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Abstract

We introduce SimpleNets: a resource-light
solution to the sentence-level Quality Es-
timation task of WMT16 that combines
Recurrent Neural Networks, word embed-
ding models, and the principle of compo-
sitionality. The SimpleNets systems ex-
plore the idea that the quality of a trans-
lation can be derived from the quality of
its n-grams. This approach has been suc-
cessfully employed in Text Simplification
quality assessment in the past. Our exper-
iments show that, surprisingly, our models
can learn more about a translation’s qual-
ity by focusing on the original sentence,
rather than on the translation itself.

1 Introduction

The task of Machine Translation Quality Estima-
tion (QE) has gained noticeable popularity in the
last few years. The goal of QE is to predict the
quality of translations produced by a certain Ma-
chine Translation (MT) system in the absence of
reference translations. Reliable solutions for QE
can be useful in various tasks, such as improv-
ing post-editing efficiency (Specia, 2011), select-
ing high quality translations (Soricut and Echi-
habi, 2010), translation re-ranking (Shah and Spe-
cia, 2014), and visual assistance for manual trans-
lation revision (Bach et al., 2011).

QE can be performed in various ways in or-
der to suit different purposes. The most widely
addressed form of this task is sentence-level QE.
Most existing work addresses this task as a super-
vised learning problem, in which a set of training
examples is used to learn a model that predicts the
quality of unseen translations. As quality labels,
previous work uses either real valued scores esti-
mated by humans, which require for a given QE

system to address the task as a regression prob-
lem, or likert scale discrete values, which allow
for the task to be addressed as either a regression
or a classification problem.

Sentence-level QE has been covered by shared
tasks organised by WMT since 2012, with sub-
sequent years covering also word and document-
level tasks. Recent advances in Distributional Se-
mantics have been showing promising results in
the context of QE strategies for different predic-
tion levels. An example of that are modern word
embedding architectures, such as the CBOW and
Skip-Gram models introduced by (Mikolov et al.,
2013b), which have been used as features in some
of the best ranking systems in the sentence and
word-level QE shared tasks of WMT15 (Bojar et
al., 2015). Word embeddings are not only versa-
tile, but also cheap to produce, making for both
reliable and cost-effective QE solutions.

Neural Networks have also been successfully
employed in QE. The FBK-UPV-UEdin (Bojar et
al., 2014) and HDCL (Bojar et al., 2015) systems
are good examples of that. They achieved 1st and
2nd places in the word-level QE tasks of WMT14
and WMT15, respectively, outperforming strate-
gies that resort to much more resource-heavy fea-
tures. Another successful example are neural Lan-
guage Models for sentence-level QE (Shah et al.,
2015).

We were not able to find, however, any exam-
ples of sentence-level QE systems that combine
word embedding models and Neural Networks. In
this paper, we present our efforts in doing so. We
introduce SimpleNets: the resource-light and lan-
guage agnostic sentence-level QE systems submit-
ted to WMT16 that exploit the principle of compo-
sitionality for QE. In the Sections that follow, we
describe the sentence-level QE task of WMT16,
introduce the approach used by the SimpleNets
systems, and present the results obtained.
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2 Task, Datasets and Evaluation

SimpleNets are two systems submitted to the
sentence-level QE task of WMT16. In this task,
participants were challenged to predict real-valued
quality scores in 0,100 of sentences translated
from English into German. The translations were
produced by an in-house phrase-based Statistical
Machine Translation system, and were then post-
edited by professional translators. The real-valued
quality scores are HTER (Snover et al., 2006) val-
ues that represent the post-editing effort spent on
each given translation.

The task organisers provided three datasets:

• Training: Contains 12,000 translation in-
stances accompanied by their respective post-
edits and HTER values.

• Development: Contains 1,000 translation in-
stances accompanied by their respective post-
edits and HTER values.

• Test: Contains 2,000 translation instances
only, without their respective post-edits or
HTER values.

Each instance is composed by the original sen-
tence in English along with its translation in Ger-
man. HTER scores were capped to 100. The or-
ganisers also provided 17 baseline feature values
extracted using QuEst++ (Specia et al., 2015) for
each dataset.

3 The SimpleNets Approach

SimpleNets aim to provide a resource-light and
language agnostic approach for sentence-level QE.
Our main goal in conceiving SimpleNets was to
create a reliable enough solution that could be
cheaply and easily adapted to other language pairs,
moving away from the use of extensive feature en-
gineering.

