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Abstract

This paper describes a methodology for designing Question Answering systems that utilize an
action language ALM to allow inferences based on complex interactions of events described in
texts. This methodology assumes the extension of the VERBNET lexicon with interpretable semantic
annotations in ALM and specifies the use of several other NLP resources to produce ALM system
descriptions for input discourses.

1 Introduction

In this paper, we propose a methodology for designing Question Answering (QA) systems that uses
state-of-the-art techniques from the field of Natural Language Processing (NLP) complementing them
with the latest advances from the field of Knowledge Representation and Reasoning (KRR).

The applicability of KRR for the design and implementation of QA systems was explored by Baral
et al. (2004) who demonstrated the suitability of the KRR language Answer Set Prolog (ASP) (Gel-
fond and Lifschitz, 1991) for this purpose. Balduccini et al. (2008) continued this line of research and
described a QA system with an intended wide coverage, based on KRR techniques and NLP tools.
Todorova and Gelfond (2011; 2012) addressed the problem from a different angle. They focused on
texts restricted to a controlled natural language tailored to motion verbs and concentrated on answering
difficult questions requiring counting. Their knowledge base was written in a higher-level KRR language
than ASP, a so-called action language called ALM (Inclezan and Gelfond, 2016).

The system by Todorova and Gelfond processed multiple-sentence texts exemplified by
Ann went to the room. (1)
Michael left the room. (2)

and derived inferences based on information in these sentences to answer questions such as
Is Michael inside the room (at the end of the story)? (3)

Is Ann inside the room (at the end of the story)? (4)
Is the room empty (at the end of the story)? (5)

In the sequel, we refer to the text composed of sentences (1) and (2) as the MA discourse.
Our goal is to build upon the methodology outlined by Todorova and Gelfond by putting more empha-

sis on the organization of KRR libraries and the NLP stages of QA. We remove some of the constraints
assumed by their system: we do not limit ourselves to the motion verbs and we avoid a commitment
to a controlled language. Our long term goal is to have a methodology that encompasses texts con-
taining a large collection of action verbs (go, give, put exemplify the class of action verbs). In
this paper, we test the feasibility of such a proposal by allowing change of possession verbs such as
grab, grasp, yank in addition to motion verbs. Consider a discourse that contains the sentence

Michael grasped the suitcase. (6)



uttered between sentences (1) and (2). We name it the MAS discourse. We illustrate that a system
developed according to our methodology is able to infer that at the time when Michael was grasping the
suitcase, its location was the room — the location of Michael, and that the suitcase is no longer in the
room at the end of the described scenario.

The main feature of our approach is the use of ALM as a language for encoding the meaning of
action verbs (i.e., the effects and constraints for the execution of the actions they denote). In addition,
we propose to extend an NLP resource about verbs, VERBNET (Kipper-Schuler, 2005; Palmer, 2006),
with ALM based semantic annotations. Other logic formalisms have been used for other NLP tasks
(e.g., Recognizing Textual Entailment (NIST, 2008)), but unlike ALM they cannot perform temporal
reasoning (MacCartney and Manning, 2007; Harmeling, 2009) or reasoning by cases (Bos and Markert,
2005). This makes them less suitable for answering questions about discourses describing sequences of
events.

The paper is structured as follows. Section 2 starts by introducing the KRR action language ALM
by illustrating how a knowledge engineer can utilize this language to formalize the scenarios described
by the MA and MAS discourses and query the respective formalization. In the process, generic modules
that capture the knowledge about such actions/verbs as move, go, and grasp are developed. Sec-
tion 3 focuses on the methods that will allow us to automatically produce ALM descriptions that cap-
ture information present in discourses of interest by utilizing the arsenal of modern NLP lexicons and
tools including VERBNET, PROPBANK (Palmer et al., 2005; Palmer, 2005), SEMLINK (Bonial et al.,
2013b,a), Ontonotes Sense Groupings (CLEAR, 2008), LTH (Johansson and Nugues, 2007b,a), and
CORENLP (Manning et al., 2014). We end with conclusions and future work.

