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Abstract: This paper presents a methodology for calculating a modified Levenshtein edit distance 

between character strings, and applies it to the task of automated cognate identification from non-

parallel (comparable) corpora. This task is an important stage in developing MT systems and 

bilingual dictionaries beyond the coverage of traditionally used aligned parallel corpora, which can 

be used for finding translation equivalents for the ‘long tail’ in Zipfian distribution: low-frequency 

and usually unambiguous lexical items in closely-related languages (many of those often under-

resourced). Graphonological Levenshtein edit distance relies on editing hierarchical 

representations of phonological features for graphemes (graphonological representations) and 

improves on phonological edit distance proposed for measuring dialectological variation. 

Graphonological edit distance works directly with character strings and does not require an 

intermediate stage of phonological transcription, exploiting the advantages of historical and 

morphological principles of orthography, which are obscured if only phonetic principle is applied. 

Difficulties associated with plain feature representations (unstructured feature sets or vectors) are 

addressed by using linguistically-motivated feature hierarchy that restricts matching of lower-level 

graphonological features when higher-level features are not matched. The paper presents an 

evaluation of the graphonological edit distance in comparison with the traditional Levenshtein edit 

distance from the perspective of its usefulness for the task of automated cognate identification. It 

discusses the advantages of the proposed method, which can be used for morphology induction, 

for robust transliteration across different alphabets (Latin, Cyrillic, Arabic, etc.) and robust 

identification of words with non-standard or distorted spelling, e.g., in user-generated content on 

the web such as posts on social media, blogs and comments. Software for calculating the modified 

feature-based Levenshtein distance, and the corresponding graphonological feature representations 

(vectors and the hierarchies of graphemes’ features) are released on the author’s webpage: 

http://corpus.leeds.ac.uk/bogdan/phonologylevenshtein/.  Features are currently available for Latin 

and Cyrillic alphabets and will be extended to other alphabets and languages. 

Keywords: cognates; Levenshtein edit distance; phonological features; comparable corpora; 

closely-related languages; under-resourced languages; Ukrainian; Russian; Hybrid MT 

1. Introduction 

Levenshtein edit distance proposed in (Levenshtein, 1966) is an algorithm that calculates 

the cost (normally – the number of operations such as deletions, insertions and 

substitutions) needed to transfer a string of symbols (characters or words) into another 

string. This algorithm is used in many computational linguistic applications that require 

some form of the fuzzy string matching, examples include fast creation of morphological 

http://corpus.leeds.ac.uk/bogdan/phonologylevenshtein/
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and syntactic taggers exploiting similarities between closely related languages (Hana et 

al., 2006), statistical learning of preferred edits for detecting regular orthographic 

correspondences in closely related languages (Ciobanu and Dinu, 2014). Applications of 

Levenshtein’s metric for the translation technologies and specifically for Machine 

Translation include automated identification of cognates for the tasks of creating 

bilingual resources such as electronic dictionaries (e.g., Koehn and Knight, 2002; 

Mulloni and Pekar, 2006; Bergsma and Kondrak, G. 2007), improving document 

alignment by using cognate translation equivalents as a seed lexicon (Enright, J and 

Kondrak, G., 2007), automated MT evaluation (e.g., Niessen et al., 2000;  Leusch et al., 

2003).  

Levenshtein distance metrics has been modified and extended for applications in 

different areas; certain ideas have yet not been tested in MT context, but have a clear 

potential for benefiting MT-related tasks. This paper develops and evaluates one of such 

ideas for a linguistic extension of the metric proposed in the area of computational 

modelling of dialectological variation and measuring ‘cognate’ lexical distance between 

languages, dialects and different historical periods in development of languages, e.g., 

using cognates from the slow-changing part of the lexicon – the Swadesh list (Swadesh, 

1952; Serva and Petroni, 2008; Schepens et al., 2012).  

