
Proceedings of the 15th Meeting on the Mathematics of Language, pages 47–58,
London, UK, July 13–14, 2017. c©2017 Association for Computational Linguistics

Latent-Variable PCFGs: Background and Applications

Shay B. Cohen
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
scohen@inf.ed.ac.uk

Abstract

Latent-variable probabilistic context-free
grammars are latent-variable models that
are based on context-free grammars. Non-
terminals are associated with latent states
that provide contextual information dur-
ing the top-down rewriting process of the
grammar. We survey a few of the tech-
niques used to estimate such grammars
and to parse text with them. We also give
an overview of what the latent states rep-
resent for English Penn treebank parsing,
and provide an overview of extensions and
related models to these grammars.

1 Introduction

Probabilistic grammars have been one of the most
important modeling tools available in the natu-
ral language processing toolkit. They are of-
ten humanly interpretable because of their sym-
bolic backbone, while their probabilistic compo-
nent helps with reasoning under uncertainty. Prob-
abilistic grammars have mostly been used for syn-
tactic analysis in NLP (Charniak, 1997; Collins,
2003; Hockenmaier and Steedman, 2002), but they
are also useful for other problems both in and out-
side of NLP (Sakakibara et al., 1994; Guerra and
Aloimonos, 2005; Lin et al., 2009).

Latent-variable models, on the other hand, are
also a modeling tool of great importance in natu-
ral language processing. They have been used for
many applications, including machine translation,
natural language generation, question answering
and semantics. Latent-variable models are cen-
tered around learning from incomplete data. This
means that the underlying statistical model is de-
fined over latent random variables that are not ob-
served in the data used for learning. The latent

variables explain correlations between observed
random variables.

As such, it is not surprising that latent-variable
models were combined with probabilistic gram-
mars to train strong models that detect unob-
served patterns in data, while retaining the in-
terpretability and symbolic backbone contained
within grammars. Latent-variable grammars have
been mostly used for syntactic parsing, most
prominently through the use of latent-variable
probabilistic context-free grammars (L-PCFGs) –
PCFGs that are augmented with latent states.

In this paper, we survey the use of L-PCFGs for
syntactic parsing and other applications. We also
survey the two main families of algorithms used
for learning L-PCFGs: expectation-maximization
algorithms and spectral algorithms. We analyze
the latent state representations that one learns
with L-PCFGs, and also describe extensions of L-
PCFGs and related models (such as those that ap-
pear in deep learning).

2 Latent-Variable PCFGs

Latent-variable PCFGs (L-PCFGs) are PCFGs
with additional latent states that decorate each
nonterminal in each rule. While the backbone of
an L-PCFG is simply a context-free grammar (be-
cause the decoration of the nonterminal with a la-
tent state together with the nonterminal itself can
be thought of as a new composite nonterminal),
the use of L-PCFGs also implies a specific pro-
cess of learning them from data: the decoration of
the nonterminals with latent states is assumed to
be absent from the sampled data from which we
learn the model.

More formally, a latent-variable probabilistic
context-free grammar (L-PCFG; in Chomsky nor-
mal form) is 5-tuple (N ,R,m, n, p) where:

• N is the set of nonterminal symbols in the

47

grammar.

• [m] is the set of possible hidden states where
[m] is defined as {1, . . . ,m}.

• [n] is the set of possible words.

• R is a set of context-free rules in the form of
a → b c or a → x, where a, b, c ∈ N are
nonterminals and x ∈ [n] is a word.

• For all a → b c ∈ R, h1, h2, h3 ∈
[m], we have a context-free rule a(h1) →
b(h2) c(h3) and a parameter p(a(h1) →
b(h2) c(h3) | a(h1)).

• For all a → x ∈ R, h ∈ [m], we have a
context-free rule a(h) → x and a parameter
p(a(h)→ x | a(h)).

• For all a ∈ N and h ∈ [m], we have a pa-
rameter p(a(h)) which is the probability of
nonterminal a paired with hidden variable h
being at the root of the tree.

The parameters satisfy the following normaliza-
tion constraints:

∑

a,h

p(a(h)) = 1,

and for all a ∈ N and h ∈ [m]:

∑

a(h)→b(h2) c(h3)

p(a(h)→ b(h2) c(h3))

+
∑

a(h)→x
p(a(h)→ x) = 1

Note that for simplicity, we consider the case
where every nonterminal symbol has the same
number m of hidden state values. It is simple
to generalize the method to allow different num-
bers of hidden states for each nonterminal. In both
cases, though, the space of latent states for each
nonterminal is separate. This means that latent
state 2 for example for an NP has no relationship
to latent state 2 for VP.

The generative story that such an L-PCFG
model induces is similar to one of PCFGs. We
begin with the top node of the derivation tree with
its latent state by drawing a nonterminal and a la-
tent state from p(a(h)), and then recursively draw
rules in the form of a(h) → x or a(h1) →

b(h2) c(h3) conditioned on the parent node, un-
til all nodes at the bottom of the tree are terminal
nodes from [n]. Figure 1 provides an example of
such a derivation.

We refer to a rule of the form a → b c as a
“skeletal” rule from the “skeletal grammar.” We
note that while we provided the formulation of L-
PCFGs in Chomsky normal form, there is a natural
extension to arbitrary PCFGs, where rules of the
form a→ α for α ∈ N ∗ would be decorated with
|α| + 1 latent states, a state per nonterminal that
appears in the rule.

