@inproceedings{jang-etal-2017-finding,
title = "Finding Structure in Figurative Language: Metaphor Detection with Topic-based Frames",
author = "Jang, Hyeju and
Maki, Keith and
Hovy, Eduard and
Ros{\'e}, Carolyn",
booktitle = "Proceedings of the 18th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = aug,
year = "2017",
address = {Saarbr{\"u}cken, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5538",
doi = "10.18653/v1/W17-5538",
pages = "320--330",
abstract = "In this paper, we present a novel and highly effective method for induction and application of metaphor frame templates as a step toward detecting metaphor in extended discourse. We infer implicit facets of a given metaphor frame using a semi-supervised bootstrapping approach on an unlabeled corpus. Our model applies this frame facet information to metaphor detection, and achieves the state-of-the-art performance on a social media dataset when building upon other proven features in a nonlinear machine learning model. In addition, we illustrate the mechanism through which the frame and topic information enable the more accurate metaphor detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jang-etal-2017-finding">
<titleInfo>
<title>Finding Structure in Figurative Language: Metaphor Detection with Topic-based Frames</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyeju</namePart>
<namePart type="family">Jang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keith</namePart>
<namePart type="family">Maki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rosé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-aug</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Saarbrücken, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present a novel and highly effective method for induction and application of metaphor frame templates as a step toward detecting metaphor in extended discourse. We infer implicit facets of a given metaphor frame using a semi-supervised bootstrapping approach on an unlabeled corpus. Our model applies this frame facet information to metaphor detection, and achieves the state-of-the-art performance on a social media dataset when building upon other proven features in a nonlinear machine learning model. In addition, we illustrate the mechanism through which the frame and topic information enable the more accurate metaphor detection.</abstract>
<identifier type="citekey">jang-etal-2017-finding</identifier>
<identifier type="doi">10.18653/v1/W17-5538</identifier>
<location>
<url>https://aclanthology.org/W17-5538</url>
</location>
<part>
<date>2017-aug</date>
<extent unit="page">
<start>320</start>
<end>330</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Finding Structure in Figurative Language: Metaphor Detection with Topic-based Frames
%A Jang, Hyeju
%A Maki, Keith
%A Hovy, Eduard
%A Rosé, Carolyn
%S Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue
%D 2017
%8 aug
%I Association for Computational Linguistics
%C Saarbrücken, Germany
%F jang-etal-2017-finding
%X In this paper, we present a novel and highly effective method for induction and application of metaphor frame templates as a step toward detecting metaphor in extended discourse. We infer implicit facets of a given metaphor frame using a semi-supervised bootstrapping approach on an unlabeled corpus. Our model applies this frame facet information to metaphor detection, and achieves the state-of-the-art performance on a social media dataset when building upon other proven features in a nonlinear machine learning model. In addition, we illustrate the mechanism through which the frame and topic information enable the more accurate metaphor detection.
%R 10.18653/v1/W17-5538
%U https://aclanthology.org/W17-5538
%U https://doi.org/10.18653/v1/W17-5538
%P 320-330
Markdown (Informal)
[Finding Structure in Figurative Language: Metaphor Detection with Topic-based Frames](https://aclanthology.org/W17-5538) (Jang et al., 2017)
ACL