug-
gested by the results of Kenter et al. (2016)
for short text similarity tasks, the overall sen-
tence similarity measure based on each fea-
ture is calculated by averaging the similari-
ties over all the words in the sentences.

1. Word overlap∗: Word overlap between
the citance and the reference sentence
based on five metrics: Dice coefficient,
Jaccard coefficient, Cosine similarity,
Levenshtein distance based fuzzy string
similarity and modified gestalt pattern-
matching based sequence matcher score,
the last one as reported by Ratcliff and
Metzener (1988).

2. TF-IDF similarity: The TF-IDF vec-
tor cosine similarity between the ci-
tance and the reference sentence as
reported by Baeza-Yates and Ribeiro-
Neto (2011).

3. ROUGE measure: The ROGUE (Lin
and Hovy, 2003) metrics used are:
ROGUE-1, ROGUE-2 and ROGUE-L.

4. Named entity overlap∗: Measured
using Dice coefficient, fuzzy string sim-
ilarity, sequence matcher score and
word2vec similarity.

5. Number overlap∗: Number overlap
between the citance and the reference
sentence measured by fuzzy string simi-
larity and sequence matcher score.

6. Significance of citation-related
word pairs: The number of significant
word pairs and the summation of
significance scores of such word pairs
extracted for each citance-reference pair
based on Pointwise Mutual Information
(PMI) score (Church and Hanks, 1989)
collected from a dictionary containing
significant words pairs appearing in the
cited citance-reference pairs.

3.1.2 Knowledge-based features
1. WordNet-based semantic

similarity∗: The best semantic
similarity score between words in the
citance and the reference sentence out
of all the sets of cognitive synonyms
(synsets) present in the WordNet,
following Miller (1992) and Pedersen et
al. (2004).

3.1.3 Corpus-based feature
1. Word2Vec-based semantic

similarity∗∗: The word-to-word
semantic similarity between the ci-
tance and the reference sentence is
obtained based on the pre-trained
embedding vectors of the GoogleNews
corpus, following Mikolov et al. (2013).
Campr and Jezek (2015) show several
advantages that such embeddings of-
fer, compared to those generated by
traditional algorithms, such as LSA.

3.1.4 Surface features
This class includes features dealing primar-
ily with the morphology of the reference sen-
tences. These include:

1. Count of words: The count of words
in the reference sentence.

2. Count of characters∗∗: The total
count of all characters in the reference
sentence.

3. Count of numbers: The count of
numbers in the reference sentence.

4. Count of special characters∗∗: The
number of special characters in the ref-
erence sentence : “@”, “#”, “$”, “%”,
“&”, “*”, “-”, “=”, “+”, “>”, “<”, “[”,
“]”, “{”, “}”, “/”.

3

25



5. Normalized count of punctuation
markers∗∗: The ratio of count of punc-
tuation characters to the total count of
characters in the reference sentence.

6. Count of long words∗∗: The count of
words in the reference sentence exceed-
ing six letters in length.

7. Average word Length∗∗: The ratio of
count of total characters in a word to the
count of words in the reference sentence.

8. Count of named entities: The num-
ber of named entities in the reference
sentence.

9. Average sentiment score∗∗: The
overall positive and negative sentiment
score of the reference sentence averaged
over all the words, based on the Sen-
tiWordNet 3.0 lexical resource as de-
scribed by Baccianella et al. (2010).

10. Lexical richness∗∗: The lexical rich-
ness of the reference sentence based on
Yule’s K index.

3.2 Classification Algorithms
As our approach treats the training data as
pairs of citances and reference sentences, the
number of reference sentences that a citance
refers to is much smaller for a reference pa-
per, leading to a highly imbalanced data set
with the ratio of non-cited to cited pairs be-
ing 383.83 : 1 in the combined corpus of de-
velopment and training set and 355.76 : 1
in the test set corpus. This is not surprising
since CPs usually cite only a small text span
of an entire RP. Hence, our dataset is hugely
imbalanced with negative examples being the
majority. Following the work of Bowyer
et al. (2002), we experimented with com-
binations of three different degrees of Ran-
dom under-sampling (20%, 30% and 35%) on
the majority class (negative samples). On
each undersampled dataset, we apply the
SMOTE (Synthetic Minority Over-sampling
Technique) method (Bowyer et al. (2002) )
to generate synthetic cited pairs until the
ratio of the cited to non-cited pairs is 1:1.
The best results were obtained with 30% ran-
dom undersampling rate. To take care of