The SimpleNets approach was first introduced
by Paetzold and Specia (2016a) as a solution to the
shared task on Quality Assessment for Text Sim-
plification of QATS 20161, in which participants
were asked to create systems that predict discrete
quality labels for a set of automatically produced
text simplifications. Labels could take three val-
ues: “Good”, “Ok” and “Bad”. Text Simplifica-
tion differs from Machine Translation in the sense

1http://qats2016.github.io

that instead of attempting to transform a text writ-
ten in a source language to an equivalent text writ-
ten in a target language, it attempts to transform a
text in a way that it becomes more easily readable
and/or understandable by a certain target audience,
while still retaining the text’s grammaticality and
meaning.

For the Quality Assessment for Text Simplifi-
cation task of QATS 2016, SimpleNets used the
approach illustrated in Figure 1. For training, it
performed the following five steps:

1. Decomposition: Given a simplification and
maximum n-gram size M , it obtains the n-
grams with size 1≤ n≤M of both original
and simplified sentences.

2. Union: It then creates a pool of n-grams by
simply obtaining the union of n-grams from
the original and simplified sentences.

3. Attribution: Exploiting an interpretation
of the principle of compositionality, which
states that the quality of a simplification can
be determined by the quality of its n-grams,
it assigns the quality label of the simplifica-
tion instance itself to each and every n-gram
in the pool.

4. Structuring: Using a trained word embed-
dings model, it transforms each n-gram into
a training instance described by a matrix
M×N , where M is the previously mentioned
maximum n-gram size, and N the size of the
word embeddings used. Each of the M rows
in matrix M×N represent a given word in the
n-gram, and each of the N columns, its em-
bedding values. If an n-gram is smaller than
N , the matrix is padded with embedding val-
ues composed strictly of zeroes.

5. Learning: Training instances are then
fed into a deep Long Short-Term Memory
(LSTM) Recurrent Neural Network in mini-
batches so that a quality prediction model can
be learned.

Notice that this process yields a model that pre-
dicts the quality of individual n-grams rather than
the quality of a simplification in their entirety,
which is not what was required for the task. To
address this, each simplification in the test set is
first processed through Decomposition, Union and
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Figure 1: SimpleNets for Text Simplification

Structuring, but the complete quality prediction
process has two complementary steps:

1. Prediction: The trained model is used to pre-
dict the quality of each n-gram of the simpli-
fication in question.

2. Merging: The quality of all n-grams in the
simplification are merged using a certain pol-
icy, such as averaging.

After merging, a quality estimate for the sim-
plification as a whole is produced. Although this
approach has certain limitations, it addresses a
very important challenge in using Recurrent Neu-
ral Networks for Text Simplification Quality As-
sessment: the small amount of training data avail-
able. With only 505 simplifications for training,
it becomes very unlikely that a Recurrent Neural
Network would be able to reliably learn a qual-
ity prediction model if it was presented with sen-
tences in their entirety, such as how it has been
done in Neural Translation and Text Generation
(Schmidhuber, 2015). By splitting the sentences in
the simplification in n-grams, the number of train-
ing instances available grows considerably, allow-
ing for a better informed learning step. Addition-

ally, the length of the sequences used in the Re-
current Neural Network becomes shorter, which
can help the network to generalise the knowledge
available in the training set.

The results of the Quality Assessment for Text
Simplification of QATS 2016 serve as evidence of
the potential of this approach: SimpleNets ranked
1st in predicting the overall quality of simplifica-
tions. Nonetheless, the inherent differences be-
tween Machine Translation and Text Simplifica-
tion make it impossible for the strategy described
above to be directly applied to sentence-level QE
without any adaptation. In the next Section, we
describe how we adapt the SimpleNets approach
for sentence-level QE.

Figure 2: SimpleNets for Machine Translation
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4 SimpleNets for Machine Translation

In order to use the SimpleNets strategy for
sentence-level QE, we must address the biggest
difference between Machine Translation and Text
Simplification: while Text Simplification encom-
passes transformations within the constraints of a
single language, Machine Translation has to han-
dle two languages, which often have distinct vo-
cabularies, grammar, etc. This difference prevents
the application of the Union step from the process
described in Section 3, since source (original) and
target (translated) sentences are not in the same
language, and hence cannot share the same word
embeddings model during Structuring.

