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Abstract

The relative contributions of meaning and form to sentence processing remains an outstanding
issue across the language sciences. We examine this issue by formalizing four incremental com-
plexity metrics and comparing them against freely-available ROI timecourses. Syntax-related
metrics based on top-down parsing and structural dependency-distance turn out to significantly
improve a regression model, compared to a simpler model that formalizes only conceptual combi-
nation using a distributional vector-space model. This confirms the view of the anterior temporal
lobes as combinatory engines that deal in both form (see e.g. Brennan et al., 2012; Rogalsky and
Hickok, 2009) and meaning (see e.g., Wilson et al., 2014). This same characterization applies to
a posterior temporal region in roughly “Wernicke’s Area.”

1 Introduction

Processing complexity in human language comprehension remains a central challenge for computational
psycholinguistics. Investigations of this essentially biological phenomenon typically rely on formalized
complexity metrics. These metrics reflect some aspect of the language being comprehended: some are
form-based in the sense of syntactic structure while others are meaning-based in the sense of conceptual
information.

But what is the biological basis of the processing that these metrics index? The clinical syndrome
semantic dementia suggests that the anterior temporal lobes (ATLs) perform some sort of conceptual
combination (for a review, see Patterson et al., 2007). But it remains unclear whether this conceptual
processing overlaps or is separate from form-based processing e.g. based on syntactic phrase structure.

To disentangle the influence of form and meaning in sentence processing in different brain regions, we
used stepwise regression against freely-available ROI timecourses (Brennan et al., 2016). The regressors
in these statistical models are incremental complexity metrics formalizing several different cognitive and
linguistic theories about processing difficulty in form and meaning. The pattern of improvements across
these steps suggests a role for syntactic processing, above and beyond conceptual combination. This re-
sult is consistent with the experimental work of Rogalsky and Hickok (2009) as well as the correlational
work of Brennan et al. (2012) on which we build. The remainder of the paper is organized into four sec-
tions: Section 2 reviews our syntactic and semantic complexity metrics; Section 3 describes the material
and data analysis methods; Section 4 presents the results and Section 5 discusses the implications of the
results and concludes the paper.

2 Quantifying complexity factors

We quantify two different aspects of syntactic complexity: Structural Distance and Node Count (this
latter metric previously investigated in Brennan et al., 2016), and we use vector-space model to quantify
semantic complexity as Lexical-Semantic Coherence. In evaluating the contribution of these complexity
metrics, we control for linear order in two ways: Lexical sequences from Google Book ngrams (Michel,
2011), and the linear order of parts of speech using the same POS trigram model in Brennan et al. (2016).
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2.1 Structural Distance

One form-related aspect of processing difficulty derives from memory load induced by integration of two
syntactically dependent words (Wanner and Maratsos, 1978; O’Grady, 1997; Gibson, 1998). Following
Baumann (2014), we quantify this load as Structural Distance, i.e., the number of phrase-structural tree
nodes between two dependent words. We obtained both phrase structures and dependency relations for
every sentence using the Stanford Parser (Klein and Manning, 2003; de Marneffe et al., 2006). Structural
Distance is then the number of nodes traversed between the head and the dependent in the phrase struc-
tural tree. We considered only the rightmost word in any dependency relation. For words in multiple
dependency relations, we summed the structural distances.

2.2 Node Count

Another form-based complexity metric is Node Count, which is the number of phrase structural nodes in
between successive words in a sentence. This expresses a form of Yngve’s (1960) Depth hypothesis (see
also Frazier, 1985). We examined X-bar structures generated by Minimalist Grammars in the sense of
Stabler (1997). These structures reflect grammatical analysis by Van Wagenen et al. (2014). We counted
the number of nodes in these trees that would be visited by a top-down parser (see Hale, 2014).

2.3 Lexical-Semantic Coherence

Our meaning-based metric Lexical-Semantic Coherence is built on vector-space models. Vector-space
models represent word meaning based on co-occurrence statistics from a large text corpus (e.g., Baroni
et al., 2014; Erk, 2012). Cosine similarity between the word vectors have been found to influence
eye-fixation times (Pynte et al., 2008), word pronunciation duration (Sayeed et al., 2015), and fMRI
activation patterns (Mitchell et al., 2008). We used latent semantic analysis (LSA; Landauer and Dumais,
1997) to build our semantic vector space model. The training data were the whole book of Alice in
Wonderland. We first built the type-by-document matrix where the rows are all the words in the book
and the documents are all the paragraphs. The input vector space was transformed by singular value
decomposition (SVD), and truncated to a 100-dimensional vector space. The context vector is the average
of the previous 10 word vectors. We used negative cosine between the target word vector and the context
vector to represent lexical-semantic coherence: higher negative cosine value indicates less semantic
coherence.