2 The MA and MAS discourses formalized in ALM

Action language ALM is a recent representative of KRR languages for modeling knowledge about
domains in which changes are caused by the occurrence of actions. An important feature of ALM is its
ability to capture the commonality of actions go and leave by defining them as instances of the same
action class that we refer to as MOVE, and thus encode the relation that exists between the corresponding
verbs.

We start by using ALM to formalize the domain behind the MA discourse. First, we use this ex-
ample to illustrate the syntax and semantics of the language. Second, we demonstrate how the ALM
framework can be used to perform inferences required to answer questions (3-5). The section concludes
with the ALM formalization of the MAS discourse.

MA discourse via ALM: There are several informative pieces in the MA discourse:
1. the discourse refers to actions of class MOVE through the use of verbs go and leave. This action

class immediately brings about a set of axioms associated with it. For example, we are aware that it
is impossible to move an object from a point if this object is not at this point.

2. three objects (entities, or instances) are introduced, to which we refer as ann, michael, and room;
and two events (instances of actions): ann moves into room and michael moves out of room.

3. a sequence of event occurrences is given, i.e., first ann moves into room, and next, michael moves
out of room.

Informative piece 1 or ALM module basic motion for modeling the MOVE action class: In
Figure 1 (LHS), we show the ALM module called basic motion. This module is a general purpose
description of knowledge/axioms about the MOVE action class. It describes how the location of objects
is affected by occurrences of events of type MOVE.

Modules in ALM start with the declaration of sorts of objects relevant to the knowledge to be
encoded. In basic motion, we distinguish between things and discrete points in space. We
declare these two sorts as special cases of the pre-defined root sort of ALM called universe. We
also declare a sort called agents, denoting entities capable to move by themselves, as a subsort of
things. The knowledge engineer then proceeds to specify the relevant action classes for the domain in



(LHS)
module basic_motion
sort declarations
things, points :: universe
agents :: things
move :: actions
attributes
actor : agents
origin, dest : points

function declarations
fluents
basic
loc_in : things * points -> booleans

axioms
occurs(X) causes loc_in(A,D)

if instance(X,move),
actor(X)=A,
dest(X)=D.

occurs(X) causes -loc_in(A,O)
if instance(X,move),

actor(X)=A,
origin(X)=O.

impossible occurs(X) if instance(X,move),
actor(X)=A,
origin(X)=O,
-loc_in(A,O).

impossible occurs(X) if instance(X,move),
actor(X)=A,
dest(X)=D,
loc_in(A,D).

(RHS)
module basic_motion_verbnet
sort declarations
concrete :: universe

escape :: actions
attributes
theme : concrete
initial_location, destination : concrete

function declarations
fluents
basic
loc_in : concrete * concrete -> booleans

axioms
occurs(X) causes loc_in(A,D)
if instance(X,escape),

theme(X)=A,
destination(X)=D.

occurs(X) causes -loc_in(A, O)
if instance(X,escape),

theme(X)=A,
initial_location(X)=O.

impossible occurs(X) if instance(X, escape),
theme(X)=A,
initial_location(X)=O,
-loc_in(A,O).

impossible occurs(X) if instance(X,escape),
theme(X)=A,
destination(X)=D,
loc_in(A,D).

Figure 1: LHS: ALM module basic motion capturing knowledge about action class MOVE; RHS:
the same module restated using the VERBNET lexicon terminology.

question. In module basic motion, action class move is declared as a special case of the pre-defined
sort actions with three attributes (i.e., intrinsic properties): attribute actor ranging over the sort
agents, and attributes origin and dest (destination) ranging over points.