Another challenge in adapting SimpleNets for
Machine Translation lies in the often found dis-
parity in quality between the source sentence and
its translation. Inspecting the datasets provided
by the WMT16 organisers, we found that, unlike
the source sentences, the majority of translations
contain at least one noticeable error with respect
to either grammar or coherence. This means that
even if we used techniques such as the one em-
ployed by bivec (Luong et al., 2015), which
allows for the training of bilingual word embed-
dings, the contrast between the quality of source
and target sentences could confuse the SimpleNets
approach, and hence compromise its capability of
learning a reliable quality prediction model.

To overcome these challenges, we explore the
hypothesis that SimpleNets can learn a better
model for sentence-level QE by looking strictly
at one of the sides of translations, rather than by
trying to somehow combine the information from
both the source and translated sentences. We train
two variants of SimpleNets:

• SimpleNets-TGT: Explores the idea that the
quality of a translation can be reliably deter-
mined based solely on the characteristics of
the machine translated sentence itself, with-
out the need to assess its relationship with the
original sentence. This variant of SimpleNets
aims to learn a model that is capable of quan-
tifying the differences in quality of translated
sentences.

• SimpleNets-SRC: Explores the idea that a
translation’s quality can be determined based
solely on the original sentence itself, with-
out any need to assess the intricacies of its
translated version. This variant assumes that,

by focusing on the original sentences and
the quality scores of their translations, Sim-
pleNets can learn how to quantify just how
likely the MT system in question will be of
making a mistake while attempting to trans-
late an unseen sentence. This is in line with
work on QE that explores source features to
measure the complexity of the source sen-
tence (Specia et al., 2010).

Finally, we must also address the fact that, while
the quality scores provided for the QATS 2016
shared task are discrete labels, the scores for the
WMT16 task are real-valued. We solve this prob-
lem by simply replacing the multiple softmax ac-
tivation nodes used in the QATS 2016 SimpleNets
with a single dense node, and also by replacing
the cross-entropy loss function with Mean Aver-
age Error.

The workflow followed by SimpleNets-TGT
and SimpleNets-SRC is illustrated in Figure 2. In
the Section that follow, we describe our experi-
ments with these approaches.

5 Experimental Setup

To assess the efficacy of our SimpleNets, we train
them over the training set provided by the orga-
nizers, which contain 12,000 instances. In order
to select the architecture to be used by the LSTM
networks of our SimpleNets, we resort to the tech-
nique used in (Paetzold and Specia, 2016a), in
which each aspect of a Neural Network is deter-
mined through parameter optimisation over the de-
velopment set. The optimisation metric used is
Pearson correlation, since it is the main evaluation
metric adopted by the WMT16 task. The aspects
of the architecture considered and the values tested
for each one of them are:

1. Number of hidden layers: 1 to 5 in steps of 1.

2. Hidden layer size: 100 to 500 in steps of 100.

3. Embeddings model: CBOW or Skip-Gram.

Even though SimpleNets-TGT and SimpleNets-
SRC were optimised individually, the resulting ar-
chitectures of the two approaches are surprisingly
the same: three hidden layers with 200 nodes each,
with CBOW embeddings.

The word embedding models used were trained
with word2vec (Mikolov et al., 2013a). We
use 300 word vector dimensions and train the
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System r MAE RMSE
YSDA/SNTX+BLEU+SVM 0.525 12.30 16.41
POSTECH/SENT-RNN-QV2 0.460 13.58 18.60
SHEF/SVM-NN-both-emb-QuEst 0.451 12.88 17.03
POSTECH/SENT-RNN-QV3 0.447 13.52 18.38
SHEF/SVM-NN-both-emb 0.430 12.97 17.33
UGENT/SVM2 0.412 19.57 24.11
UFAL/MULTIVEC 0.377 13.60 17.64
RTM/RTM-FS-SVR 0.376 13.46 17.81
UU/UU-SVM 0.370 13.43 18.15
UGENT/SVM1 0.363 20.01 24.63
RTM/RTM-SVR 0.358 13.59 18.06
BASELINE 0.351 13.53 18.39

SHEF/SimpleNets-SRC 0.320 13.92 18.23
SHEF/SimpleNets-TGT 0.283 14.35 18.22

Table 1: Sentence-level QE scores of systems submitted to the WMT16 task

models over a corpus of around 7 billion words
comprised by SubIMDB (Paetzold and Specia,
2016b), UMBC webbase2, News Crawl3, SUB-
TLEX (Brysbaert and New, 2009), Wikipedia and
Simple Wikipedia (Kauchak, 2013).