In this paper the suggestion is explored of calculating the so called Levenshtein’s 

‘phonological edit distance’ between phonemic transcriptions of cognates, rather than 

the traditional string edit distance (Nerbonne and Heeringa 1997; Sanders and Chin, 

2009). This idea is based on the earlier linguistic paradigm of describing phonemes as 

systems of their phonological features, formulated in its modern form by Roman 

Jacobson – see (Anderson, 1985) for the development of the theory; later it was 

introduced into generative and computational linguistic paradigms by Chomsky and 

Halle (1968). The idea is that each phoneme in a transcription of a cognate is represented 

as a structure of phonological distinctive features, such as:  

[a] = [+vowel, +back; +open; –labialised] 

1.1. Distinctive phonological features: the background 

In phonology, sounds of a language form a system of phonemes (i.e., minimal segments 

of speech that can be used in the same context and distinguish meanings in minimal 

word pairs, which differ only by one such segment (i.e., a phoneme). For example, 

English phonemes /p/ and /b/ distinguish meaning in pull vs. bull; pill vs. bill; phonemes 

/v/ and /w/ distinguish meanings of vary vs. wary. However, Ukrainian sounds /v/ and /w/ 

are positional variants, or allophones, of the same phoneme, since they are never used in 

the same position or distinguish meanings: /w/ is restricted to a word-final position after 

a vowel: вийшов /vyjšow/ ‘entered’). There is evidence that phonemes are not simply 

linguistic constructs, but have a psychological reality, e.g., for native speakers they form 

cognitive pronunciation targets; non-native speakers often confuse phonemes that are not 

separated in their first language (e.g., native Ukrainian speakers would confuse /v/ and 

/w/ when speaking English). In languages where writing systems and pronunciation are 

close to each other, e.g., Ukrainian or Georgian, the written characters usually 

correspond to phonemes (much less often – to allophones). 

Phonemes and allophones are characterised by a further internal structure, which 

consists of a system of distinctive phonological features (Jakobson et al., 1958). These 

features are typically based on differences in their acoustic properties and the way of 

how they are pronounced (their articulation). For example, /v/ and /w/ are both 
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consonants, i.e., they are formed with a participation of noise (unlike vowels /u, o, a/, 

etc., which are formed with an unobstructed sound); both are fricative consonants, i.e., 

they are formed with a constant air friction against an obstacle in the vocal tract (unlike 

plosive consonants, such as /b, p, d, t, g, k/ that include a build up of air behind some 

obstacle during an initial silence, followed by its instant release); the difference between 

/v/ and /w/ is that /v/ is labio-dental, i.e., the air friction is created with the teeth and the 

lower lip, while /w/ is bilabial, i.e., the source of friction is the upper and lower lip, while 

the teeth are not involved.  

However, not all acoustic or articulatory differences become distinctive phonological 

features. The necessary condition is that these features should capture phonological 

distinctions, i.e., those needed for differentiation between phonemes: e.g., long vs. short 

pairs of vowels in Dutch differ primarily by their length; however, they have further 

qualitative differences as well, which are visible on their spectrograms, but are not 

perceived by speakers as features that make phonemic distinctions; therefore, these 

qualitative differences are not part of their distinctive phonological features. Similarly, 

the same Ukrainian vowels in stressed and unstressed positions are very different 

qualitatively, but these differences are not perceived as phonological, i.e., the ones that 

distinguish different phonemes, so both stressed and unstressed variants have the same 

set of distinctive features. 

Some distinctive phonological features are in correlated oppositions, i.e., they 

distinguish sets of phonemes that only differ by a single feature, e.g., +voiced vs –voiced 

(i.e., formed with or without the vocal cords) distinguishes /d/~/t/; /z/~/s/; /b/~/p/; /v/~/f/, 

/g/~/k/. These correlated features often switch their value in positional or historical 

alternations, and as a result, may distinguish cognates in closely related languages. 

Nowadays there are standard description of phonemes and phonological features for 

most languages of the world, illustrated with sound charts, e.g., by the International 

Phonetic Association (IPA) (Ladefoged and Halle, 1988). These charts group sounds 

along several dimensions of their distinctive phonological features, such as place, 

manner of articulation, voiced/voiceless for consonants; high/low, back/front, roundness 

for vowels, with finer-grained sub-divisions. Sound charts for individual languages can 

be found in standard language references. For the experiments described in this paper the 

systems of phonological distinctive features for Ukrainian and Russian has been adapted 

from (Comrie and Corbett, Eds., 1993: 949, 951, 829). 