Next, properties (fluents and statics) related to the domain are declared. Fluents are properties that
may be changed by actions; they are divided in ALM into basic and defined. Basic fluents normally
maintain their previous values, unless the occurrence of an event causes their value to change. Defined
fluents allow one to specify properties in terms of other properties. Properties are modeled via functions
in ALM using syntax similar to the mathematical notation for functions. In the basic motion mod-
ule, the property of interest is the location loc in of things, which may be affected by the occurrence
of actions of type move and is thus declared as a basic fluent. Per its specification, it is a function that
maps pairs of things and points into the pre-defined sort booleans.
ALM modules conclude with axioms about described action classes and properties. The first two

rules in the basic motion module capture the direct effects of actions of sort move. In particular,
the first axiom states that after an occurrence of an instance of move its actor will be located at the
destination. The second axiom states that after an occurrence of a move event the actor will no longer
be at the origin. We note that symbol ”-” is used to denote the classical negation symbol ¬. The last
two statements describe when the action cannot be executed. In particular, the third and fourth axioms
state that move cannot occur when the actor is not located at the specified origin, and when the actor is
already at the destination, respectively.

Informative piece 2 or ALM system description for the MA discourse: In ALM, we describe a
given domain via a system description that consists of a theory — modules organized into a hierarchy,
and a structure — definitions of instances. A system description captures a transition diagram that char-
acterizes the behavior of the given domain. Trajectories in a transition diagram correspond to possible
evolutions or scenarios in the domain. We illustrate these concepts by means of the discourse ma
system description presented in Figure 2 (LHS), which corresponds to the MA discourse.

The discourse ma theory consists of the line import module basic motion that can be



(LHS)
system description discourse_ma

theory discourse_ma
import module basic_motion

structure discourse_ma
instances
ann in agents
michael in agents
room in points
e1 in move

actor = ann
dest = room

e2 in move
actor = michael
origin = room

(RHS)
system description discourse_ma_verbnet
theory discourse_ma_verbnet
import module basic_motion_verbnet
module drs_michael_and_ann
ann, michael, room :: universe

structure discourse_ma_verbnet
instances
r1 in ann, concrete
r2 in room, concrete
r3 in michael, concrete
e1 in escape
theme = r1
destination = r2

e2 in escape
theme = r3
initial_location = r2

Figure 2: LHS: ALM system description capturing parts of the MA discourse using module
basic motion; RHS: the same system description restated using basic motion verbnet.

Figure 3: Transition diagram captured by the system description discourse ma.

interpreted as a macro to denote that theALM code describing “module basic motion” has to be inserted
in this place. The structure of discourse ma declares instances ann, michael, and room so that
the former two are of sort agents, whereas the latter is of sort points. The two events described in
the MA discourse are represented as instances e1 and e2 of sort move. The actor of e1 is instance
ann and its dest is room, while the actor of e2 is michael and its origin is room.

The system description discourse ma defines the transition diagram T presented in Figure 3.
It consists of four states labeled σ1 · · ·σ4, and five transitions labeled by actions e1, e2 that may take
the dynamic system from one state to another. For example, the arc e1 between states σ2 and σ1 says
that the occurrence of e1 may take the system from the former state to the latter. Note how action e1
cannot occur in state σ1 (due to the last axiom in basic motion) and thus there is no arc in T going
out of σ1 and labeled e1. The initial state of a system is associated with time step 0. Each arc in the
transition diagram suggests an increment of a time step by one. A sequence τ1 = 〈σ2, e1, σ1, e2, σ3〉
constitutes a sample trajectory. This trajectory captures the following scenario: initially (time step 0),
ann is not in room, whereas michael is in room; at time step 0, ann moves to (enters) room; at time
step 1, michael moves from (leaves) room. A sequence τ2 = 〈σ2, e2, σ4, e1, σ3〉 exemplifies another
trajectory of transition diagram T , whereas a sequence 〈σ1, e1, σ2, e2, σ4〉 is not a trajectory.