The usual independence assumption made by a
PCFG is that “inside” and “outside” trees (shown
in Figure 2) are conditionally independent from
each other if we know the node that connects them.
More formally, if we denote a tree τ and a node
β in that tree as a decomposition τ = (τ0, τ1, β)
where τ0 is the outside tree at node β and τ1 is the
inside tree at node β, then it holds that

p(τ1 | τ0, β) = p(τ1 | β).
This independence assumption of PCFGs can

be quite restrictive in modeling syntax of language
or in general. Essentially, no local context is mod-
eled for syntactic categories, context which should
be carried from different parts of the tree.

Latent-variable PCFGs weaken these indepen-
dence assumption by introducing a latent state at
every node in the tree. Now an inside and an
outside tree are conditionally independent of each
other given both the nonterminal node in the tree
that connects these two subtrees and the latent
state that is associated with that node.

In the rest of the paper, we denote a skeletal tree
by τ and a full derivation with latent state assign-
ments h = (h1, . . . , hN) by τ(h) where N is the
number of nodes in τ .

3 Evolution of Latent-Variable PCFGs

The idea of decorating nonterminals with addi-
tional information, and breaking the statistical
independence assumptions that PCFGs typically
make, has a long history in natural language pro-
cessing. Johnson (1998) introduced a variety of
tree transformations on the Penn treebank, with an
aim to improve the parsing accuracy of a PCFG
extracted from that treebank. One of the trans-
formations introduced was that of “parent anno-
tation” where each nonterminal is annotated with
its parent symbol.

48

S(2)

S(1)

NP(4)

DT(1)

The

NN(5)

governor

VP(6)

MD(1)

could

RB(1)

n’t

VP(6)

VB(2)

make

NP(3)

PRP(4)

it

IN(2)

so

S(1)

NP(50

DT(1)

the

NN(5)

lieutenant

VP(7)

VBD(2)

welcomed

NP(3)

DT(1)

the

NNS(2)

guests

Figure 1: An example of a phrase-structure tree in English inspired by the Penn treebank (Marcus et al.,
1993), potentially generated from an L-PCFG model. The indices next to each nonterminal in the tree
denote the latent states associated with that node in the derivation. (Punctuation omitted.)

This idea is also strongly related to lexicalized
grammars,1 in which nonterminals are decorated
with a head word propagated from the bottom of
the tree. Most often, the head word is propagated
using head rules, which decide which child of a
given node is the head node based on linguistically
motivated rules.

The context-free grammar formalism that cor-
responds to head lexicalization is bilexical gram-
mar, which was introduced by Eisner and Satta
(1999). Head lexicalization was used by Charniak
(1997) and Collins (2003) to achieve state-of-the-
art parsing results for English. Head lexicalization
of grammars served as the basis for much of the
subsequent parsing work.

Klein and Manning (2003) further built on the
idea of tree transformations, and created linguisti-
cally motivated nonterminal refinements to parse
the English treebank. Their work avoided the use
of head lexicalization, but still produced a rela-
tively high level of accuracy (though not state of
the art) for parsing the Penn treebank. Some of the
refinements they proposed generalize parent anno-
tation (to higher order “vertical” Markovization)
in a rather generic manner, but other refinements

1This is different than the lexicalization of grammars
where all derivation rules are put into the lexicon, such
as with combinatory categorial grammars (Steedman, 2000)
or head-driven phrase structure grammars (Pollard and Sag,
1994).

rely heavily on linguistic knowledge of English,
and as such they do not generalize to treebanks in
other languages.

With all of this previous work, nonterminal re-
finement is central to the underlying parsing for-
malism. However, these decorations are extracted
from the treebank by means of transformations
on trees. It was not until the work by Matsuzaki
et al. (2005) and Prescher (2005) that the decora-
tion became a “latent annotation.” At that point, L-
PCFGs were performing close to state of the art in
syntactic parsing. Dreyer and Eisner (2006) sug-
gested a more complex training algorithm for L-
PCFGs to improve their accuracy. Then, Petrov
et al. (2006) further improved the parsing results
of L-PCFGs to match state of the art and also sug-
gested a coarse-to-fine approach that made pars-
ing much more efficient (the asymptotic compu-
tational complexity of parsing with L-PCFGs, in
their vanilla form, grows cubically with the num-
ber of latent states). It was at this time that many
other researchers started to make use of L-PCFGs
for a variety of syntax parsers in different lan-
guages, some of which are described in the rest
of the paper.

4 Learning of L-PCFGs

Given that we assume with L-PCFGs that the la-
tent states decorating the nonterminals are not ob-

49

VP

V

chased

NP

D

the

N

cat

S

NP

D

the

N

mouse

VP

Figure 2: The inside tree (left) and outside tree
(right) for the nonterminal VP in the parse tree
(S (NP (D the) (N mouse)) (VP (V
chased) (NP (D the) (N cat)))) for
the sentence “the mouse chased the cat.”

served as part of the data, the learning problem
posed by L-PCFGs is challenging and non-trivial.
It requires learning the rule probabilities of an L-
PCFG – such rules have latent states attached to
them, as described in §2 – without knowing any of
the latent states that are attached to the trees sam-
pled from the underlying L-PCFG distribution.

Formally, we are given M training examples in
the form of skeletal trees, τ (1), . . . , τ (M) and our
goal is to assign probabilities to the grammar rules
with latent states. Implicitly, we assume that the
skeletal grammar is given, and indeed it can be
read off a treebank by extracting parents together
with their immediate children (possibly after a “bi-
narization” process).