For evaluation we use the task’s official metrics,
which are Pearson correlation (r), Mean Average
Error and Root Mean Squared Error. We compare
our SimpleNets with the baseline provided by the
task organisers, as well as all other systems sub-
mitted. The baseline uses SVM regression with an
RBF kernel and grid search for parameter optimi-
sation.

6 Results

The task results illustrated in Table 1 reveal that
SimpleNets are not as effective in sentence-level
QE as they were for Text Simplification Qual-
ity Assessment. Although they outperform a few
systems in terms of MAE and RMSE, when it
comes to Pearson correlation, SimpleNets-SRC
and SimpleNets-TGT feature at the bottom of the
ranking.

What is even more surprising, however, is the
difference between the performance of our Sim-
pleNets systems. Intuitively, one would think that
the n-grams of the translated sentence itself would
be a more reliable indicator of a translation’s qual-
ity, given that it only becomes possible for one to
assess the grammaticality and meaning errors in a
translation after inspecting the translated sentence

2http://ebiquity.umbc.edu/resource/html/id/351
3http://www.statmt.org/wmt11/translation-task.html

itself. Interestingly, the performance scores sug-
gest that the model employed by SimpleNets is
more proficient in learning how difficult it will be
for the source sentence to be translated.

The difference in performance between the
SimpleNets variants became much more clear
once we inspected the individual n-gram qual-
ity predictions made by them. Tables 2 and 3
show the n-grams in the development set with the
highest and lowest HTER scores, as predicted by
SimpleNets-TGT and SimpleNets-SRC, respec-
tively, along the average gold HTER of the sen-
tences in the development set which contain them.
It can be noticed that the correlation between the
highest scoring n-grams of SimpleNets-SRC and
their average gold HTER seem to be much more
pronounced than the one observed for the highest
scoring n-grams of SimpleNets-TGT. The same
phenomenon can be observed between the lowest
scoring n-grams of the SimpleNets variants.

The Pearson correlation scores between pre-
dicted and average gold n-gram scores pro-
vide further insight on the limitations of Sim-
pleNets in the context of sentence-level QE. While
SimpleNets-TGT achieves a correlation score of
0.127, SimpleNets-SRC achieves a score of 0.151.
Although SimpleNets-SRC does obtain a slightly
higher Pearson score, both of them are low in com-
parison to other approaches, which ultimately sug-
gests either that n-grams alone do not provide with
enough information on the quality of a translation
in order for a reliable Quality Estimation model
to be learned, or that our method of assigning
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Lowest Highest
N-gram Pred. Gold N-gram Pred. Gold

das Dreieck , 3.444 38.462 Zeile ( ˆ 89.901 18.519
das Dreieck in 3.463 32.000 Vorteil dieser Methode 87.957 22.857
das Dreieck neben 3.519 11.111 Paket ist . 84.914 10.526
Dreieck , um 3.563 38.462 Lineares Licht verringert 84.042 29.412
ein Dreieck mit 3.648 76.923 einzelne Volltonfarben trennen 82.540 36.000

Table 2: N-grams with highest and lowest HTER scores, as predicted by SimpleNets-TGT

Lowest Highest
N-gram Pred. Gold N-gram Pred. Gold

Backspace ( Windows 2.539 10.000 gloss contour . 63.432 33.333
press Enter ( 2.937 19.149 whale or white 63.432 46.154
or Option-click ( 3.127 6.897 breakpoints , evaluating 63.092 57.576
Alt-click ( Windows 3.128 6.897 halftone dot . 63.009 35.294
Command-D ( Mac 3.397 22.857 lens focusing on 62.898 71.429

Table 3: N-grams with highest and lowest HTER scores, as predicted by SimpleNets-SRC

the translation’s quality score to all n-grams dur-
ing training prevents our models from learning to
effectively differentiate between good and bad n-
grams.

7 Final Remarks

In this paper we have described the Sim-
pleNets systems for the sentence-level QE task of
WMT16. SimpleNets aims to offer a resource-
light solution to the task by exploiting Recurrent
Neural Networks, word embedding models, and
the principle of compositionality.

Two SimpleNets variants were described,
SimpleNets-SRC and SimpleNets-TGT, which at-
tempt to predict the quality of a translation based
solely on the quality of the n-grams present in its
source or target (translated) sides, respectively.

Although interesting and efficient, the Sim-
pleNets systems have been shown not to perform
well for the task at hand, featuring at the bottom of
the task’s final ranking. Nonetheless, our experi-
ments have still provided with valuable insight on
the impact of the source segment of a translation
on the quality of its translation.
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