
Proceedings of the 2nd Workshop on Noisy User-generated Text,
pages 51–60, Osaka, Japan, December 11 2016.

Name Variation in Community Question Answering Systems

Anietie Andy
Howard University

anietie.andy@bison.howard.edu

Satoshi Sekine
New York University
sekine@cs.nyu.edu

Mugizi Rwebangira
Howard University

rweba@scs.howard.edu

Mark Dredze
Johns Hopkins University

mdredze@cs.jhu.edu

Abstract

Community question answering systems are forums where users can ask and answer questions in

various categories. Examples are Yahoo! Answers, Quora, and Stack Overflow. A common chal-

lenge with such systems is that a significant percentage of asked questions are left unanswered.

In this paper, we propose an algorithm to reduce the number of unanswered questions in Yahoo!

Answers by reusing the answer to the most similar past resolved question to the unanswered ques-

tion, from the site. Semantically similar questions could be worded differently, thereby making

it difficult to find questions that have shared needs. For example, Who is the best player for

the Reds? and Who is currently the biggest star at Manchester United? have a shared need but

are worded differently; also, Reds and Manchester United are used to refer to the soccer team

Manchester United football club. In this research, we focus on question categories that contain

a large number of named entities and entity name variations. We show that in these categories,

entity linking can be used to identify relevant past resolved questions with shared needs as a

given question by disambiguating named entities and matching these questions based on the dis-

ambiguated entities, identified entities, and knowledge base information related to these entities.

We evaluated our algorithm on a new dataset constructed from Yahoo! Answers. The dataset

contains annotated question pairs, (Qgiven, [Qpast, Answer]). We carried out experiments on sev-

eral question categories and show that an entity-based approach gives good performance when

searching for similar questions in entity rich categories.

1 Introduction
In community question answering (CQA) systems, users prefer asking other users questions because (I)

their questions are personal and require a direct answer from users with similar experiences or users

familiar with the question (II) no single web page can answer their question, and (III) users want to

communicate and exchange ideas with other users. One of the challenges with such systems is that some

questions are left unanswered because:

• they are short and lack relevant content

• they are not clearly expressed

• they are not appropriately assigned to a user that is able to answer the question

Approximately 15% of incoming English questions in Yahoo! Answers do not receive any answer and

leave the user that asked the question (asker) unsatisfied (Shtok et al., 2012). One approach to reducing
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the number of unanswered questions in a CQA is to direct an unanswered question to a user knowl-

edgeable about the question (Dror et al., 2011). Another approach automatically extracts answers from

a knowledge base (KB) such as Wikipedia, text passage, or the web (Gyongyi et al., 2007). In certain

question categories in Yahoo! Answers, approximately 25% of questions are recurrent (Shtok et al.,

2012). A third approach takes advantage of this question recurrence by reusing past resolved questions

(PARQ) from within Yahoo! Answers to satisfy unanswered questions. Shtok et al. (2012) used this third

approach to satisfy unanswered questions in the Beauty & Style, Health, and Pets question categories by

matching new questions to PARQ’s if they had a cosine similarity score above a threshold (0.9); features

were then extracted from the new question and PARQ’s to train a classifier. Certain question categories

such as Sports have a high occurrence of named entities and entity name variations. For example, a sports

team can be referred to by its official name, the name of the city it plays in or by any of several nick-

names. Also, the vocabulary in questions in these categories can be diverse and questions are often very

short (Klang and Nugues, 2014; Khalid et al., 2008).

The contribution of this paper is to propose an alternative approach to reducing the number of unan-

swered questions in question categories that contain a large number of entities by taking advantage of the

recent successes in entity linking. We now have systems that can disambiguate named entities to a KB.

Matching questions and answers based on these disambiguated entities, entities, and KB information

related to these entities finds most of the relevant answers to a given question.

We investigate the validity of using an entity-based approach in entity rich categories by first analyzing

150 questions from each of the following categories Beauty & Style, Health, Pets, Sports, Entertainment

& Music and Parenting.