4.1 Expectation-Maximization Learning

The first attempt at learning the rule probabilities
of an L-PCFG from a treebank was carried out by
Matsuzaki et al. (2005), who used the expectation-
maximization (EM) algorithm. The EM algorithm
is tailored to this specific problem of estimating L-
PCFGs. It iterates between two steps, the E-step
and the M-step. In the E-step it collects statistics
about the latent state distributions for all nodes in
all trees in the treebank (using a dynamic program-
ming algorithm akin to CKY) and in the M-step
it re-estimates the model based on these collected
statistics. Before the first E-step is executed, the L-
PCFG rule probabilities are initialized randomly.

While the EM algorithm is a highly influential
algorithm that changed the way we reason about
learning from incomplete data, it has some weak-
nesses, both practical and theoretical. The major
practical weakness is that it requires running an
“inference” algorithm multiple times over the data
to collect the statistics in each E-step, which can
be computationally expensive. This inference, as
mentioned above, comes in the form of running a

dynamic programming algorithm that computes a
marginal probability for each node in each tree of
the form µ(a, hk, i, j) where i and j are indices in
the string the dynamic programming is run on, a
is a nonterminal and hk is a latent state for node k
in a tree.

This marginal probability corresponds to:

µ(a, hk, i, j) =
∑

τ(h) : (a,hk,i,j)∈τ(h)
p(τ(h))

i.e. the sum of all probabilities of full tree deriva-
tions (that include latent states) such that a(hk)
spans the substring between index i and j. It is
important to note that while the dynamic program-
ming algorithm is akin to parsing algorithms such
as CKY, its complexity is not cubic, but linear.
This is true because during the E-step, the skeletal
tree is fixed. We are not actually parsing a string,
but instead marginalize the latent states in the fixed
skeletal tree. When parsing a string with latent-
variable PCFG (see §5), the complexity indeed be-
comes cubic because the skeletal tree needs to be
inferred.

By estimating the parameters of an L-PCFG, the
EM algorithm finds a maximum for the following
objective function:

L(τ (1), . . . , τ (M)) =

M∑

i=1

log

(∑

h

p(τ (i)(h))

)
.

(1)
This is the log-likelihood of the observed data,

marginalizing out the latent state from the under-
lying L-PCFG distribution. This log-likelihood
function can be thought of as a measure of how
well a specific set of parameters fit the data. The
higher the log-likelihood is for a specific set of pa-
rameters, the more “likely” these parameters make
the observed data.

Maximizing the log-likelihood function has
deep roots in frequentist statistical theory, and in
many cases, it can be shown that finding the global
maximum of the log-likelihood will lead to “con-
sistent” parameter estimates – meaning, as the
amount of data increases, the parameters will get
closer to the parameters from which the data was
sampled.

The problem with the EM algorithm is that
it only identifies a local maximum of this log-
likelihood function, as the function has a “bumpy”

50

surface that includes several maxima, some bet-
ter than others. Finding the global one (i.e. the
local maximum that gives the highest value to the
log-likelihood) is a computationally difficult prob-
lem for L-PCFGs, and there are no known solu-
tions that guarantee such identification in an effi-
cient manner. As a result, much of the theory of
maximum likelihood estimation that is mentioned
above does not apply to the EM algorithm with L-
PCFGs.

It is important to note that this issue with the
EM algorithm and L-PCFGs is more of a theo-
retical concern than a practical concern. In prac-
tice, if the EM algorithm is initialized in the
way specified by Matsuzaki et al. (2005), it con-
verges to a local maximum that provides a rel-
atively high parsing accuracy for syntactic pars-
ing of English and other languages. In addition,
the log-likelihood is not fully correlated with pars-
ing performance (such as that measured by the
PARSEVAL metric; Black et al., 1991) and there-
fore identifying the global maximum of the log-
likelihood function does not guarantee optimal
parsing performance.

Coarse-to-Fine Techniques Building on the
expectation-maximization algorithm, Petrov et al.
(2006) introduced a coarse-to-fine technique
(Charniak and Johnson, 2005) for estimating L-
PCFGs. This technique uses the EM algorithm as
a subroutine. It first starts by running the EM algo-
rithm with a small number of latent states for each
nonterminal. It then works by successively “split-
ting” and “merging” nonterminals. In a split step,
more latent states are added to the nonterminals
(usually by multiplying the number of latent states
associated with them by two). To avoid overfitting
the model to the training data, this is accompanied
by a merge step, in which latent states are merged
together to decrease the number of latent states as-
sociated with each nonterminal.

After each split and merge step (which are done
in “split-merge cycles”), EM is initialized using
the last model and re-run again to obtain a new
set of parameters for the split/merge grammar. As
such, this coarse-to-fine technique aims to locally
maximize the marginal log-likelihood as given in
Eq. 1 while also controlling for model size (the
number of latent variables associated with each
nonterminal).

4.2 Spectral Learning

At their core, spectral algorithms exploit the con-
ditional independence that L-PCFGs makes to ex-
tract the parameters with the latent states (Cohen
et al., 2013, 2014). More specifically, L-PCFGs
assume that an “inside” tree and an “outside” tree,
shown in Figure 2 are conditionally independent
of each other given the nonterminal and latent state
that attaches them to each other. As such, the
correlation between patterns in the inside tree and
outside tree distributions dictate the identity of the
latent states and their distribution. To identify such
a correlation, one can extract the latent state pa-
rameters by building a co-occurrence matrix (or
a cross-covariance matrix) of inside and outside
trees (in skeletal form; these are represented by
feature vectors over such trees; see below), and
then apply singular value decomposition (SVD;
Strang et al., 1993) on this matrix. This approach
was originally introduced for hidden Markov mod-
els (Hsu et al., 2012) and has been used for other
types of grammars and parsing formalisms as well
(Bailly et al., 2010; Luque et al., 2012; Dhillon
et al., 2012).