2.4 Linear Order

Our control predictors include the lexical and POS trigram models. Linear order of words, as reflected
in a Markov chain, has been successful in modeling human reading performance (Frank and Bod, 2011;
Frank et al., 2015). We used the freely-available trigram counts from the Google Books project (see e.g.
Michel, 2011) and restricted consideration to publication years 1850-1900, i.e., the year surrounding the
publication of Alice in Wonderland. We backed off to lower-order grams where necessary: coverage was
1725/2045 for trigrams and 1640/1694 for bigrams. The POS trigram regressor from ?) served as an
additional control. We then used surprisal of the trigram probabilities to link the probability of a word in
its left-context to BOLD signals (see Hale, 2001; 2016).

3 Methods

3.1 Data acquisition

The ROI timecourses from Brennan et al. (2016) come from twenty-five native English speaker (17
female, 18-24 years old, right-handed) listening to a story while in the scanner. The story was the first
chapter of Alice in Wonderland, lasting for about 12.4 minutes. Participants completed twelve multiple-
choice questions after scanning. The detailed imaging parameters and preprocessing procedures are
described in Brennan et al. (2016).

187



3.2 Regions of interest

Six regions of interest (ROIs), including the left anterior temporal lobe (LATL), the right anterior tempo-
ral lobe (RATL), the left inferior frontal gyrus (LIFG), the left posterior temporal lobe (LPTL), the left
inferior parietal lobe (LIPL) and the left premotor region (LPreM).

Both functional and anatomic criteria guided the precise positioning of these ROIs. . The functional
criterion derives from an atheoretical Word Rate regressor, which has value 1 at the offset of each word
in the audio stimulus, and 0 elsewhere. This localizer identified regions whose BOLD signals were
sensitive to word presentation. Each ROI sphere (10 mm radius) was centered on a peak t-value of at
least 2.0 within the anatomical areas.

3.3 Data analysis

3.3.1 Estimating hemodynamic response
Following Just and Varma (2007), we convolved each complexity metric’s time series with SPM12’s
canonical hemodynamic response function (HRF). These time series are made orthogonal to the con-
volved Word Rate vector since it is our localizer for defining the ROIs.

3.3.2 Stepwise regression
We tested the unique contribution of each model by conducting stepwise model comparisons against
the ROI timecourses. The null model included fixed effects for head movements (dx, dy, dz, rx, ry,
rz) and word rate; We also included fixed effects for word frequency, f0, and root mean square
(RMS) intensity of the speech into our null model, which were also convolved with the same HRF.
word frequency was based on the SUBTLEXus corpus (Brysbaert and New, 2009), which contains 51
million words from the subtitles of American films and television series. The random effects included a
random intercept by participant and a random slope for word rate:

BOLDnull = BOLD ∼ dx+ dy + dz + rx+ ry + rz + rate+ f0 + intensity + frequency(1 + rate|subject) (1)

We then added regressors in a particular order: surprisal of trigram lexical, negative cosine sim-
ilarity between word vector and context vector (semantic coherence), surprisal of trigram pos,
top-down node count and structural distance between dependent words. Model fit was assessed
using chi-square tests on the log-likelihood values to compare different models. Both the predictors
were converted to z-scores before statistical analysis. Statistical significance was corrected for multiple
comparisons across six ROIs with the Bonferroni method (the adjusted alpha-level is 0.05/6=0.0083).

4 Results

4.1 Correlation between predictors

The correlation matrix shows highest values for word rate and intensity (r = 0.58). This is expected
as word rate tracks the presentation of a word, which is generally higher in intensity than silences.
Similarly, f0 is also moderately correlated with intensity (r = 0.39) and word rate (r = 0.37).
semantic coherence and word frequency have a correlation coefficient of 0.38; no other two pa-
rameters has a correlation coefficient higher than 0.3.