Question category Number of questions with named entities or entity variations
Beauty & Style 70
Health 73
Pets 64
Sports 130
Entertainment & Music 135
Parenting 95

Table 1: Number of questions with named entities or entity variations out of 150 questions from each
category

Table 1 shows that more questions in the Sports and Entertainment & Music categories contain named

entities and/or entity variations. We annotated 200 question pairs that each exhibit shared needs from the

Sports and Entertainment & Music question categories. We observed that 82% of the relevant annotated

question pairs contain either the same named entity or a variation of the entity. This percentage could

increase on a larger dataset. We also observed that the cosine similarity score of the relevant question

pairs varied i.e. the cosine similarity was high in some relevant question pairs and low in others. Hence,

we propose to use an entity-based approach in question categories with high entity usage.

2 Related Work and Background
Yahoo! Answers is one of the largest and most popular CQA sites with more than 20 question categories.

In Yahoo! Answers, there are two parts to a question: (I) the title - a brief description of the question, and

(II) the content - a detailed description of the question (Dror et al., 2011). Posted questions are assigned

to predefined categories, such as Pets, Sports and Entertainment & Music and these questions can be
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answered by any signed-in user. An asked question remains open for four days, or for less if the asker

chose a best answer within this period. If no best answer is chosen by the asker, the task is delegated

to the community, which votes for the best answer until a clear winner arises. Only then is the question

considered resolved. In case a question is not answered while open, it is deleted from the site. Regis-

tered users may answer a limited number of questions each day, depending on their level (Dror et al.,

2011). Some of the categories of CQA questions are: factoid, opinion-seeking, recommendation, open-

ended, and problem solving questions. Different approaches have been proposed to reduce the number

of unanswered questions in Yahoo! Answers. Dror et al. (2011) focuses on matching unanswered ques-

tions to users that are presumed to be experts in the question topic i.e. ”routes the right question to

the right user”. This approach uses a multi-channel recommender system technology for associating an

unanswered question with potential answerers that are in an ”answering mood”. Also in this approach,

a wide variety of content and social signals users regularly provide to the CQA system are exploited

and organized into channels. Gyongyi et al. (2007) automatically generates answers to questions. In this

approach, text passages that may contain the answer to an unanswered question are retrieved and ranked.

The passage with the highest rank is selected to answer the unanswered question. Cao et al. (2011)

proposes an approach to utilizing category information to enhance the performance of question retrieval.

This approach combines the global relevance (the relevance of a query to a category) and the local rele-

vance (the relevance of a query to a question in the category). The intuition behind this approach is that

the more related a category is to a query, the more likely it is that the category contains questions relevant

to the query. The model ranks a historical question based on an interpolation of two relevance scores:

one is a global relevance score between the query and the category containing the historical question, and

the other is a local relevance score between the query and the historical question (Cao et al., 2011). Bian

et al. (2008) attempts to rank past CQA question-answer pairs in response to factual questions. A super-

vised learning-to-rank algorithm is used to promote relevant past answers to the input question based on

textual properties of the question and the answer, as well as indicators for the answerers quality (Shtok

et al., 2012). In Bian et al. (2008), the goal is to detect if a relevant answer exists, and the scope is not

limited to factual questions. Carmel et al. (2000) proposes to find past questions that are similar to the

target question, based on the hypothesis that answers to similar questions should be relevant to the target

question. This approach ranks past questions using both inter-question and question-answer similarity,

with response to a newly posed questions (Shtok et al., 2012). Jeon et al. (2005) demonstrates that similar

answers are a good indicator of similar questions. Once pairs of similar questions are collected based on

their similar answers, they are used to learn a translation model between question titles to overcome the

lexical chasm when retrieving similar questions (Jeon et al., 2005). Wang et al. (2011) matches similar

questions by assessing the similarity between their syntactic parse tree structure (Shtok et al., 2012). This

approach retrieves semantically similar questions and questions with shared needs. Shtok et al. (2012)

answers unanswered questions by reusing similar PARQ. This approach searches a dataset of PARQ for

similar questions to an unanswered question. The answer to the most similar PARQ is used to answer

the unanswered question. This approach relies on the intuition that even if personal and narrow, some

questions are recurrent enough to allow for at least a few new questions to be answered by past material.