As mentioned above, the inside and outside
trees are represented by feature vectors in the co-
occurrence matrix. This means that the inside and
outside trees are mapped to real vectors. This is a
common way to reduce a structured object into a
manageable mathematical object that can be sta-
tistically processed. In the case of spectral al-
gorithms for parsing, the feature functions indi-
cate local neighborhood surrounding the top node
(for inside trees) or footer node (for outside trees).
As such, these methods distill information that
was previously used by approaches such as parent
annotation, annotation with linguistic features or
Markovization (see §3) into latent states. The EM
algorithm, on the other hand, does not make any
use of feature functions in the process of learning.

Another advantage of spectral algorithms over
the expectation-maximization algorithm is that
they provide a natural way to select the number
of latent states for each nonterminal. The singular
values of the inside-outside co-occurrence matrix
offer a criterion to do that. Each singular value
is associated with a latent state, and to retain a
good approximation of this matrix with SVD, one
needs to select only the largest singular values.
The smaller ones can be removed from the SVD
approximation.

51

That being said, Narayan and Cohen (2016)
showed that the number of latent states can be
further optimized with spectral algorithms by us-
ing coarse-to-fine techniques such as Petrov et al.
(2006) used. This means that while the criterion
above with top singular values is natural and easy
to implement, further refinements can be made to
improve it.

It is important to note that unlike spectral algo-
rithms, the EM algorithm has an interpretation that
is valid even when the data it is applied on is not
generated from an L-PCFG in the family we are
estimating from. It can be viewed as minimizing
Kullback-Leibler (KL) divergence, a measure for
distributional divergence, between the empirical
distribution and the family of possible L-PCFGs
from which a model is selected. To date, the theo-
retical guarantees of L-PCFGs with spectral algo-
rithms require the assumption that the data is gen-
erated from an L-PCFG distribution. Still, the EM
algorithm and spectral algorithms yield similar re-
sults on a variety of benchmarks for multilingual
parsing, even for data that are clearly not sampled
from an L-PCFG (as one might argue is true for
most natural language data).

4.3 Other Learning Algorithms

Other scenarios and algorithms for learning L-
PCFGs have been proposed. One such example is
that of the work on self-training (McClosky et al.,
2006) of L-PCFGs by Huang et al. (2010) and
Huang and Harper (2009). With self-training, a
parser is trained from seed annotated data (such
as the Penn treebank), and then the parser learned
is used to parse a large amount of unlabeled data.
After that step, a new parser is learned from both
the annotated data and the parsed data, as if the
latter are gold-standard data.

Petrov (2010) exploited the fact that the EM al-
gorithm is sensitive to its initialization point (and
returns a different model in each execution) and
estimated an L-PCFG multiple times from anno-
tated data using a coarse-to-fine EM technique.
Once all grammars were learned, they were com-
bined in a product-of-experts style, and then they
were used to parse unseen data. Similar exper-
iments were done later with spectral algorithms,
and showed that essentially using multiple gram-
mars has the effect of regularization.

Petrov and Klein (2008) extended L-PCFGs to
log-linear latent grammars – this means that the

rule weights learned are no longer constrained to
be probabilities. Instead, the model has an ad-
ditional normalization constant that ensures that
it defines a probability of derivation trees even
though the rule weights are no longer probabil-
ities. They used discriminative training to esti-
mate such L-PCFGs. Instead of finding a local
maximum of the marginal log-likelihood as EM
does, they find a local maximum for the condi-
tional marginal log-likelihood.

One of the earlier training algorithms of L-
PCFGs selectively refines nonterminals by using
EM with annealing (Dreyer and Eisner, 2006).
The authors slightly modify the L-PCFG model to
pass features between nodes in the parse tree, mo-
tivated by prior linguistic work on feature passing.
Finally, Stanojević and Sima’an (2015) used a re-
finement model for the induction of a Reordering
Grammar for machine translation. They used the
EM algorithm for estimating their model.

5 L-PCFGs for Multilingual Parsing

In this section, we discuss the use of L-PCFGs for
syntactic parsing.

5.1 Parsing with L-PCFGs

Parsing with L-PCFGs usually entails finding a
skeletal tree for a given string. While the latent
variables assist in the modeling by adding con-
textual information to the derivation, they are not
necessarily a target for prediction, and therefore
we are interested in marginalizing them out dur-
ing parsing.

Given a string w, this means that we are inter-
ested in finding the following tree:

τ∗ = argmax
τ

∑

h

p(τ(h) | w).

The maximization of a sum of products in this
form (the product originates in the probability
p(τ(h) | w), which is proportional to a prod-
uct of rule probabilities) is computationally in-
tractable. As such, other approaches to parsing
with L-PCFGs have been developed. The most
common one used is based on minimum Bayes risk
decoding (MBR; Goodman, 1996). With MBR,
the maximization problem turns into maximizing
the sum of the marginal probabilities of each node
that appear in the tree. It is motivated by maxi-
mizing the recall of correct constituents in the pre-
dicted tree.

52

MBR can be quite expensive to run with a large
number of latent states, as the dynamic program-
ming algorithm that performs the parsing scales
cubically as a function of the number of latent
states. This is where coarse-to-fine techniques
have an advantage – one can parse incrementally
with coarser models until reaching the most re-
fined model, at each point pruning the parsing
chart with low probability items from the coarser
model. Tensor decomposition can also be used
to speed up L-PCFG parsing (Cohen and Collins,
2012).