Informative Piece 3 or ALM histories: A particular domain scenario defines what we call a history
(Gelfond and Khal, 2014) — a set of observations about fluents that hold in some states and events that
happen at some states. Certain trajectories in the transition diagram encoded by a system description are
compatible with a particular history, while others are not. We call the compatible trajectories models of
a history. The MA discourse provides the following history: action e1 happens first (at time 0), then e2
happens (at time 1), which we abbreviate below

{hpd(e1, 0), hpd(e2, 1)}. (7)

Given system description discourse ma, trajectory τ1 is the only model of this history. Thus the
initial state of the story conveyed by the MA discourse must be σ2 and the final one must be σ3.

Answering questions (3-5): Model τ1 of history (7) allows us to answer questions (3-5). The final



(a)
module grasping depends on basic_motion

sort declarations
carriables :: things
grasp :: actions

attributes
grasper : agents
grasped_thing : carriables

function declarations
fluents

basic
holding : agents * carriables -> booleans

defined
can_reach : agents * things -> booleans

axioms
occurs(X) causes holding(A,C) if instance(X,grasp),

grasper(X)=A,
grasped_thing(X)=C.

can_reach(A,C) if loc_in(A)=P, loc_in(C)=P.
impossible occurs(X) if instance(X,grasp),

grasper(X)=A,
grasped_thing(X)=C,
holding(A,C).

impossible occurs(X) if instance(X,grasp),
grasper(X)=A,
grasped_thing(X)=C,
-can_reach(A,C).

loc_in(X,P) if loc_in(C,P), holding(X,C).
loc_in(C,P) if loc_in(X,P), holding(X,C).
-loc_in(X,P) if -loc_in(C,P), holding(X,C).
-loc_in(C,P) if -loc_in(X,P), holding(X,C).

(b)
system description discourse_mas
theory discourse_mas
import module grasping

structure discourse_mas
instances
ann in agents
michael in agents
suitcase in carriables
room in points
e1 in move
actor = ann
dest = room

ea in grasp
grasper = michael
grasped_thing = suitcase

e2 in move
actor = michael
origin = room

Figure 4: (a) ALM module defining action grasp; (b) System description for the MAS discourse.

state σ3 of the trajectory τ1 contains literal -loc in(michael, room), which translates into the
answer no to question (3). State σ3 contains loc in(ann, room) that translates into answer yes to
question (4). Presence of loc in(ann, room) in state σ3 translates into answer no to question (5).

Similarly, we can answer other questions: Is Michael inside the room at the beginning of the story?
Is Ann inside the room at the beginning of the story? Were Ann and Michael in the room together at
some point? How many people were in the room when Ann walked in? The initial state σ2 of model τ1
supports the answers yes and no to the first and the second questions, respectively. The positive answer
to the third question is endorsed by the intermediate state σ1 of τ1. Initial state σ2 encodes the situation
preceding Ann walking into the room. It supports the answer at least one to the last question.

Automatically computing models of a history: Given the ALM system description and the history
that correspond to a discourse in question, the task of computing models of this history relative to the
system description can be automated. First, the system description is translated into a logic program
under answer set semantics using the transformation defined by Inclezan and Gelfond (2016). Second,
the history and a predefined module for temporal projection (Gelfond and Khal, 2014) are added to
the produced logic program. Answer sets of the resulting program can be computed using an off-the-
shelf ASP{f} solver CLINGO{F} available at http://www.mbal.tk/clingof/. Each answer set
corresponds to a model of the given history. A prototype translator from ALM system descriptions and
histories to logic programs is available at http://tinyurl.com/z6n9fmx .

MAS discourse via ALM: In order to model the MAS discourse, an ALM module that formalizes
knowledge about actions of type GRASP is required. Figure 4 (a) presents a module called grasping
that serves this purpose. It is adapted from (Inclezan and Gelfond, 2016), where it was used to illustrate
the methodology of creating modular representations in ALM by encoding a classical Monkey and Ba-
nanas problem from the field of reasoning about actions and change. The first line of module grasping
specifies the reuse of sorts and/or functions explicitly declared in module basic motion. Specifically,
this module reuses the fluent loc in since the location of agents and things conditions what GRASP

actions can be executed.