1.2. Application of phonological features for calculating the edit distance 

For using phonological distinctive features in calculation of the Levenshtein edit 

distance, the idea is to replace the operation of substitution of a whole character by the 

substitution of its constituent phonological feature representations, which would be 

sufficient to convert it into another character: so rewriting [o] into [a] (which, e.g., is a 

typical vowel alternation pattern in Russian and distinguishes some of its major dialects) 

would incur a smaller cost compared to the substitution of the whole character, since 

only two of its distinctive phonological features need to be rewritten: 

[o] = [+vowel, +back; +mid; +labialised] 

On the other hand, the cost of rewriting the vowel [a] into the consonant [t] (the 

change which normally does not happen as part of the historical language development 

or dialectological variation) would involve rewriting all the phonological features in the 

representation, so the edit cost will be the same as for the substitution of the entire 

character:  
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[t] = [+consonant; –voiced; +plosive; +fronttongue; +alveolar]  

According to Nerbonne and Heeringa (1997:2) the feature-based Levenshtein 

distance makes it “…possible to take into account the affinity between sounds that are 

not equal, but are still related”; and to  “…show that 'pater' and 'vader' are more kindred 

then 'pater' and 'maler'.” This is modelled by the fact that phonological feature 

representations for pairs such as [t] and [d] (both front-tongue alveolar plosive 

consonants, which only differ by ‘voiced’ feature), as well as [p] and [v] (both labial 

consonants), share greater number of phonological features compared to the pairs [p] and 

[m] (which differ in sonority, manner and passive organ of articulation) or [t] and [l] 

(which differ in sonority and the manner of articulation). However, the authors point out 

to a number of open questions and problems related to their modified metric, e.g., how to 

represent phonetic features of complex phonemes, such as diphthongs; what should be 

the structure of feature representations: Nerbonne and Heeringa use feature vectors, but 

are these vectors sufficient or more complex feature representations are needed; how to 

integrate edits of individual features into the calculation of a coherent distance measure 

(certain settings are not used, whether to use Euclidian or Manhattan distance, etc.). 

Linguistic ideas behind the suggestion to use Levenshtein phonological edit distance 

are intuitively appealing and potentially useful for applications beyond dialectological 

modelling. However, to understand their value for other areas, such as MT, there is a 

need to develop a clear evaluation framework for testing the impact of different possible 

settings of the modified metric and different types of feature representations, to compare 

specific settings of the metric to alternatives and the classical Levenshtein’s baseline. 

Without a systematic evaluation framework the usefulness of metrics remain unknown.  

This paper proposes an evaluation framework for testing alternative settings of the 

modified Levenshtein’s metric. This framework is task-based: it evaluates the metric’s 

alternative settings and feature representations in relation to its success on the task of 

automated identification of cognates from non-parallel (comparable) corpora. The scripts 

for calculating the modified feature-based Levenshtein distance, and the corresponding 

graphonological feature representations (vectors and the hierarchies of features) are 

released on the author’s webpage
1
. Features are currently available for Latin and Cyrillic 

alphabets, new alphabets will be added in future. 

Graphonological Levenshtein distance can also be applied, calibrated and evaluated 

for other tasks, beyond the task of cognate identification, e.g., to robust transliteration, 

reconstruction of diacritics or recognition of words with distorted, non-standard or 

variable spelling, e.g.: the names Osama/ Usama/ Ousamma /Осама/ Усама/ Усамма 

are closer to each other in terms of their underlying phonological feature sequences than 

their plain character-based distances. Evaluation on these tasks may lead to alternative 

preferred settings and feature representations for the graphonological Levenshtein 

metric, compared to evaluation on the cognate identification task described here. 

The paper is organised as follows: Section 2 presents the set-up of the experiment, 

the application of automated cognate identification; the design and feature 

representations for the metric and the evaluation framework. Section 3 presents 

evaluation results of different metric settings and comparison with the classical 

Levenshtein distance; Section 4 presents conclusion and future work. 

                                                 
1 http://corpus.leeds.ac.uk/bogdan/phonologylevenshtein/  

http://corpus.leeds.ac.uk/bogdan/phonologylevenshtein/
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2. Set up of the experiment 

2.1. Application of automated cognate identification for MT 

Automated cognate identification is important for a range of MT-related tasks, as 

mentioned in Section 1. Our project deals with rapid creation of hybrid MT systems for 

new translation directions into and from a range of under-resourced languages, many of 

which are closely related, or ‘cognate’, such as Spanish and Portuguese, German and 

Dutch, Ukrainian and Russian. The systems combine rich linguistic representations used 

by a backbone rule-based MT engine with statistically derived linguistic resources and 

statistical disambiguation and evaluation techniques, which work with complex 

linguistic data structures for morphological, syntactic and semantic annotation (Eberle et 

al., 2012). While there is a potential in using a better-resourced pivot language for 

creating linguistic resources for MT and building pivot systems (e.g., Babych et al., 

2007), in our project the translation lexicon for the hybrid MT systems is derived mainly 

via two routes: 

1. Translation equivalents for a smaller number of highly frequent words, which 

under empirical observations of Zipf’s and Menzerath's laws (Koehler, R. 