correlated features, if any, Principal Compo-
nent Analysis (PCA), following Tipping and
Bishop (1997) is applied on both training and
testing feature sets. Experiments were done
by varying the number of principal compo-
nents from 30-40 and the best performance
was obtained by retaining the top 35 princi-
pal components.

For the classification task, we use two
boosting ensemble algorithms: Adaptive
Boosting Classifier (ABC) as described by
Abe et al. (1999), Gradient Boosting Classi-
fier (GBC) as described by Friedman (1999)
and a deep Convolutional Neural Network
(CNN) as described by Schmidhuber (2015).

The implementation of ABC and GBC rely
on sci-kit learn2, while the CNN is imple-
mented using Keras3 (Chollet et al. (2015)).
Gensim (Rehurek and Sojka (2010)) is used
to carry out word2vec related operations.

3.2.1 Boosting Ensemble Algorithms
Boosting ensemble algorithms work by
creating a sequence of models that attempt
to correct the mistakes of the models used be-
fore them in the sequence. Therefore, these
offer the added benefit of combining out-
puts from weak learners (those whose perfor-
mance is at least better than random chance)
to create a strong learner with improved pre-
diction performance, by paying higher focus
on instances that have been misclassified or
have higher errors by preceding weak rules.
This is assisted by a majority vote of the
weak learner’s predictions weighted by their
individual accuracy. Figure 1 shows the il-
lustration of such a boosting framework, as
described by Bishop and Nasrabadi (2007).

The Adaptive Boosting Classifier
(ABC) algorithm works in a similar way dis-
cussed above. The base classifier (or weak
learner) used in this case is a decision tree.

Gradient Boosting Classifier (GBC),
on the other hand, begins by training sev-
eral models sequentially on the original data
set while allowing each model to gradually
minimize the loss function of the whole sys-
tem using the Gradient Descent method, as
described by Collobert et al. (2004). The

2http://scikit-learn.org
3https://keras.io

4

26



Figure 1: Schematic illustration of the boost-
ing framework. Adapted from Bishop and
Nasrabadi (2007): each base classifier ym(x)
is trained on a weighted form of the train-
ing set (blue arrows) in which the weights
wn(m) depend on the performance of the pre-
vious base classifier ym−1(x) (green arrows).
Once all base classifiers have been trained,
they are combined to give the final classifier
YM (x) (red arrows)

base classifiers in a GBC are regression trees.
Since our task is a binary classification, only
one regression tree is used as a special case.

3.2.2 Convolutional Neural Network
Convolutional Neural Networks, as described
in Schmidhuber (2015), have the ability
to extract features of high-level abstraction
with minimum pre-processing of data. They
have been widely used for sentence classifica-
tion problems, such as by Kim (2014). Re-
cently, Ngoc Giang et al. (2016) also used
CNNs for a sequence classification problem
involving classification of DNA sequences by
considering these sequences as text data.
Given the success of CNNs on these, we ex-
plore their use in our task.

However, in our case, a class-imbalance
problem occurs due to the number of posi-
tive reference-citance instances being far too
low (495). These are too few examples for
any deep learning model to extract mean-
ingful features from the original text. Using
the original sentences, and modeling it di-
rectly as a sequence classification on pairs of
sentences would introduce too much sparsity
owing to this imbalance. Not surprisingly,
our experiments on using original sentences

directly in an attention-based RNN model
(2015) resulted in a precision score of 0.002
for positive and 0.24 for negative samples.
Thus, we choose to train the CNN on the
feature sets as inputs instead of the sentences
directly. Figure 2 describes the CNN archi-
tecture chosen by us after repeated experi-
ments and tuning on the development data.