ALM system description for the MAS discourse: The system description for the MAS discourse,
discourse mas, is presented in Figure 4 (b). Its theory starts with an import statement for module
grasping. Given that grasping depends on module basic motion, the meaning of this ALM
statement is that contents of both modules are copied into the theory of discourse mas. Hence, within
this system description we can instantiate events that are of type grasp or move. The fact that action
classes grasp and move are interconnected in the definition of module grasping allows a knowledge
engineer to model nontrivial interdependencies between actions. For example, an instance of action
grasp causes its agent to hold a grasped object. Module grasping also encodes the knowledge that
if an agent holds an object then the locations of the agent and object must be the same. These restrictions
allow one to deduce that, when an instance of an action move occurs while the agent holds some object,
then this object changes its location just as the agent does. The structure of the discourse mas system
description is defined similarly to that of discourse ma.

History {hpd(e1, 0), hpd(ea, 1), hpd(e2, 2)} records the events described in discourse MAS. In all
models of this history relative to discourse mas (i) the location of entity suitcase is the same
as that of entity michael (namely, entity room) before action instance e2 occurs; (ii) after event
ea occurs michael is holding suitcase in all subsequent states; and (iii) after event e2 occurs
michael is holding suitcase, and both michael and suitcase are not in room. All of these
observations correspond to our expectations given the MAS discourse. Indeed, we infer that the suitcase
is no longer in the room at the end of the story. Similarly, when Michael grasped the suitcase, its location
was the same as the location of Michael, i.e., the room.

3 Automatic construction of ALM system descriptions from discourses

In the previous section we illustrated how a knowledge engineer may encode the information carried
within the MA and MAS discourses inALM. We then discussed how theseALM formalizations can be
used to automatically reason about these discourses. In this section, we present a proposal for automating
the process of creating an ALM system description for an English discourse by relying on modern
NLP tools such as LTH, CORENLP and existing lexical resources including Ontonotes Sense Groupings,
VERBNET, PROPBANK, and SEMLINK. We stress the steps that have to be performed and how NLP
tools and resources are to be used in those steps. The MA discourse is a running example in this section.

Stage 1 or Entity and relation extraction: The goal of this stage is to take an English discourse as
an input and produce a so-called discourse representation structure (DRS) — a basic building block
of Discourse Representation Theory (Kamp and Reyle, 1993). Figure 5 presents a DRS for the MA
discourse. The top part of this DRS enumerates all of the entities, called discourse referents, that take
part in the captured discourse (namely, r1, r2, and r3) as well as referents denoting events that the
discourse describes (namely, e1 and e2). The bottom part of the DRS captures conditions on the entities
and events that follow from the discourse. The events are encoded in Neo-Davidsonian style.

r1 r2 r3 e1 e2
entity(r1) entity(r2) entity(r3)

property(r1,ann) property(r2,room) property(r3,michael)
event(e1) event(e2)

eventType(e1,go.01) eventTime(e1,0) eventArgument(e1,a1,r1) eventArgument(e1,a4,r2)
eventType(e2,leave.01) eventTime(e2,1) eventArgumet(e2,a0,r3) eventArgument(e2,a1,r2)

Figure 5: Discourse representation structure for the MA discourse

To produce a DRS as exemplified, the first proposed step is to process discourse sentences using the
LTH semantic role labeler. For sentences (1) and (2) of the MA discourse, LTH produces the output:

[A1 Ann] [V (go.01) went] [A4 to the room]
[A0 Michael] [V (leave.01) left] [A1 the room]