The main application for L-PCFGs is multilin-
gual syntactic parsing. In their early version (Mat-
suzaki et al., 2005), L-PCFGs were used to parse
the English Penn treebank with some success – the
results were not state of the art, but close to it. In
subsequent work, Petrov et al. (2006) used coarse-
to-fine techniques to further improve EM estima-
tion of L-PCFGs. This led to the development of
the Berkeley parser, which has given state-of-the-
art results for English and other languages. Spec-
tral algorithms also yield results which are close to
state of the art in a multilingual setting.

Since their inception, L-PCFGs have been used
for syntactic parsing in multiple studies for a vari-
ety of languages such as English, French, German,
Chinese, Arabic and other morphologically rich
languages (Candito et al., 2010; Attia et al., 2010;
Green and Manning, 2010; Tounsi and Van Gen-
abith, 2010; Goldberg and Elhadad, 2011; De-
hdari et al., 2011; Björkelund et al., 2014; Zeng
et al., 2014; Sun et al., 2014; Huang et al., 2014;
Narayan and Cohen, 2016)

5.2 Interpretation for Latent States

One of the advantages of using latent variable
models is that often the latent variables can be
assigned an interpretation once they are inferred.
This post-hoc interpretation can be revealing about
linguistic patterns that are present in the data and
are learned automatically.

To do this kind of analysis, we computed the
marginals for each node in each tree in the Penn
treebank after training a model with the spectral
algorithm of Narayan and Cohen (2015). The re-
sults are available in the LPCFGVIEWER tool.2

2Available in http://cohort.inf.ed.ac.uk/
lpcfgviewer. The online tool includes analysis of other
languages, including French, German, Hebrew, Hungarian,
Korean, Polish, Swedish and Basque.

State Frequent words
IN (preposition)

0 of ×323
1 about ×248
2 than ×661, as ×648, because ×209
3 from ×313, at ×324
4 into ×178
5 over ×122
6 Under ×127

DT (determiners)
0 These ×105
1 Some ×204
2 that ×190
3 both ×102
4 any ×613
5 the ×574
6 those ×247, all ×242
7 all ×105
8 another ×276, no ×211

CD (numbers)
0 8 ×132
1 million ×451, billion ×248

RB (adverb)
0 up ×175
1 as ×271
2 not ×490, n’t ×2695
3 not ×236
4 only ×159
5 well ×129

CC (conjunction)
0 But ×255
1 and ×101
2 and ×218
3 But ×196
4 or ×162
5 and ×478

Table 1: A list of part-of-speech tags and most fre-
quent words associated with latent states that were
learned for them using the algorithm of Narayan
and Cohen (2015). The numbers next to each word
indicate a strength (the number of times that word
appeared with that POS tag and latent state in the
Penn treebank).

There are a few observations that can be con-
cluded when inspecting these results:

• Lexicalization of closed-word tags: For the
closed-word part-of-speech (POS) tags, both the
EM algorithm and the spectral algorithm asso-

53

ciate a latent state with mostly a single word.
For example, for determiners, there would be a
latent state for “the” and for “a.” Often words
with different casing or contracted form joined
in the same cluster. Table 1, for example, shows
that latent state 2 for RB (adverbs) is associated
with “not” and “n’t.”
• Semantic clustering of phrases: Consider the

noun phrases in Table 2, which are the most fre-
quently ones associated with each latent state
in the learned L-PCFG model. We see that
there is in certain cases semantic clustering of
such noun phrases, in cases where such seman-
tic clustering can be directed by syntactic in-
formation in the parse trees. For example, the
first latent state of the noun phrases is mostly
associated with dates in the form of month, day,
year. The seventh latent state is mostly associ-
ated with dollar amount.
• Dependence on domain: It is clear from Ta-

ble 2 and similar statistics for other nontermi-
nals that the association of latent states with
nonterminal phrases is highly dependent on the
domain on which the L-PCFG was trained. The
L-PCFG in Table 2 was trained on the Penn tree-
bank, and as such, latent states are associated
with financial terms that have some similarity
(such as shares and currency).

When inspecting the phrases associated with
specific latent states and nonterminals (in the
LPCFGVIEWER tool), one might argue that there
is a weak notion of substitutability that exists with
L-PCFGs. By this, we are referring to the idea that
phrases associated with an identical latent state
with high probability are more likely to be sub-
stitutable in different contexts, not just syntacti-
cally, but also semantically. The latent state asso-
ciated with dates (in noun phrases) in Table 1 is
one example of that. This hypothesis remains to
be proven empirically in a methodical way.

6 Extensions of L-PCFGs and Related
Models

Extensions Natural generalizations of PCFGs,
such as probabilistic linear-context free rewriting
systems (LCFRS; Kallmeyer and Maier, 2010)
and synchronous grammars can also be turned into
probabilistic grammars with latent states. As long
as the backbone structure of the skeletal grammar
is of the form a → α where α includes nontermi-
nals in one form or the other, the nonterminals can

be decorated with additional latent state informa-
tion.

Work about using other grammar formalisms
with latent states includes the work of Fowler and
Penn (2010) who introduced latent states into a
combinatory categorial grammar (CCG) for syn-
tactic parsing, the work of Saluja et al. (2014),
who generalized L-PCFGs to synchronous L-
PCFGs and proposed to estimate them using both
a spectral algorithm and EM for machine trans-
lation and the work of Louis and Cohen (2015)
who modeled online forum topic structure by us-
ing LCFRS with latent states (the latent states cor-
responded to topics that need to be inferred from
data). Models similar to L-PCFGs have been used
for parsing with discontinuous elements (Neder-
hof and Yli-Jyrä, 2017). They have also been
used to describe transition-based systems for de-
pendency formalisms (Nederhof, 2016).