Klang and Nugues (2014) shows that resolving entity disambiguations in question answering systems

helps in retrieving relevant answers to a question from documents or passages. Given a question, (Klang

and Nugues, 2014) uses a named entity disambiguation module to merge entities in a question answering
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system. Strings that could be linked to a unique identifier are merged and a list of synonyms with the

resulting set is created. The candidate answers to a question were ranked based on their frequency i.e.

the number of candidate occurrences after merging. This approach shows that a candidate merging step

using a named entity linking module produces high precision results. Khalid et al. (2008) investigates

the impact of named entity normalization (NEN) on two specific information access tasks: document

and passage retrieval for question answering (QA). These tasks consist in finding items in a collection of

documents, which contain an answer to a natural language question. In the NEN task, a system identi-

fies a canonical unambiguous referent for names like Bush or Alabama(Khalid et al., 2008). Two entity

normalization methods based on Wikipedia in the context of both passage and document retrieval for

question answering were evaluated. It was found that normalization methods lead to improvements of

early precision, for both document and passage retrieval.

3 Entity Name Variation in CQA systems
Due to the lack of uniformity in CQA users writing styles (Khalid et al., 2008), the lack of content

in some questions, and the frequent use of entity name variations in question categories with a large

number of entities, it is necessary to use an entity-based approach to find PARQ with shared needs to a

given question. In order to retrieve most of the relevant PARQ to a given question with high precision,

it is important to identify the named entities and entity variations in the given question and PARQ. For

example, Q1 and Q2 below are questions with a shared need referring to Pro MLB umpire and Major

League Baseball Umpire respectively.

• Q1: How does any one become a Pro MLB umpire?

• Q2: How can I become a Major League Baseball Umpire?

The proposed algorithm, ENTITY-ALCHEMY has 2 stages:

3.1 Stage 1

Given the question pair, (Qgiven, [Qpast, Answer]), where Qgiven represents a given question, Qpast rep-

resents a past resolved question, and Answer is the answer to Qpast (Shtok et al., 2012), ENTITY-

ALCHEMY identifies named entities in (Qgiven and Qpast) and links these entities to an external KB,

using entity linking, to find their name variations and anchor phrases (surface form), textual phrases that

potentially link to the entity in the KB (Guo et al., 2013). Using the question-title for retrieval of similar

questions in a CQA is of highest effectiveness, while using the question body results in lower Mean Av-

erage Precision (MAP) (Shtok et al., 2012). In this stage, we identify named entities and entity variations

in the question-title section of Qgiven and Qpast. ENTITY-ALCHEMY selects Qpast as a candidate similar

question to Qgiven if both questions have a common entity, entity name variation, or anchor phrases.

3.2 Stage 2

In stage 2, the algorithm extracts features from a pair of Qgiven and Qpast, selected in stage 1. The extracted

features are used to score whether the answer to Qpast can be used to satisfy the given question, Qgiven.

3.2.1 Features

Entities and KB information: We collect the following statistics from (Qgiven and Qpast): number of com-

mon entities, number of common entity variations, number of common anchor phrases, number of com-

mon words or phrases.
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Lexical Analysis: We classify words in (Qgiven and Qpast) into their parts-of-speech and extract the

number of matching nouns, verbs, and adjectives, if they exist.

Cosine similarity: Cosine similarity is popularly used to show the similarity between docu-

ments (Salton and McGill , 1986). We calculate the cosine similarity of the ”title” and ”title + content”

of (Qgiven and Qpast).

Dice coefficient: Misspelled words are common in CQA systems. We use dice coefficient to calculate

the string similarity score between identified entities in (Qgiven and Qpast).

Word2vec feature: Mikolov et al. (2013) introduced an efficient implementation of the continuous bag-

of-words and skip-gram techniques that can be used for learning high-quality word vectors from huge

datasets with billions of words and with millions of words in its vocabulary called word2vec (Mikolov

et al., 2013). We trained a word2vec model with a Wikipedia dump and 200 question pairs from Yahoo!

Answers.

3.2.2 Classifier model

For learning, we used SVM with a polynomial kernel as implemented by Weka machine learning

workbench (Hall et al., 2009). The default SVM parameters were used.

4 Experiments
4.1 Experimental Setup

For this research we used a repository of PARQ from Yahoo! Answers. Since we are interested in finding

PARQ with answers that can satisfy a given question, we selected the best answers for each question in

the Sports and Entertainment & Music question categories. We selected these question categories because

of the high recurrence of questions and the high occurrence of named entities and named entity variations

in these question categories.