1993; 49) tend to be shorter (Zipf, 1935:38; Sigurd et al., 2004:37) and more 

ambiguous (Menzerath, 1954, Hubey, 1999; Babych et al., 2004: 7), are 

generated as statistical dictionaries from sentence-aligned parallel corpora. 

However, as only small number of parallel resources is available for under-

resourced languages, there remain many out-of-vocabulary lexical items. 

2. The remaining ‘long tail’ in Zipfian distribution containing translation 

equivalents for a large number of low-frequent and usually unambiguous 

lexical items (as they typically have only one correct translation equivalent) is 

derived semi-automatically from much larger non-parallel comparable corpora, 

which are usually in the same domain for both languages. We use a number of 

different techniques depending on available resources and language pairs 

(Eberle et al., 2012: 104-106). For closely related languages (depending on the 

degree of their ‘relatedness’) the ‘long tail’ contains a large number of 

cognates. In the experiments described here, for Ukrainian / Russian language 

pair this number reached 60% of the analysed sample of the lexicon selected 

from different frequency bands (see Section 3).  

In order to cover this part of the lexicon, the automated cognate identification from 

non-parallel corpora is used for generating draft ranked lists of candidate translation 

equivalents. The candidate lists are generated using the following procedure: 

1. Large monolingual corpora (in my experiments – about 250M for Ukrainian 

and 200M for Russian news corpora) are PoS tagged and lemmatised. 

2. Frequency dictionaries are created for lemmas. A frequency threshold is 

applied (to keep down the ‘noise’ and the number of hapax legomena. 

3. Edit distances for pairs of lemmas in a Cartesian product of the two 

dictionaries are automatically calculated using variants of the Levenshtein 

measure. 

4. Pairs with edit distances below a certain threshold are retained as candidate 

cognates (in the experiments I used the threshold value of the Levenshtein edit 

distance normalised by the length of the longest word <=0.36, intuitively: 36% 

of edits per character) 
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5. Candidate cognates are further filtered by part-of-speech codes (cognates with 

non-matching parts of speech are not ranked). 

6. Candidate cognates are filtered by their frequency bands: if the TL candidate is 

beyond the frequency band threshold of the SL candidate, the TL candidate is 

not ranked (in the experiment I used the threshold FrqRange > 0.5 for the 

difference in natural logarithms of absolute frequencies – see formula (1), 

intuitively: candidates should not have frequency difference several orders of 

magnitude apart. 

7. Candidate cognate lists are ranked by the increasing values of the edit distance. 

  

𝐹𝑟𝑞𝑅𝑎𝑛𝑔𝑒 =  
min (ln(𝐹𝑟𝑞𝐵) , ln (𝐹𝑟𝑞𝐴))

max (ln(𝐹𝑟𝑞𝐵) , ln(𝐹𝑟𝑞𝐴))
 

(1) 

 

These ranked lists are presented to the developers, candidate cognates are checked 

and either included into system dictionaries, or rejected. Developers’ productivity of this 

task crucially depends on the quality of automated edit distance metric that generates and 

ranks the draft candidate lists. 

The task of creating parallel resources and dictionaries from comparable corpora is 

not exclusive to hybrid or rule-based MT. Similar ideas are used in SMT framework for 

enhancing SMT systems developed for under-resourced languages via identification of 

aligned sentences and translation equivalents in comparable corpora, which generally 

reduces the number of out-of-vocabulary words not covered by scarce parallel corpora 

(Pinnis et al., 2012). In these settings, dictionaries of cognate lists can become an 

additional useful resource, so achieving a higher degree of automation for the process of 

cognate identification in comparable corpora is equally important for the SMT 

development. Under these settings an operational task-based evaluation for Levenshtein 

edit distance metrics will be the performance parameters of the developed SMT systems. 