A 1D Convolutional layer accepts inputs
of the form (Height * Width * Channels). In
our case, we can visualize each feature vector
as an image with a unit channel, unit height
and a width equal to the number of features
in the reduced feature vector obtained after
applying PCA. Therefore, the input shape
for the vector to be fed into the input layer
of the CNN, becomes (No. of features * 1).

3.3 Post Filtering
The binary classifier may classify multiple
sentences in the RP as positive, i.e., being
relevant to a particular citance. However,
the existence of inherent errors in the model
means that all of these sentences may not
be in the ideal text span of the RP corre-
sponding to the citance. In order to reduce
our false positive error rate, we post-process
by filtering out some of these false positives.
We use the approach of Yeh et al. (2017)
for the post-filtering task. In this approach,
the final output denotes the top-k sentences
from the ordered sequence of classified refer-
ence sentences based on the TF-IDF vector
cosine similarity score to measure the rele-
vance between the citance and the reference
sentences. All sentences other than the top-k
are not included in the final output text span,
even though the model might have labelled
them as positive.

4 Experiments
4.1 Dataset
We use the development corpus, the training
corpora and the test corpus provided for the
CL-SciSumm Shared Tasks 20164 and 20175.
As reported in Jaidka et al. (2016), each cor-
pus comprises 10 reference articles, their cit-
ing papers and annotation files for each refer-
ence article. The citation annotations specify

4http://wing.comp.nus.edu.sg/cl-scisumm2016/
5http://wing.comp.nus.edu.sg/ cl-scisumm2017/

5

27



Figure 2: Our CNN architecture: stack of two 1-D convolutional layers with 64 hidden units
each (ReLu activations) + 1-D MaxPooling + stack of two 1-D convolutional layers with 128
hidden units each (ReLu activations) + 1-D Global Average Pooling + 50% Dropout + a single
unit output dense layer (sigmoid activation)

citances, their associated reference text and
the discourse facet that it represents.

4.2 Experimental Settings
Precision, Recall and F1-Score are used as
evaluation metrics. The average score on all
topics in the test corpus is reported. We run
experiments on two separate training sets.

In the first run, we use data only from
the 2016 shared task, and not from the 2017
shared task. This is because we need a com-
mon ground for comparison with the existing
state-of-the-art (Yeh et al. (2017)), which
used this dataset. We first train our data
on the training set, and tune the CNN’s hy-
perparameters on the development set. We
then augment the training data and the de-
velopment data to train the final models. We
test our model on the test provided as part
of this dataset. Table 2 shows the perfor-
mance of the CNN model on this test set,
and compares it with the existing state-of-
art and another well-performing model. We
have reported only the CNN’s performance in
this table as (as will be seen in the results of
the second run), this is a better performing
model than ABC and GBC, in our experi-
mental setup.

In the second run, we make use of the
datasets from both 2016 and 2017. Both
the training datasets are augmented to form
the initial training set. After tuning the
CNN’s hyperparameters on the development
set (which is the same for both 2016 and
2017), the initial training and development
sets are augmented to form the final train-
ing set. Grid search algorithm, as given
by Bergstra and Bengio (2012), over 10-fold

cross validation is used to find the best model
parameters for ABC and GBC listed in Ta-
ble 1. Since the gold-standard annotations
for the 2017 test set were not yet available at
the time of conducting our experiments, we
use only the test set of 2016. We report per-
formance of ABC, GBC as well as the CNN
classifier on this test set. Table 3 shows these
results.

Table 1: Model parameter settings

Classifier Architecture and Param-
eter settings

ABC

Learning rate for shrinking
the contribution of each de-
cision tree = 1.3, Boosting
algorithm = SAMME.R for
faster convergence

GBC

Learning rate for shrinking
the contribution of regression
tree = 0.15, Loss = De-
viance for probabilistic out-
puts, No. of Boosting stages
= 100

5 Results and Analysis
Precision, recall and F1-score obtained by
the models on the test set with respect to the
positive classes, evaluated by 10-fold cross
validation are shown in Table 3. The CNN-
based classifier was trained for 30 epochs.
The best scores for each metric have been
shown in bold.