4.2 Data Construction and Labeling

The dataset used to train and evaluate our system contains question pairs, (Qgiven, [Qpast, Answer]), where

Qgiven, Qpast, and Answer belong to the Yahoo! Answers repository. Each question pair was associated

with a label, described below:

• Potential answer: given a question pair, (Qgiven,[Qpast, Answer]), Answer is a ”potential answer” if

it can be used to satisfy Qgiven.

• Similar question: Qpast is similar to Qgiven if they both refer to the same topic1, but the answer to

Qpast cannot be used to satisfy Qgiven.

• Related question: Qpast is related to Qgiven if it contains a common entity as Qgiven, but refers to a

different topic from Qgiven.

We sampled 1500 resolved questions from the Sports and Entertainment & Music question categories

(750 from each question category) and observed that approximately 20% and 17% respectively of the

sampled questions were recurring. To generate the given question and PARQ pair, (Qgiven, [Qpast, An-

swer]), we selected 3000 and 5000 PARQ from the Sports and Entertainment & Music question cat-

egories respectively from the language data section of Yahoo labs WebscopeTM dataset, and Yahoo!

1 A topic is an activity or event along with all directly related events and activities. A question is on topic when it discusses
events and activities that are directly connected to the topic’s seminal event
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Answers dataset (Chang et al., 2008). Given a question from the selected dataset of PARQ, we selected

a candidate similar question in the selected dataset if it had a common named entity, entity variation

or anchor phrase as the given question. We had three independent reviewers label the question pairs as

either a potential answer, similar question, or related question. We selected a question pair if at least two

of the reviewers agreed on the question pair label. We annotated 500 question pairs from the Sports and

Entertainment & Music question categories. Table 2 shows the number of question pairs and their labels

in each of the question categories. Table 4 presents some of the named entities and their variations in our

dataset. In each of the question categories, we calculated the reviewer agreements by using Fleiss’ kappa2

Table 3 shows the calculated kappa values. This dataset will be provided to the research community.

We used an entity linking tool, AlchemyAPI (Turian, 2013) to extract named entities, named entity

disambiguations, and anchor phrases from a given question and a PARQ. AlchemyAPI extracts anchor

phrases from the following KB’s, dbpedia and freebase. In our experiments we split our dataset by using

66% for training and 34% for testing. We conducted two baseline experiments on our dataset using SVM

described in Section 3.21.

Category Sports Entertainment & music
Potential answer 130 141
Similar question 64 40
Related question 65 60

Table 2: Number of question pairs in each question pair category

Question Categories Kappa
Sports 0.579
Entertainment & Music 0.55

Table 3: Fleiss’ Kappa calculation in each question category

Named Entity Entity Name Variation
English Premier League EPL, premier league
New York City marathon NYC marathon
Jonas brothers Jonas bros
Manchester United Man u, munited

Table 4: Some named entities and their name variations in our dataset

Below are examples of question pairs in each question pair category:

Question pair 1
How do you get on Oprah?

<potential answer>

How do I get on the Oprah Winfrey show?

Question pair 2
how do i win to Germany to watch the FIFA WORLD CUP?

<similar question>

how do i get tickets for Fifa Worldcup 2006 in Germany ?

2 Fleiss kappa assesses the reliability of the agreement between the raters when assigning labels to the question pairs.
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Question pair 3
How can I get on the Jay Leno show?

<related question>

how do i get salmas hayek interview with jay leno on march 3 2006?

4.3 Evaluation Metric

We measure the precision, recall, and accuracy of the proposed algorithm.

Precision: the fraction of returned answers that are correct i.e. potential answers.

Recall: the fraction of the labelled potential answer question pairs that where returned by the system.

Accuracy: the overall fraction of potential answer question pairs classified correctly.

4.4 Results

The first baseline, ENT, uses AlchemyAPI to extract named entities from a question pair. The extracted

entities are not disambiguated to a KB and anchor phrases from the named entities KB entries are not

extracted. In this baseline, we aim to find the most similar PARQ with common entities as a given

question. ENT has two stages: In stage 1, given a question pair, (Qgiven, [Qpast, Answer]), we select Qpast

if it contains a common named entity as (Qgiven). In stage two, we extract the features described in section

3.2.1 from the question pair.