2.2. Development of Levenshtein graphonological feature-based metric 

For the task of automated cognate identification a feature-based edit distance will need 

further adjustments, which go beyond the metric used in modelling dialectological 

variation. The metric is designed to work directly with orthography rather than with 

phonetic transcriptions; alternative ways of representing phonological features (feature 

vectors vs. feature hierarchies) are evaluated, and a method of calculation of rewriting 

cost for feature-based representations is selected. 

2.2.1. Phonological distance: phonetic transcription vs. raw 

orthographic strings 

The metric works directly with word character strings, not via the intermediate stage of 

creating a phonological transcription for each word. While for modelling of dialects 

(many of which do not capture pronunciation differences in their own writing systems) 

the transcription may be a necessary step, MT systems normally deal with languages 

with their own established writing systems. There are practical reasons for extracting 

features from orthography rather than phonological transcriptions: automated 

phonological transcription of the orthographic strings may create an additional source of 

errors; resources for transcribing may be not readily available for many languages; for 
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the majority of languages very little can be gained by replacing the orthography by 

transcription (apart from more adequate representation of digraphs and phonologically 

ambiguous characters, which can be addressed also on the level of orthography).  

However, there are more important theoretical reasons for preferring original 

orthographic representations. For instance, orthography of languages is usually based on 

a combination of three principles: phonetic (how words are pronounced), morphological 

(keeping the same spellings for morphemes – minimal meaning units, such as affixes, 

stems, word routes, irrespective of any pronunciation variation caused by their position, 

phonological context, regular sound alternations, etc.) and historic (respecting traditional 

spelling which reflects an earlier stage of language development, even though the current 

pronunciation may have changed; often orthography reflects the stage when cognate 

languages have been closer together). Example 2 illustrates the point why orthography 

might work better for cognate identification: 

 

 Russian Ukrainian  

Orthography sobaka (собака) ‘dog’   sobaka (собака) ‘dog’ (2) 

Phonological 

transcription 

[sabaka] (с[а]бака ) [sobaka] (с[о]бака)  

Change [o] -> [a] [o] -> (no change)  

 

The pronunciation change  [o] -> [a], which in some (at that time) marginal Russian 

dialects dates back to the 7
th

-8
th

 century AD (Pivtorak, 1988: 94) (one of the 

explanations for this change is the influence the Baltic substratum), was not reflected in 

Russian educated written tradition, even at the later time when those dialects received 

much more political prominence and influenced the pronunciation norm of the modern 

standard Russian. In many cases such historic orthography principle makes the edit 

distance between cognates in different languages much shorter, and the phonological 

transcription in these cases may obscure innate morphological and historical links 

between closely related languages reflected in spelling. Therefore, using orthography to 

directly generate phonological feature representations has a theoretical motivation. 

One specific issue in using the orthography-based phonological metric is dealing 

with digraphs – the two letter combinations denoting one sound (c.f., similarly, 

diphthongs need special treatment in the transcription-based metric), especially in cases 

when the two languages use different writing systems. This problem, however, is much 

smaller if the alphabets are similar or the same. On the other hand, treating historic 

digraphs as two separate letters with two feature sets may be beneficial in some cases, 

e.g., Thomas vs. Хома (Homa), where the first letter of the Ukrainian word (h) is 

historically a closer match to one of the letters of the English digraph th. 

In this paper the term graphonological features is used to refer to representations of 

phonological features that are directly derived from graphemes. The approach adopted in 

my experiment is that each orthographic character in each language is unambiguously 

associated with a set of phonological features, even though its pronunciation may be 

different in different positions. 

2.2.2. Graphonological representations: feature vectors vs. feature 

hierarchies  

Features in graphonological representations of characters can be organized in different 

ways. In my initial experiments the problems with structuring them as flat feature 
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vectors became apparent.  Even though in some examples there has been improvement in 

the rate of cognate identification caused by richer feature structures, as compared to the 

baseline Levenshtein metric, in many more cases (and often counter to the earlier 

intuition) these feature structures caused unnecessary noise and lower ranking for true 

cognates, while non-cognates received smaller feature-based edit distance score. This 

unwanted overgeneration issue has been traced back to the use of feature vectors as 

graphonological feature structures. 