Table 2 shows a comparison of the F1-score
achieved by our model with that of the pre-

6

28



Table 2: F1 scores of previous models

System F1-
scores

Yeh et al. (2017) 0.1443
Aggarwal and
Sharma (2016b) 0.11

Our Method 0.2462

vious models used for the task. The L2-SVM
system by Yeh et al. (2017) produced an F1-
score of 0.1443, which is the highest reported
yet to the best of our knowledge. Our model
outperforms it in terms of F1-score. It must
be mentioned here that Klampfl et al. (2016)
reported an F1-score of 0.346 on the develop-
ment set corpus and 0.432 on the training set
corpus of 2016. However, we have not con-
sidered their system in Table 2 because of the
unavailability of their performance results on
the test set corpus. Figure 3 compares the
performance of our CNN classifier with their
TextSentenceRank assisted sentence classi-
fier on the development and training set cor-
pus (80:20 train:test split) of 2016. Although
the CNN classifier performs better on both
the corpora, the improvement on the devel-
opment corpus is much more significant than
that on the training.

5.1 Control Studies
We run control studies to analyze the con-
tribution of each class of features to our fi-
nal performance. We also control for the
different techniques used, such as SMOTE
and PCA, to see their effect. These con-
trol studies also help us to understand why
our model outperformed the previous state-
of-art. Since the CNN is our best performing
classifier, we make use of it to perform these
control studies.

5.1.1 Effect of feature classes
Figure 4 shows the effect of each class of fea-
tures. We obtain these graphs by removing
one class of features each time from the fea-
ture set and calculating the performance us-
ing all the other classes. From the bar plot
in Figure 4, it is apparent that the class of
lexical features contributes the most in dis-

Figure 3: A comparison of the performance
of our CNN-based classifier on the develop-
ment and training set of 2016 with that of
Klampfl et al. (2016)

tinguishing between a positive and a nega-
tive example. Not using this class of features
gives 0.3371 lesser F1-score than when using
all the features. This means that an informa-
tion retrieval based component to this prob-
lem using lexical features such as TF-IDF,
ROUGE etc. as mentioned in section 3.1.1
is the most important for this task. It is also
possible that this class shows the maximum
effect because of the good number of features
in this class, i.e., 6. The second most signif-
icant class of features is the class of corpus-
based features. Not using this class of fea-
tures gives 0.3002 lesser F1-score than when
using all the features. Our class of corpus-
based features has just the word2vec feature.
It is not surprising that this feature shows
a high impact because word2vec representa-
tions capture a good level of semantic and
syntactic similarity, which was one of the as-
sumptions we built the model on. Not us-
ing the class of surface features gives 0.2429
lesser F1-score than when using all the fea-
tures. One reason for the impact of surface
features could be that it is perhaps the only
class of features that takes numbers and spe-
cial characters into account, and these are
significantly high in number in scientific pa-

7

29



Figure 4: F1 Scores of CNN Model with dif-
ferent feature selection settings

pers. This class also has a high number of
features, i.e., 10. Not using the class of sur-
face features gives 0.0706 lesser F1-score than
when using all the features. The plot also
shows that the impact of WordNet-based fea-
tures contribute the least to distinguishing
between positive and negative examples.

It might therefore be concluded that part
of the reason why our model outperforms the
state-of-the-art is that their model does not
make use of word2vec, while we do so. It also
appears that the modified lexical features
that we have used, namely, named entity
overlap, number overlap and word overlap
provide an added advantage to our model,
over the state-of-the-art.