The examples above are annotated using the rolesets/labels of the predicates go.01 and leave.01
as defined in frame schemas of PROPBANK (version 1.7), where the suffix 01 indicates that Ontonotes
Sense Groupings associates these predicates with senses 1 of verbs go and leave:

go.01: motion
A1: entity in motion/goer A2: extend A3: start point A4: end point
AM-LOC: medium AM-DIR: direction (usually up or down)

leave.01: move away from
A0: entity leaving A1: place left A3: attribute/secondary predication

In the second step, we propose to process a given discourse using the Stanford CORENLP system.
Among other NLP tasks, the CORENLP system can perform mention detection and coreference resolu-
tion. Given the MA discourse it is able to detect that there are three entities in the discourse: Michael,
Ann, and the room, and that expressions the room in sentences (1) and (2) refer to the same entity.

In the third step, the output of systems LTH and CORENLP is combined to produce a DRS for the
given input. Based on the output of CORENLP, entities r1, r2, and r3 that have a property of being
ann, room, and michael, respectively, are added to the DRS. Similarly, events e1 and e2 are known to
be of type go.01 and leave.01, respectively, based on the output of LTH. Relation eventArgument is
populated by using the role labels assigned by LTH. The time step for the events (encoded by eventTime)
is provided based on chronological order of events mentioned in the discourse, which coincides with
default readings of sentences (we disregard for now markers such as before, after).

Related NLP systems: System BOXER (Bos, 2008) is an open-domain NLP tool that, given a discourse
constructs a respective DRS. However, the discourse representation structures constructed by BOXER

omit ordering of events in the discourse (i.e., contain no counterpart to ”eventTime” in Figure 5), as
well as details on the roles played by event arguments. Also, named entity recognition and coreference
resolution components of CORENLP perform better than BOXER.

Stage 2 or From discourse to an ALM system description or via PROPBANK to VERBNET to
ALM: The next question that we tackle is how to map entities, properties, and history present in a
given DRS into the vocabulary ofALMmodules that capture axioms about the actions denoted by verbs
occurring in this DRS? For the MA discourse, this question translates into how do we transition from the
DRS in Figure 5 to an ALM scenario composed of a system description in Figure 2 and history (7)?

In order to produce a system description and a history from a DRS, first we have to link two dis-
tinct PROPBANK predicates go.01 and leave.01 to the same ALM action class MOVE. Second,
we ought to map the semantic roles prescribed by PROPBANK for these predicates to the arguments of
action class MOVE as prescribed by the basic motion module. Third, we have to link the entities
mentioned in the given DRS in Figure 5 with the instances that compose the structure of the system
description capturing this discourse. We will illustrate how these steps result in an ALM system de-
scription discourse ma verbnet presented in Figure 2 (RHS). It is easy to see that to a large extent
the new system description is a syntactic modification of the discourse ma system description in Fig-
ure 2 (LHS) that has been designed earlier to process the MA discourse. The discourse ma verbnet
system description can be used in the same manner to answer questions about this discourse. Next, we
present details on components required to automate the construction of this system description.

VERBNET Lexicon: We start by focusing on the first two of the described tasks: mapping PROPBANK

predicates go.01 and leave.01 and their arguments into instances of the ALM action class MOVE

and its attributes. We argue that it is possible to carry out such mappings in a systematic manner us-
ing theories developed by linguists pertaining to verb semantics. Levin (1993) proposed the grouping
of verbs into classes based on their syntactico-semantic behavior in sentences. Verb lexicon VERB-
NET is organized into verb classes that extend and refine these by Levin. For instance, VERBNET class
ESCAPE-51.1 contains among others verbs go and return. A direct subclass of ESCAPE-51.1 named
ESCAPE-51.1-1 contains verb leave. Any subclass of a class in VERBNET inherits all of the features
of its parent class, but also contains its specific entries. In addition to capturing the grouping informa-
tion of the verbs, VERBNET provides the ontology of core thematic roles associated with each group.