The example (3) illustrates the reason for such overgeneration. If the feature vector 

representations are used, the proposed graphonological metric (GrPhFeatLev) calculates 

that the following edit distances should be the same, which is a counter-intuitive result 

(especially given that the traditional Levenshtein’s metric (Lev) clearly shows that the 

character-based edit distance is shorter): 

 

robitnyk (робітник) ‘worker’ (uk) & rabotnik (работник) ‘worker’ (ru)  

GrPhFeatLev =1.2    Lev=2.0 

 

 

robitnyk (робітник) ‘worker’(uk) & rovesnik (ровесник) ‘age-mate, of 

the same age’ (ru)  

GrPhFeatLev =1.2   Lev=3.0 

 

(3) 

There is a specific problem when intuitively unrelated consonants (at least among 

Ukrainian-Russian lexical cognates) [b] and [v], or [t] and [s] – still receive very small 

rewriting scores. Figure 1 and Tables 1 and 2 show overlapping graphonological features 

for these words. In both cases, while one of the more essential features was not matched 

– manner of articulation, but instead the smaller edit distance resulted from matching 

less important features: [active and passive articulation organs] and [voice]. The problem 

with using feature vector representation is that all of the features stay on the same level, 

there is no way of indicating that certain features are more important for cognate 

formation and perception. 

 

            r(р) o(о) b(б) i(і) t(т)  n(н) y(и) k(к) 

       0.0  1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0 

r(р)   1.0  0.0  1.0  2.0  3.0  4.0  5.0  6.0  7.0 

o(о)   2.0  1.0  0.0  1.0  2.0  3.0  4.0  5.0  6.0 

v(в)   3.0  2.0  1.0  0.4  1.4  2.4  3.4  4.4  5.4 

e(е)   4.0  3.0  2.0  1.4  0.8  1.8  2.8  3.8  4.8 

s(с)   5.0  4.0  3.0  2.4  1.8  1.0  2.0  3.0  4.0 

n(н)   6.0  5.0  4.0  3.4  2.8  2.0  1.0  2.0  3.0 

i(и)   7.0  6.0  5.0  4.4  3.4  3.0  2.0  1.2  2.2 

k(к)   8.0  7.0  6.0  5.4  4.4  3.8  3.0  2.2  1.2 

Figure 1. GPhFeatLev Levenshtein: Edit distance matrix with feature vectors for  

robitnyk (робітник) ‘worker’(uk) & rovesnik (ровесник) ‘age-mate, of the same age’ (ru)  
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b (б) ['type:consonant', 'voice:voiced', 'maner:plosive', 'active:labial', 'passive:bilabial'] 

t (т) ['type:consonant', 'voice:unvoiced', 'maner:plosive', 'active:fronttongue', 'passive:alveolar'] 

Table 1: Phonological feature vectors in Ukrainian word ‘robitnyk’ (робітник) – ‘worker’ 

overlapping features in intuitively unrelated characters are highlighted 

v (в) ['type:consonant', 'voice:voiced', 'maner:fricative', 'active:labial', 'passive:labiodental'] 

s (с) ['type:consonant', 'voice:unvoiced', 'maner:fricative', 'active:fronttongue', 'passive:alveolar'] 

Table 2: Phonological feature vectors in Russian word ‘rovesnik (ровесник) – ‘age-mate’, ‘of the 

same age’ 

To address this problem, instead of feature vectors hierarchical representations of 

features are used, where a set of central features at the top of the hierarchy needs to be 

matched first, to allow lower level features to be matched as well (Figure 2). 

Figure 2 shows that for the feature hierarchy of the grapheme [b] to match the 

hierarchy of the grapheme [v] there is a need to match first the grapheme type: 

consonant (which is successfully matched), and then – a combination of manner of 

articulation and active articulation organ (which is not matched, since [b] is plosive and 

[v] is fricative), and only after that – low level features such as voice may be tried (not 

matched again, because the higher level feature structure of manner + active did not 

match). Note that the proposed hierarchy applies to Ukrainian–Russian language pair, 

and generalizing it to other translation directions may not work, as relations may need 

rearrangements of the hierarchy to reflect specific graphonological relations between 

other languages.  