Related Models As mentioned above, the tra-
ditional L-PCFG parsing algorithm requires com-
puting marginals for each node in the tree. They
are computed using an inside-outside algorithm –
an inside pass that works bottom up in the tree,
similarly to the CKY algorithm, and an outside
pass that works top down.

When computing marginals with the skeletal
tree being fixed, the bottom up inside algorithm
can be viewed as an algorithm that propagates
vector representations of each node up in the tree
by using tensor contraction. The general form of
that algorithm is:

vparent = F (vlc, vrc). (2)

where vparent, vlc, vrc ∈ Rm denoting vectors as-
sociated with a parent node, its left child and its
right child, and F : Rm × Rm → Rm takes as in-
put two children node vectors and returns the out-
put node vector. In the case of L-PCFGs, F is a
function that is associated with a rule a → b c,
T a→b c, where b is the nonterminal for the left
child, c is the nonterminal for the right child and a
is the parent nonterminal. T a→b c is then defined
as:

[T a→b c(vlc, vrc)]h1

=
∑

h2,h3

p(a(h1) → b(h2) c(h3) | a(h1))[vlc]h2 [vrc]h3 .

54

0
”Aug. 30 , 1988”, ”Aug. 31 , 1987”, ”Dec. 31 , 1988”, ”Oct. 16 , 1996”, ”Oct. 1 , 1999”,
”Oct. 1 , 2019”, ”Nov. 8 , 1996”, ”Oct. 15 , 1999”, ”April 30 , 1988”, ”Nov. 8 , 1994”

1 ”12,000 miles”, ”About 20,000 years”, “this year”, “A year”, “a year” ×7

2

“FROG-7B missiles , the bomber version of the An-12 , MiG-23BN high-altitude aircraft ,
MiG-29s , which can outfly Pakistan ’s U.S.-built F16s ,”, “AMERICAN BUILDING MAIN-
TENANCE INDUSTRIES Inc. , San Francisco , provider of maintenance services , annual
revenue of $ 582 million , NYSE ,”, “DIASONICS INC. , South San Francisco , maker of
magnetic resonance imaging equipment , annual sales of $ 281 million , Amex ,”, “EVEREX
SYSTEMS INC. , Fremont , maker of personal computers and peripherals , annual sales of $
377 million , OTC ,”, “ANTHEM ELECTRONICS INC. , San Jose , distributor of electronic
parts , annual sales of about $ 300 million , NYSE ,”, “APPLIED MATERIALS INC. , Santa
Clara , maker of computer-chip machine systems , annual sales of $ 490 million , OTC ,”

3

“James McCall , vice president , materials , at Battelle , a technology and management-research
giant based in Columbus , Ohio”, “Frank Kline Jr. , partner in Lambda Funds , a Beverly
Hills , Calif. , venture capital concern”, “Allen Hadhazy , senior analyst at the Institute for
Econometric Research , Fort Lauderdale , Fla. , which publishes the New Issues newsletter
on IPOs”, “a group of investment banks headed by First Boston Corp. and co-managed by
Goldman , Sachs & Co. , Merrill Lynch Capital Markets , Morgan Stanley & Co. , and
Salomon Brothers Inc”, “Charles J. O’Connell , deputy district director in Los Angeles of the
California Department of Transportation , nicknamed Caltrans”, “Francis J. McNeil , who , as
deputy assistant secretary of state for inter-American affairs , first ran across reports about Mr.
Noriega in 1977”

4

“TREASURY BILLS : Results of the Monday , October 16 , 1989 , auction of short-term U.S.
government bills , sold at a discount from face value in units of $ 10,000 to $ 1 million : 7.37
% 13 weeks ; 7.42 % 26 weeks .”, “California Health Facilities Financing Authority – $ 144.35
million of revenue bonds for Kaiser Permanente , due 19931999 , 2004 , 2008 , 2018 and 2019
, tentatively priced by a PaineWebber Inc. group to yield from 6.25 % in 1993 to 7.227 %
in 2018 .”, “TREASURY BILLS : Results of the Monday , October 16 , 1989 , auction of
short-term U.S. government bills , sold at a discount from face value in units of $ 10,000 to $ 1
million : 7.37 % 13 weeks ; 7.42 % 26 weeks .”, “Health Care Property Investors Inc. , offering
of 2,250,000 shares of common stock , via Merrill Lynch Capital Markets , Alex . Brown &
Sons Inc. and Dean Witter Reynolds Inc .”, ”SUN MICROSYSTEMS INC. , Mountain View
, maker of desktop computers , annual sales $ 1.77 billion , OTC , no injured employees and
very little damage to buildings .”

5 “$ 615,000 face amount”, “a share” × 7, “a revival”

6

“bonds due Nov. 2 , 1993 , with equity-purchase warrants”, “bonds due Nov. 8 , 1994 ,
with equity-purchase warrants”, “20,000 to 30,000 Soviet Central Asian KGB Border Guards”,
“bonds due Nov. 1 , 1993 , with equity-purchase warrants”, “a van Gogh , a Monet , other
paintings , furniture”, “3,111,000 common shares”, “offering of 2,250,000 shares of common
stock”, “a Newark , N.J. , textile businessman”

7
“$ 1,150,000”, “166,900,000 shares”, “$ 124,732”, “$ 45,000”, “$ 1,500”, “$ 20,000”, “$
342,122”, “$ 1,000”, “$ 3,000”, “S$ 500,000”

8
“$ 20,000 a year”, “$ 342,122 last year”, “as many as 60,000 additional tourists a day”, “$
80,000 a year”, “1,000 flights a day”, “26,000 units next year”, “200,000 cars a year”, “$ 200
a share” ×3

Table 2: Examples of most likely phrases for the noun phrase category (NP) for a latent-variable PCFG
extracted using the algorithm of Narayan and Cohen (2015) from the Penn treebank. Numbers next to
the phrases indicate that the phrase appeared multiple times in the list.