Yahoo! Answers is an informal forum, hence, there is a high prevalence of misspelled words. The

second baseline, ENT-VARIANT aims to find the most similar PARQ with common entities and minor

entity spelling errors as a given question. ENT-VARIANT uses AlchemyAPI to identify the named entities

in each question in a question pair. ENT-VARIANT has two stages. In stage 1, given a question pair,

(Qgiven, [Qpast, Answer]), we select Qpast if it contains a common named entity as (Qgiven). Also, dice

coefficient is used to compare the identified named entities in Qgiven and Qpast. This comparison helps

resolve minor spelling errors in the question pair. In our experiments, two named entities in Qgiven and

Qpast respectively, are considered a variation with minor spelling errors if they have a dice coefficient >

0.75. In stage 2 of ENT-VARIANT, we extract the features described in section 3.2.1 from the question

pair.

ENTITY-ALCHEMY performed better than both baselines as shown in Table 5. This shows that iden-

tifying named entities, disambiguated entities to a KB and, extracting anchor phrases from the identified

named entities KB entries finds more relevant PARQ to a given question.

Algorithm Precision Recall
ENT 66% 43.05%
ENT-VARIANT 67.1% 44.5%
ENTITY-ALCHEMY 71% 55.15%

Table 5: Precision and recall of ENTITY-ALCHEMY and two baselines

For each of the question categories we measured the accuracy, as defined in section 4.3, of the baseline

algorithms and ENTITY-ALCHEMY. Table 6 presents the accuracy of ENTITY-ALCHEMY and

the two baselines on the Sports and Entertainment & Music question categories . Most of the entity

variations in our dataset are not minor spelling errors, hence the second baseline, ENT-VARIANT did

not perform a lot better than the first baseline, ENT.
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Algorithm Sports Entertainment & music
ENT 54% 40%
ENT-VARIANT 55% 42%
ENTITY-ALCHEMY 60% 62%

Table 6: Accuracy of ENTITY-ALCHEMY and the baselines

We tested ENTITY-ALCHEMY on a question category, Parenting, which contains few named entities

and entity name variations to see how well it will perform. We extracted 500 questions from the Par-

enting question category of Yahoo! Answers and selected question pairs from this extracted dataset by

applying stage 1 of ENTITY-ALCHEMY. Table 7 shows the results of ENTITY-ALCHEMY and cosine

similarity on the Sports and Parenting question categories. ENTITY-ALCHEMY identified 51% of simi-

lar questions that exhibited shared needs. We also selected question pairs by conducting cosine similarity

and our experiments showed that in this question category, a cosine similarity > 0.5 identified 87% of

similar questions that exhibited a shared need. We applied cosine similarity to the Sports question cate-

gory by selecting question pairs that exhibit shared needs from 500 extracted questions from the Sports

category. Our experiments show that ENTITY-ALCHEMY identified 83% of the similar question pairs

that exhibited a shared need and a cosine similarity > 0.5 identified 49% of the similar questions. Hence

in question categories with less entity and entity variation usage, a non-entity-based approach such as

cosine similarity should be used to find similar questions with shared needs to a given question. Also,

in entity rich question categories, an entity-based approach should be used when searching for questions

with shared needs.

Algorithm Sports Parenting
Cosine Similarity 49% 87%
ENTITY-ALCHEMY 83% 51%

Table 7: Comparing cosine similarity and entity-based approaches in the Sports and Parenting question
categories

5 Conclusion
In this paper, we proposed an algorithm, ENTITY-ALCHEMY to reduce the number of unanswered

questions in question categories with high entity usage. We evaluated our algorithm on a CQA dataset

with a lot of entities and entity variations and our algorithm performed better than two baselines.

In conclusion, reusing PARQ is an effective method for reducing the number of unanswered questions

in a CQA system. This paper showed that in question categories with a lot of named entities and entity

name variations, using KB information and applying entity linking to identify and disambiguate named

entities finds most of the similar PARQ to a given question.

6 Future Work
In the future, we would research time-sensitive questions especially common in Sports categories. Also,

we would implement an algorithm that can find similar questions to a given question regardless of the

question category.
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