 

Consonant feature hierarchy Example (pl- prefix on lower level 

features enforces feature hierarchy) 
Type 

 {Manner+Active} 
  Voice 

  Passive 

 

[b]: 

['type:consonant',  
 {'maner:pl-plosive', 'active:pl-labial',}  

  'voice:pl-voiced',  

  'passive:pl-bilabial' 

Figure 2. Hierarchical feature representations for consonants: non-matching higher levels prevent 

from matching at the lower levels: [pl-voiced] will not match before [plosive, labial] match 

2.2.3. Calculating combined substitution cost for variable length 

feature sets 

As the number of features for different graphemes may vary, the edit distance is 

computed between partially matched feature sets as an F-measure between Precision and 

Recall of their potentially overlapping feature sets, and subtracting it from 1. As a result 

the measure is symmetric, (4): 

 

𝑃𝑟𝑒𝑐 =  𝑙𝑒𝑛(𝐹𝑒𝑎𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝) / 𝑙𝑒𝑛(𝑁𝑜𝑓𝐹𝑒𝑎𝑡𝐴) 

 

 

𝑅𝑒𝑐 =  𝑙𝑒𝑛(𝐹𝑒𝑎𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝) / 𝑙𝑒𝑛(𝑁𝑜𝑓𝐹𝑒𝑎𝑡𝐵)  
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𝑂𝑛𝑒𝑀𝑖𝑛𝑢𝑠𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 1 − (2 ∗  𝑃𝑟𝑒𝑐 ∗  𝑅𝑒𝑐) / (𝑃𝑟𝑒𝑐 +  𝑅𝑒𝑐) 

 

 

𝑚𝑎𝑡𝑟𝑖𝑥[𝑧𝑧 + 1][𝑠𝑧 + 1]  
=  𝑚𝑖𝑛(𝑚𝑎𝑡𝑟𝑖𝑥[𝑧𝑧 + 1][𝑠𝑧]  +  1, 𝑚𝑎𝑡𝑟𝑖𝑥[𝑧𝑧][𝑠𝑧
+ 1]  +  1, 𝑚𝑎𝑡𝑟𝑖𝑥[𝑧𝑧][𝑠𝑧]  
+  𝑂𝑛𝑒𝑀𝑖𝑛𝑢𝑠𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒) 

 

(4) 

In these settings lower cost is given to substitutions; while insertion and deletions 

incur a relatively higher cost. As a result, cognates that have different length are much 

harder to find using the graphonological Levenshtein edit distance, and in these cases the 

baseline character-based Levenshtein metric performs better. A general observation is 

that the feature-based metric can often find cognates inaccessible to character-based 

metrics when the main differences are in substitution, but it misses cognates that involve 

more insertions, deletions and changing order of graphemes, as shown in Table 3. 

 
uk ru GPhFeatLev Baseline Lev 

рішення 

rishennia 
‘decision’ 

решение 

resheniye 
‘decision’ 

 

Found 

 

Missed 

сьогодні  

s'ogodni 
‘today’ 

сегодня 

segodnia 
‘today’ 

 

Found 

 

Missed 

колгосп 

kolgosp 

‘collective farm’ 

колхоз 

kolhoz 

‘collective farm’ 

 

Found 

 

Missed 

коментар 

komentar 

‘commentary’ 

комментарий 

kommentariy 

‘commentary’ 

 

Missed 
 

Found 

перерва 

pererva 

‘break’ 

перерыв 

pereryv 

‘break’ 

 

Missed 

 

Found 

Table 3. Examples of missed and found cognates for each metric 

2.3. Evaluation sample 

Evaluation is performed for the baseline Levenshtein metric and the proposed feature-

based metric with two settings: one using flat feature vectors for graphonological 

representations, and the other – using hierarchically organised features. Evaluation was 

done on a sample of 300 Ukrainian words selected from 6 frequency bands in the 

frequency dictionary of lemmas (ranks 1-50, 3001-3050, 6001-6050, 9001-9050, 12001-

12050, 15001-15050), Russian cognates were searched in the full-length frequency 

dictionary of 16,000 entries automatically derived from the Russian corpus (as described 

in Section 2.1). For 274 out of the 300 Ukrainian words either the baseline Levenshtein 

metric, or the experimental feature metric returned Russian candidate cognates (with the 

threshold of  
𝐿𝑒𝑣𝐷𝑖𝑠𝑡

max (𝑙𝑒𝑛(𝑊1), 𝑙𝑒𝑛(𝑊2))
≤ 0.36 
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applied across all the metrics, as mentioned in Section 2.1. Different settings for 

modifications of Levenshtein edit distance can be systematically evaluated in this 

scenario by using human annotation of the candidate cognate lists. 