55

This general formulation as in Eq. 2 gives rise
to generalizations of other formulations of latent
representations that are propagated in a (parse)
tree structure. Perhaps the most related one to L-
PCFGs is the recursive neural network of Socher
et al. (2010). This recursive neural network prop-
agates word vectors (Turian et al., 2010) from the
bottom of an unlabeled tree all the way to its top
using the function:

F (vlc, vrc) = tanh(W [vlc, vrc] + b),

where W ∈ Rm×2m and b ∈ Rm are weight ma-
trices and biases that are learned when training the
neural network, [u1, u2] denotes the concatenation
of two vectors u1 and u2, and tanh: Rm → Rm is
a function that applies the hyperbolic tangent func-
tion coordinate-wise. Even more closely related to
L-PCFGs is the further refinement of these recur-
sive neural networks by Socher et al. (2013) where
the weights in the neural network are parametrized
by labels in the tree, corresponding to syntactic
categories.

Similarly to a formulation of the inside tree as
a vector propagation procedure (in Eq. 2), there is
also a formulation for the outside algorithm (Co-
hen et al., 2014). Le and Zuidema (2014) also
extended the recursive neural networks mentioned
above to make use of the outside tree information.

Finally, it is also important to note that L-
PCFGs are related to probabilistic regular tree
grammars (PRTGs; Knight and Graehl, 2005)
where the righthand side trees of the PRTG rules
are of depth 1. With general PRTGs, the righthand
side can be of arbitrary depth, where the leaf nodes
of these trees correspond to latent states in the L-
PCFG formulation above and the internal nodes of
these trees correspond to interminal symbols in the
L-PCFG formulation.

7 Conclusion

Latent-variable PCFGs are a flexible model for
modeling syntax and other problems in NLP. Their
backbone is a symbolic grammar, and as such
they can be easily interpreted, while they are aug-
mented with probabilities and latent states, allow-
ing the modeler to reason under uncertainty.

We gave an overview of the parsing and learn-
ing algorithms used with L-PCFGs and described
some natural extensions and related models.

Acknowledgments

I would like to thank Shashi Narayan, Nikos Pa-
pasarantopoulos and Giorgio Satta for useful feed-
back and comments. This work was supported
by an EU H2020 grant (688139/H2020-ICT-2015;
SUMMA) and a grant from Bloomberg.

References
M. Attia, J. Foster, D. Hogan, J. Le Roux, L. Tounsi,

and J. Van Genabith. 2010. Handling unknown
words in statistical latent-variable parsing models
for Arabic, English and French. In Proceedings of
the NAACL-HLT 2010 First Workshop on Statistical
Parsing of Morphologically-Rich Languages.

R. Bailly, A. Habrard, and F. Denis. 2010. A spectral
approach for probabilistic grammatical inference on
trees. In Proceedings of ALT .

A. Björkelund, Ö. Çetinoğlu, A. Faleńska, R. Farkas,
T. Müller, W. Seeker, and Z. Szántó. 2014. Intro-
ducing the IMS-Wrocław-Szeged-CIS entry at the
SPMRL 2014 shared task: Reranking and mor-
phosyntax meet unlabeled data. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages.

E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Gr-
ishman, P Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A pro-
cedure for quantitatively comparing the syntactic
coverage of English grammars. In Proceedings of
DARPA Workshop on Speech and Natural Language.

M. Candito, J. Nivre, P. Denis, and E. H. Anguiano.
2010. Benchmarking of statistical dependency
parsers for french. In Proceedings of COLING.

E. Charniak. 1997. Statistical parsing with a context-
free grammar and word statistics. In Proceedings of
AAAI.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-
best parsing and maxent discriminative reranking.
In Proceedings of ACL.

S. B. Cohen and M. Collins. 2012. Tensor decomposi-
tion for fast parsing with latent-variable PCFGs. In
Proceedings of NIPS.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and
L. Ungar. 2013. Experiments with spectral learn-
ing of latent-variable PCFGs. In Proceedings of
NAACL.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and
L. Ungar. 2014. Spectral learning of latent-variable
PCFGs: Algorithms and sample complexity. Jour-
nal of Machine Learning Research .

56

M. Collins. 2003. Head-driven statistical models for
natural language processing. Computational Lin-
guistics 29:589–637.

J. Dehdari, L. Tounsi, and J. van Genabith. 2011. Mor-
phological features for parsing morphologically-rich
languages: A case of Arabic. In Proceedings of the
Second Workshop on Statistical Parsing of Morpho-
logically Rich Languages.

P. S. Dhillon, J. Rodu, M. Collins, D. P. Foster, and
L. H. Ungar. 2012. Spectral dependency parsing
with latent variables. In Proceedings of CoNLL-
EMNLP.

M. Dreyer and J. Eisner. 2006. Better informed train-
ing of latent syntactic features. In Proceedings of
EMNLP.

J. Eisner and G. Satta. 1999. Efficient parsing for
bilexical context-free grammars and head automaton
grammars. In Proceedings of ACL.

T. AD Fowler and G. Penn. 2010. Accurate context-
free parsing with combinatory categorial grammar.
In Proceedings of ACL.

Y. Goldberg and M. Elhadad. 2011. Joint Hebrew
segmentation and parsing using a PCFG-LA lattice
parser. In Proceedings of ACL (short papers).