5.1.2 Effect of data-handling
techniques

Figure 5 shows the contribution of differ-
ent pre-processing and processing techniques
used such as SMOTE (oversampling), under-
sampling and dimensionality reduction us-
ing PCA. There are a few observations that
can be drawn from the bar plot in Figure 5.
Firstly, dimensionality reduction is a crucial
important step in this task. When PCA was
not used on the feature set, the performance
dropped from 0.5558 to 0.2838, which is a re-
duction in F1-score of 0.2720. The existing

Figure 5: F1 Scores of CNN Model with dif-
ferent feature selection settings

state-of-the-art has a higher number of fea-
tures than our work does, and does not per-
form dimensionality reduction on these fea-
tures, which might be one of the reasons be-
hind the better performance achieved in our
work. Further, we see that oversampling us-
ing SMOTE gives an improvement of 0.0555
and using undersampling over and above this
further improves the performance by 0.0615.

Table 3: Results obtained by different
models

Model Precision Recall F1-
score

ABC 0.7141 0.3579 0.4925
GBC 0.7439 0.3237 0.4512
CNN 0.6556 0.5973 0.5558

5.1.3 Classifier-wise performance
Table 3 shows the performance on the com-
bined dataset of the 2016 and 2017 versions
of the shared task, as described in more de-
tail in section 4.2 as the ‘second run’. The
CNN model gives the best performance on
recall and F1-score, while the GBC model
gives the best precision. Precision for each
classifier is considerably higher than that of
recall, indicating that there are relatively few

8

30



false positives while a significant number of
true positives have been missed out.

6 Future Work

To our knowledge, this is the first attempt
which has used a deep learning model for
addressing the task. However, for training
our model, we had to be entirely dependent
on the feature sets extracted. The num-
ber of positive instances in the corpus pro-
vided is still too low to train the model using
the conventional CNN sequence-to-sequence
approach, which, given more data, might
be able to learn more interesting patterns
in the citance-reference pairs. Also, recent
extensions to word2vec such as the Para-
graph Vector (Le and Mikolo (2014)) can
be used to further enhance the semantic simi-
larity measures between the reference-citance
pairs.
Furthermore, the binary labels assigned to
each <CP sentence, RP sentence> pair can
be used to establish some partial order in be-
tween the training instances, which in turn,
can help in modeling the task as a Learning
to rank problem. This ordering can then be
incorporated to predict the relevance-based
ranking of referenced sentences for a citance.

7 Conclusions

We describe our work on reference scope
identification for citances using an extended
feature set applied to three different classi-
fiers. Among the classifiers trained to distin-
guish cited and non-cited pairs, the CNN-
based model gave the overall best results
with an F1 score of 0.5558 on the combined
corpus of CL-SciSumm 2016 and 2017. We
also achieved an F1 score of 0.2462 on the
2016 dataset, which surpasses the previous
state-of-the-art accuracy on the dataset. In
addition to this, we carry out control studies
reporting the contribution of various feature
classes as well as feature selection methods
that have been used by us.

References
Naoki Abe, Yoav Freund, and Robert E.

Schapire. 1999. A short introduction to boost-
ing.

Peeyush Aggarwal and Richa Sharma. 2016a.
Lexical and syntactic cues to identify reference
scope of citance. In BIRNDL@ JCDL, pages
103–112.

Peeyush Aggarwal and Richa Sharma. 2016b.
Lexical and syntactic cues to identify reference
scope of citance. In BIRNDL@JCDL.

Stefano Baccianella, Andrea Esuli, and Fabrizio
Sebastiani. 2010. Sentiwordnet 3.0: An en-
hanced lexical resource for sentiment analysis
and opinion mining. In LREC.

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-
Neto. 2011. Modern information retrieval - the
concepts and technology behind search, second
edition.

James Bergstra and Yoshua Bengio. 2012.
Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research,
13:281–305.

Christopher M. Bishop and Nasser M. Nasrabadi.
2007. Pattern recognition and machine learn-
ing. J. Electronic Imaging, 16:049901.

Kevin W. Bowyer, Nitesh V. Chawla,
Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. Smote: Synthetic minority over-
sampling technique. J. Artif. Intell. Res.
(JAIR), 16:321–357.

Michal Campr and Karel Jezek. 2015. Compar-
ing semantic models for evaluating automatic
document summarization. In TSD.

Ziqiang Cao, Wenjie Li, and Dapeng Wu.
2016. Polyu at cl-scisumm 2016. In
BIRNDL@JCDL.