4.2 Model comparison

The complexity parameters are subsequently added to the six baseline models. In the ATLs, an improve-
ment in the goodness of fit is obtained for Lexical-Semantic Coherence, but Structural Distance is also
significant for the RATL. All the parameters are highly significant for the LPTL, roughly corresponding
to the traditional “Wernicke’s area”. Lexical-Semantic Coherence and Structural Distance also signifi-
cantly improve model fit in the LIPL. However, only the linear order lexical and POS trigram models are
significant for the LIFG. The statistical details for the model comparisons are shown in Table 1.
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(a) Step-wise model comparison results for LATL.

Parameter df LogLik χ2 p
∅ 15 -11661
A trigram lexical 16 -11625 71.3 <.001
B semantic coherence 17 -11614 22.8 <.001
C trigram pos 18 -11608 12.7 <.001
D node count 19 -11605 4.3 0.04
E structural distance 20 -11605 0.9 0.34

(b) Step-wise model comparison results for RATL.

Parameter df LogLik χ2 p
15 -11221

trigram lexical 16 -11210 23.1 <.001
semantic coherence 17 -11202 15.2 <.001

trigram pos 18 -11196 11.6 <.001
node count 19 -11196 1.9 0.2

structural distance 20 -11189 13.3 <.001

(c) Step-wise model comparison results for LIFG.

Parameter df LogLik χ2 p
∅ 15 -10653
A trigram lexical 16 -10648 9.3 0.002
B semantic coherence 17 -10647 2.5 0.11
C trigram lexical 18 -10639 16.5 <.001
D node count 19 -10636 6.5 0.011
E structural distance 20 -10635 0.2 0.657

(d) Step-wise model comparison results for LPTL.

Parameter df LogLik χ2 p
15 -11898

trigram lexical 16 -11867 62 <.001
semantic coherence 17 -11851 32 <.001

trigram pos 18 -11821 60 <.001
node count 19 -11810 22 <.001

structural distance 20 -11800 19 <.001

(e) Step-wise model comparison results for LIPL.

Parameter df LogLik χ2 p
∅ 15 -12027
A trigram lexical 16 -12027 0.0 0.853
B semantic coherence 17 -12022 9.1 0.003
C trigram pos 18 -12019 5.8 0.016
D node count 19 -12017 5.8 0.016
E structural distance 20 -12000 34.0 <.001

(f) Step-wise model comparison results for LPreM.

Parameter df LogLik χ2 p
15 -12133

trigram lexical 16 -12125 15.8 <.001
semantic coherence 17 -12121 9.0 0.003
trigram lexical 18 -12120 2.1 0.143

node count 19 -12119 0.9 0.348
structural distance 20 -12117 4.3 0.039

Table 1: Step-wise model comparison results for all regions of interest.

5 Discussion & Conclusions

The meaning-based metric Lexical-Semantic Coherence is a significant predictor across a broad network
of regions including the ATLs, LPTL, LIPL and LPreM. This is consistent with previous findings im-
plicating bilateral ATL in conceptual combination (Rogalsky and Hickok, 2009; Wilson et al., 2014;
Pylkkänen, 2015). The form-related metric Structural Distance accounts for the RATL activity even on
top of Lexical-Semantic Coherence, suggesting that the ATLs are also involved in syntactic computation
(Humphries et al., 2006; Brennan et al., 2012; Brennan et al., 2016).

The LPTL activity is highly correlated with all the syntactic and semantic complexity metrics. As
shown in Wehbe et al. (2014), multiple regions spanning the bilateral temporal cortices represent both
syntax or semantics. Our results further confirms their suggestion that syntax and semantics might be
non-dissociated concepts.

No semantic or syntactic metric is significantly correlated with the LIFG, or the “Broca’s area”. This
fails to support traditional models derived from the deficit-lesion studies that have long associated syn-
tactic computation with the LIFG (e.g., Ben-Shachar et al., 2003; Caplan et al., 2008; Just et al., 1996;
Stromswold et al., 1996). .

To sum up, our correlational results from fMRI suggest that the temporal lobes perform a kind of
computation that is both syntactic in the classical sense of phrase structure, and semantic in the sense of
word-embeddings. One set of questions this work leaves open is the precise relationships between these
two predictors – for instance, temporal precedence. Other methods, such as MEG, may provide further
insight here as suggested by van Schijndel et al. (2015).
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