@inproceedings{boudin-etal-2016-document,
title = "How Document Pre-processing affects Keyphrase Extraction Performance",
author = "Boudin, Florian and
Mougard, Hugo and
Cram, Damien",
booktitle = "Proceedings of the 2nd Workshop on Noisy User-generated Text ({WNUT})",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-3917",
pages = "121--128",
abstract = "The SemEval-2010 benchmark dataset has brought renewed attention to the task of automatic keyphrase extraction. This dataset is made up of scientific articles that were automatically converted from PDF format to plain text and thus require careful preprocessing so that irrevelant spans of text do not negatively affect keyphrase extraction performance. In previous work, a wide range of document preprocessing techniques were described but their impact on the overall performance of keyphrase extraction models is still unexplored. Here, we re-assess the performance of several keyphrase extraction models and measure their robustness against increasingly sophisticated levels of document preprocessing.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="boudin-etal-2016-document">
<titleInfo>
<title>How Document Pre-processing affects Keyphrase Extraction Performance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Boudin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hugo</namePart>
<namePart type="family">Mougard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Damien</namePart>
<namePart type="family">Cram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-dec</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)</title>
</titleInfo>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The SemEval-2010 benchmark dataset has brought renewed attention to the task of automatic keyphrase extraction. This dataset is made up of scientific articles that were automatically converted from PDF format to plain text and thus require careful preprocessing so that irrevelant spans of text do not negatively affect keyphrase extraction performance. In previous work, a wide range of document preprocessing techniques were described but their impact on the overall performance of keyphrase extraction models is still unexplored. Here, we re-assess the performance of several keyphrase extraction models and measure their robustness against increasingly sophisticated levels of document preprocessing.</abstract>
<identifier type="citekey">boudin-etal-2016-document</identifier>
<location>
<url>https://aclanthology.org/W16-3917</url>
</location>
<part>
<date>2016-dec</date>
<extent unit="page">
<start>121</start>
<end>128</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How Document Pre-processing affects Keyphrase Extraction Performance
%A Boudin, Florian
%A Mougard, Hugo
%A Cram, Damien
%S Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)
%D 2016
%8 dec
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F boudin-etal-2016-document
%X The SemEval-2010 benchmark dataset has brought renewed attention to the task of automatic keyphrase extraction. This dataset is made up of scientific articles that were automatically converted from PDF format to plain text and thus require careful preprocessing so that irrevelant spans of text do not negatively affect keyphrase extraction performance. In previous work, a wide range of document preprocessing techniques were described but their impact on the overall performance of keyphrase extraction models is still unexplored. Here, we re-assess the performance of several keyphrase extraction models and measure their robustness against increasingly sophisticated levels of document preprocessing.
%U https://aclanthology.org/W16-3917
%P 121-128
Markdown (Informal)
[How Document Pre-processing affects Keyphrase Extraction Performance](https://aclanthology.org/W16-3917) (Boudin et al., 2016)
ACL