Four (thematic) roles are identified with the classes ESCAPE-51.1 and 51.1-1: theme, initial location,
destination, and trajectory. Condition concrete represents (selectional) restriction that the arguments of
the verbs of this class should satisfy to form semantically coherent sentences. Intuitively, in sentence (1)
an entity corresponding to Ann serves the role theme, while an entity corresponding to the room serves the
role destination. Both of these entities are of concrete kind/sort. Kipper-Schuler, Section 3.1.4 (2005)
describes semantic annotations provided within VERBNET for each class. However, unlike ALM de-
scriptions, these do not have formal semantics and are not computer interpretable in prescribed manner.

The ALM declaration of action class MOVE in Figure 1 (LHS) echoes the information present in
VERBNET. We see how attribute actor of MOVE is declared of sort agents, whereas origin and
dest are declared of sort points. Intuitively, attribute names such as actor, origin, and dest serve
the role of thematic roles theme, initial location, and destination, respectively. Sorts agents and points
echo selectional restrictions and are designated to be of concrete kind by VERBNET. Figure 1 (RHS)
presents the restatement of the basic motion module in (LHS) of the same figure using VERBNET

terminology and named basic motion verbnet. It differs from (LHS) by different name choices.
The only non-syntactic change appears in sort declarations, where the (RHS) module defines a less
specific sort hierarchy. We envision an extended VERBNET that is augmented withALM modules (such
as basic motion verbnet), which provide ALM-based semantic annotations for its verb classes.
Then, the VERBNET lexicon can serve as a lookup table for finding relevant action classes and ALM
modules while processing discourses. We believe that the creation of an extended VERBNET will be an
important contribution to both the NLP and KRR communities.

The SEMLINK Project: The last step to address is how to translate information about entities and events
in a DRS into the ALM system description capturing a given discourse. Here, the missing piece of the
puzzle is the SEMLINK project (Bonial et al., 2013b) that links together PROPBANK and VERBNET.

For instance, SEMLINK contains an entry suggesting that (i) the predicate leave.01 is part of
verb class 51.1-1 (a child of the class ESCAPE-15.1) (ii) the argument A0 of predicate leave.01 is
mapped to role theme of verb class 51.1-1, and (iii) the argument A1 of predicate leave.01 is mapped
to role initial location of class 51.1-1. These mappings are sufficient for devising a translation from
information in the DRS in Figure 5 about event e2 into the respective part of the structure of the ALM
system description present in Figure 2 (RHS). Thus an event of type leave.01 can be seen as an
event of type ESCAPE-51.1 and in turn as an instance of action MOVE, which is captured by escape
in the basic motion verbnet module presented in Figure 1 (RHS). Note that this also implies
that module basic motion verbnet should be imported into the theory of this constructed system
description. Similarly, SEMLINK contains a mapping for predicate go.01 of PROPBANK to a respective
class in VERBNET. Yet, argument A4 of go.01 and role destination in VERBNET is missing in this
mapping. Thus, SEMLINK has to be augmented to accommodate the mapping from A4 to destination.
Nevertheless, SEMLINK provides a solid foundation for the PROPBANK-VERBNET connection.

4 Conclusions and Future Work

We proposed a methodology for building a QA system that uses KRR techniques related to the represen-
tation of actions. We focused on answering questions that require the specification of knowledge about
actions. We argued that annotating the verb lexicon VERBNET with such knowledge specifications in
the KRR language of ALM will allow us to utilize a variety of NLP tools. We showed that the use
of multiple NLP resources provides us with the means to extract information from an input discourse
sufficient to “populate” a respective ALM system description and history that in turn can be used to
draw nontrivial inferences about the discourse in question. In the immediate future, we will evaluate
our method on a collection of texts from project bAbI (Weston et al., 2016; Facebook Research, 2016)
containing motion and change of possession verbs. In a long term, we plan to expand the VERBNET

annotations to include other types of English verbs.
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