J. Goodman. 1996. Parsing algorithms and metrics. In
Proceedings of ACL.

S. Green and C. D. Manning. 2010. Better Arabic pars-
ing: Baselines, evaluations, and analysis. In Pro-
ceedings of COLING.

G. Guerra and Y. Aloimonos. 2005. Discovering a lan-
guage for human activity. In Proceedings of AAAI
Workshop on Anticipation in Cognitive Systems.

J. Hockenmaier and M. Steedman. 2002. Generative
models for statistical parsing with combinatory cat-
egorial grammar. In Proceedings of ACL.

D. Hsu, S. M. Kakade, and T. Zhang. 2012. A spectral
algorithm for learning hidden Markov models. Jour-
nal of Computer and System Sciences 78(5):1460–
1480.

Q. Huang, L. He, D. F. Wong, and L. S. Chao. 2014.
Chinese unknown word recognition for PCFG-LA
parsing. The Scientific World Journal 2014.

Z. Huang and M. Harper. 2009. Self-training pcfg
grammars with latent annotations across languages.
In Proceedings of EMNLP.

Z. Huang, M. Harper, and S. Petrov. 2010. Self-
training with products of latent variable grammars.
In Proceedings of EMNLP.

M. Johnson. 1998. PCFG models of linguistic tree rep-
resentations. Computational Linguistics 24(4):613–
632.

L. Kallmeyer and W. Maier. 2010. Data-driven parsing
with probabilistic linear context-free rewriting sys-
tems. In Proceedings of COLING.

D. Klein and C. D. Manning. 2003. Accurate unlexi-
calized parsing. In Proceedings of ACL.

K. Knight and J. Graehl. 2005. An overview of proba-
bilistic tree transducers for natural language process-
ing. In Computational linguistics and intelligent text
processing, Springer, volume 3406 of Lecture Notes
in Computer Science, pages 1–24.

P. Le and W. Zuidema. 2014. The inside-outside recur-
sive neural network model for dependency parsing.
In Proceedings of EMNLP.

L. Lin, T. Wu, J. Porway, and Z. Xu. 2009. A stochastic
graph grammar for compositional object representa-
tion and recognition. Pattern Recognition 8.

A. Louis and S. B. Cohen. 2015. Conversation trees:
A grammar model for topic structure in forums. In
Proceedings of EMNLP.

F. M. Luque, A. Quattoni, B. Balle, and X. Carreras.
2012. Spectral learning for non-deterministic de-
pendency parsing. In Proceedings of EACL.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn treebank. Computational Linguis-
tics 19:313–330.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Proba-
bilistic CFG with latent annotations. In Proceedings
of ACL.

D. McClosky, E. Charniak, and M. Johnson. 2006. Ef-
fective self-training for parsing. In Proceedings of
HLT-NAACL.

S. Narayan and S. B. Cohen. 2015. Diversity in spec-
tral learning for natural language parsing. In Pro-
ceedings of EMNLP.

S. Narayan and S. B. Cohen. 2016. Optimizing spectral
learning for parsing. In Proceedings of ACL.

M.-J. Nederhof. 2016. Transition-based dependency
parsing as latent-variable constituent parsing. In
Proceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata.

M.-J. Nederhof and A. Yli-Jyrä. 2017. A derivational
model of discontinuous parsing. In International
Conference on Language and Automata Theory and
Applications. Springer, pages 299–310.

S. Petrov. 2010. Products of random latent variable
grammars. In Proceedings of NAACL.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree
annotation. In Proceedings of COLING-ACL.

57

S. Petrov and D. Klein. 2008. Discriminative log-linear
grammars with latent variables. In Proceedings of
NIPS.

C. Pollard and I. A. Sag. 1994. Head-driven phrase
structure grammar. University of Chicago Press.

D. Prescher. 2005. Inducing head-driven PCFGs with
latent heads: Refining a tree-bank grammar for pars-
ing. In Proceedings of ECML.

Y. Sakakibara, M. Brown, R. Hughey, S. Mian,
K. Sjölander, R. C. Underwood, and D. Haussler.
1994. Stochastic context-free grammars for tRNA
modeling. Nucleic Acids Research 22.

A. Saluja, C. Dyer, and S. B. Cohen. 2014. Latent-
variable synchronous CFGs for hierarchical transla-
tion. In Proceedings of EMNLP.

R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng.
2013. Parsing with compositional vector grammars.
In Proceedings of ACL.

R. Socher, C. D. Manning, and A. Y. Ng. 2010. Learn-
ing continuous phrase representations and syntactic
parsing with recursive neural networks. In Proceed-
ings of the NIPS Deep Learning and Unsupervised
Feature Learning Workshop.

M. Stanojević and K. Sima’an. 2015. Reordering
grammar induction. In Proceedings of EMNLP.

M. Steedman. 2000. The syntactic process. MIT Press.

G. Strang. 1993. Introduction to linear algebra, vol-
ume 3. Wellesley-Cambridge Press Wellesley, MA.

L. Sun, J. Mielens, and J. Baldridge. 2014. Parsing
low-resource languages using Gibbs sampling for
PCFGs with latent annotations. In Proceedings of
EMNLP.

L. Tounsi and J. Van Genabith. 2010. Arabic parsing
using grammar transforms .

J. Turian, L. Ratinov, and Y. Bengio. 2010. Word rep-
resentations: a simple and general method for semi-
supervised learning. In Proceedings of ACL.

X. Zeng, D. F. Wong, L. S. Chao, I. Trancoso, L. He,
and Q. Huang. 2014. Lexicon expansion for la-
tent variable grammars. Pattern Recognition Letters
42:47–55.

58