François Chollet et al. 2015. Keras. https:
//github.com/fchollet/keras.

Ronan Collobert, Patrick Gallinari, Léon Bottou,
Hélène Paugam-Moisy, Samy Bengio, and Yves
Grandvalet. 2004. Large scale machine learn-
ing.

Jerome H. Friedman. 1999. Greedy function ap-
proximation: A gradient boosting machine.

Kokil Jaidka, Muthu Kumar Chandrasekaran,
Sajal Rustagi, and Min-Yen Kan. 2016.
Overview of the cl-scisumm 2016 shared task.
In BIRNDL@JCDL.

Karen Spärck Jones. 2007. Automatic summaris-
ing: The state of the art. Information Process-
ing & Management, 43(6):1449–1481.

Tom Kenter, Alexey Borisov, and Maarten de Ri-
jke. 2016. Siamese cbow: Optimizing
word embeddings for sentence representations.
CoRR, abs/1606.04640.

9

31



Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In EMNLP.

Stefan Klampfl, Andi Rexha, and Roman Kern.
2016. Identifying referenced text in scientific
publications by summarisation and classifica-
tion techniques. In BIRNDL@JCDL.

Quoc V. Le and Tomas Mikolov. 2014. Dis-
tributed representations of sentences and doc-
uments. In ICML.

Lei Li, Liyuan Mao, Yazhao Zhang, Junqi Chi,
Taiwen Huang, Xiaoyue Cong, and Heng Peng.
2016. Cist system for cl-scisumm 2016 shared
task. In BIRNDL@JCDL.

Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to
attention-based neural machine translation. In
EMNLP.

Bruno Malenfant and Guy Lapalme. 2016. Rali
system description for cl-scisumm 2016 shared
task. In BIRNDL@ JCDL, pages 146–155.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gre-
gory S. Corrado, and Jeffrey Dean. 2013. Dis-
tributed representations of words and phrases
and their compositionality. In NIPS.

George A. Miller. 1992. Wordnet: A lexical
database for english. Commun. ACM, 38:39–
41.

Luis Moraes, Shahryar Baki, Rakesh M. Verma,
and Daniel Lee. 2016. University of houston at
cl-scisumm 2016: Svms with tree kernels and
sentence similarity. In BIRNDL@JCDL.

Ani Nenkova, Kathleen McKeown, et al. 2011.
Automatic summarization. Foundations and
Trends® in Information Retrieval, 5(2–3):103–
233.

Nguyen Ngoc Giang, Vu Anh Tran, Duc Luu Ngo,
Dau Phan, Favorisen Lumbanraja, M Reza
Faisal, Bahriddin Abapihi, Mamoru Kubo, and
Kenji Satou. 2016. Dna sequence classification
by convolutional neural network. 09:280–286,
01.

Tadashi Nomoto. 2016. Neal: A neurally en-
hanced approach to linking citation and refer-
ence. In BIRNDL@ JCDL, pages 168–174.

Ted Pedersen, Siddharth Patwardhan, and Jason
Michelizzi. 2004. Wordnet: : Similarity - mea-
suring the relatedness of concepts. In AAAI.

John W. Ratcliff and David Metzener. 1988.
Pattern Matching: The Gestalt Approach.

Radim Rehurek and Petr Sojka. 2010. Software
framework for topic modelling with large cor-
pora.

Jürgen Schmidhuber. 2015. Deep learning in
neural networks: An overview. Neural net-
works : the official journal of the International
Neural Network Society, 61:85–117.

Simone Teufel and Marc Moens. 2002. Summa-
rizing scientific articles: experiments with rel-
evance and rhetorical status. Computational
linguistics, 28(4):409–445.

Michael E. Tipping and Christopher M. Bishop.
1997. Probabilistic principal component anal-
ysis.

Jen-Yuan Yeh, Tien-Yu Hsu, Cheng-Jung Tsai,
and Pei-Cheng Cheng. 2017. Reference scope
identification for citances by classification with
text similarity measures. In ICSCA ’17.

10

32