3. Evaluation results 

The 274 lists of cognate candidates provided by each metric were then labelled 

according to the following annotation scheme: Table 4: 

 

Label Interpretation 

NC No cognate: a word in source language (SL) does not have a cognate in the target 

language (TL) 

0D Zero difference: absolute cognates there is no difference in orthographic strings 

in the SL and TL 

FF ‘False friends’ cognates with different meaning in the SL and TL 

CL Cognate wins in the baseline (string-based Levenshtein) – having a higher rank 

CF Cognate wins in the tested approach (feature-based Levenshtein) 

WL Cognate looses in the baseline (string-based Levenshtein) 

WF Cognate looses in the tested approach (feature-based  Levenshtein) 

ML Cognate is missed by the baseline (string-based Levenshtein) 

MF Cognate is missed by the tested approach: (feature-based Levenshtein) 

Table 4. Labels used for candidate cognate annotation 

Counts of annotation labels for each of the categories are shown in Table 5 and Table 6.  

 
 per cent count 

Have no cognates (NC) 34.31% 94 

False Friends (FF) 1.82% 5 

0 Difference cognates (0D) 16.42% 45 

Cognates with +/– differences (existence, rank) 41.6% 114 

All cognate candidates in sample 100% 274 

Table 5. Parameters of evaluation sample 
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  Lev (baseline 

character-based) 
GPFeat Vectors 
(feature-based flat 
vectors) 

GPFeat Hierarchy 
(feature-based 
hierarchical) 

Difference: 

GPFeatHiera
rchy - Lev 

 per cent # per cent # per cent # per cent 

correct, higher is 

better: CL vs CF 

(+exclude 0 

differences, 0D) 

47.08%  

 

(36.68%)  

129  

 

(84) 

46.72% 128 51.09%  

 

(41.48%) 

140  

 

(95) 

+4.01%  

 

(+4.80%) 

present, but lost 

on rank (WL vs 

WF; lower better) 

2.19% 6 10.58% 29 2.55% 7 -0.36% 

cognates missing 

(ML vs MF; 

lower is better) 

13.87% 38 10.58% 29 9.85% 27 +4.02% 

Table 6. Comparative performance of distance measures for the task of ranking cognates 

It can be seen from the tables that while the baseline Levenshtein metric (Table 6, 

column Lev) outperforms the feature-based metric that uses feature vector 

graphonological representations (column GPFeat Vectors), but the feature-based metric 

outperforms the baseline when hierarchical graphonological feature representations are 

used (column GPFeat Hierarchy). The improvement is about 4% (or nearly 5%, if trivial 

examples of absolute cognates are discounted). There is no improvement in ranking of 

found equivalents, which may be due to the noise related to a relatively higher cost of 

insertions, deletions and reordering of characters. 

4. Conclusion and future work 

Even though the traditional character-based Levenshtein metric gives a very strong 

baseline for the task of automated cognate identification from non-parallel corpora, the 

proposed graphonological Levenshtein edit distance measure outperforms it. 

Hierarchically structured feature representations, proposed in this paper, capture 

linguistically plausible correspondences between cognates much more accurately 

compared to traditionally used feature vectors. These representations are essential 

components of the proposed graphonological metric. Feature-based metric often 

identifies cognates which are missed by the baseline Levenshtein character-based metric. 

Different settings of the metrics were compared under the proposed task-based 

evaluation framework, which requires a relatively small amount of human annotation 

and can calibrate further developments of the metric and refinements of the feature 

representation structures. This framework tests the metric directly for its usefulness for 

the task of creating cognate dictionaries for closely related languages. 

For practical tasks both the traditional and feature-based Levenshtein metrics can be 

used in combination, supporting each other strengths, especially if boosting recall in the 

cognate identification task is needed. 

Future work will include extending evaluation to other languages and larger 

evaluation sets, measuring improvements in MT systems enhanced with automatically 

extracted cognates, learning optimal feature representations and optimising feature 

weights for specific translation directions from data, extending character-based 

frameworks, such as (Beinborn et al., 2013). However, the graphonological Levenshtein 

distance metric may find applications beyond the task of cognate identification, e.g., for 
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robust transliteration, identification of spelling variations or distortions, for integrating 

feature-based representations into algorithms for learning phonological and 

morphosyntactic correspondences between closely related languages and into algorithms 

for automatically deriving morphological variation models for automated grammar 

induction tasks, with a goal of building large-scale morphosyntactic resources for MT. 
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