
Proceedings of the Workshop on Natural Language Processing for Translation Memories (NLP4TM), pages 17–23,
Hissar, Bulgaria, Sept 2015.

Abstract

We propose the integration of clause

splitting as a pre-processing step for match

retrieval in Translation Memory (TM)

systems to increase the number of relevant

sub-segment matches. Through a series of

experiments, we investigate the impact of

clause splitting in instances where the input

does not match an entire segment in the

TM, but only a clause from a segment. Our

results show that there is a statistically

significant increase in the number of

retrieved matches when both the input

segments and the segments in the TM are

first processed with a clause splitter.

1 Rationale

Translation memory tools have had a great

impact on the translation industry as they

provide considerable assistance to translators.

They allow translators to easily re-use

previous translations, providing them with

valuable productivity gains in an industry

where there is a great demand for quality

translation delivered in the shortest possible

time. However, existing tools have some

shortcomings. The majority of existing tools

rely on Levenshtein distance, and seek to

identify matches only at the sentence level.

Semantically similar segments are therefore

difficult to retrieve if the string similarity is not

high enough, as are sub-segment matches

because if only part of a sentence matches the

input, even if this part is an entire clause, it is

unlikely that this sentence would be retrieved

(Pekar and Mitkov, 2007). As a result, TMs are
especially useful only for highly repetitive text

types such as updated versions of technical

manuals.

In this study, we aim to address the

problem of retrieving sub-segment matches by

performing clause splitting on the source

segment as a pre-processing step for TM match

retrieval. While matches for entire sentences

or almost entire sentences are the most useful

type of matches, it is also less likely for such

matches to be found in most text types, and

even less so for complex sentences. Retrieving

clauses is desirable because there is a higher

chance for a match to be found for a clause than

for a complex sentence, and at the same time,

clauses are similar to sentences in that they

both contain a subject and a verb, hence a

“complete thought”, therefore clause matches

are more likely to be in context and to actually

be used by the translator than phrase matches,

for example.

We perform experiments comparing the

match retrieval performance of TM tools when

they are used as is, and when the input file and

the TM segments are first processed with a

clause splitter before being fed into the TM

tool. The paper is organised as follows: In

section 2 we discuss related work on TM

matching. In section 3 we discuss how clause

splitting can be beneficial to TM matching and

how clause splitting was implemented for this

study. We then describe our experiments in

section 4, and discuss the results in section 5.

Finally, we present our conclusion and future

work in section 6.

Improving Translation Memory Matching through Clause

Splitting

Katerina Timonera

Research Group in Computational

Linguistics

University of Wolverhampton

krtimonera@gmail.com

Ruslan Mitkov

Research Group in Computational

Linguistics

University of Wolverhampton

r.mitkov@wlv.ac.uk

17

2 Related Work

Attempts to address the shortcomings of

existing tools include the integration of

language processing to break down a sentence

into smaller segments. The so-called ‘second

generation’ TM system Similis (Planas, 2005)

performs chunking to split sentences into
syntagmas to allow sub-sentence matching.

However, Reinke (2013) observes that for

certain language pairs like English-German,

only rather short phrases like simple NPs are

identified, and larger syntactic units cannot be

retrieved This can be regarded as disadvantage

as the processing of larger units would be

desirable for the support of professional

computer-assisted human translation (Kriele

(2006) and Macken (2009), cited in Reinke,

2013).

MetaMorphoTM (Hodász and Pohl, 2005)

also divides sentences into smaller chunks.
Moreover, it uses a multi-level linguistic

similarity technique (surface form, lemma,

word class) to determine similarity between

two source-language segments.

Other attempts involve deeper linguistic

processing techniques. In Pekar and Mitkov

(2007) we propose the ‘third-generation

translation memory’ which introduces the

concept of semantic matching. We employ

syntactic and semantic analysis of segments

stored in a TM to produce a generalised

representation of segments which reduces

equivalent lexical, syntactic and lexico-

syntactic constructions into a single

representation. Then, a retrieval mechanism

operating on these generalised

representations is used to search for useful

previous translations in the TM.

This study is part of the third-generation

translation memory project, of which the

ultimate goal is to produce more intelligent TM

systems using NLP techniques. To the best of

our knowledge, clause splitting has not

previously been investigated as a possible

method for increasing the number of relevant

retrieved matches.

3 Clause splitting for TM matching

Macklovitch and Russel (2000) note that

when a sufficiently close match cannot be

found for a new input sentence, current TM

systems are unable to retrieve sentences that

contain the same clauses or other major

phrases.

For example, (a) below is a new input

sentence composed of twenty five-character

words. The TM contains the sentence (b),

which shares an identical substring with

sentence (a). However, as this substring only

makes up only 25% of the sentence's total

number of characters, it is unlikely that current

TM tools would be able to retrieve it as a fuzzy

match.

(a) w1 w2 w3 w4 w5, w6 . . . w20.

(b) w1 w2 w3 w4 w5, w21 . . . w35.

If clause splitting were employed, clauses

would be treated as separate segments, thus

increasing the likelihood that clauses which

are subparts of larger units, could have a match

score sufficiently high to be retrieved by the

TM system.

In this paper, we compare the effect of

performing clause splitting before retrieving

matches in a TM. In each experiment, we

identify the difference in matching

performance when a TM tool is used as is, and

when the input file and the translation memory

are first run through a clause splitter. The

clause splitter we use in this study is a modified
version of the one described in Puscasu (2004).

The original version employs both machine

learning and linguistic rules to identify finite

clauses for both English and Romanian, but in

this version only the rule-based module is

used. Puscasu (2004) developed a clause

splitting method for both English and

Romanian, and to maintain consistency

between the two languages, her definition of a

clause is the one prescribed by the Romanian

Academy of Grammar, which is that a clause is

18

group of words containing a finite verb.

Non/finite and verbless clauses are therefore

not considered. The reported F-measure for

identifying complete clauses in English is

81.39% (Marsic, 2011).

In this study, the clause splitter is used on

both the segments in the input file and the
translation memory database. After processing

the input and the TM segments with the clause

splitter, these were then imported into existing

TM tools to examine how well these tools will

perform if clause splitting is used in pre-

processing.

4 Experiments

Experiments were performed to study the

impact of clause splitting when used in pre-

processing for the retrieval of segments in a

TM. Our hypothesis is that when a clause

splitter is used, the number of relevant

retrieved matches will increase.

The effect of clause splitting is examined by

comparing the number of matches retrieved

when TM tools are used as is and when both

the input segments and the segments in the

translation memory are first processed with a

clause splitter before being imported into the

TM tools. The tools used are Wordfast

Professional 3 and Trados Studio 2009, which

are among the most widely used TM tools

(Lagoudaki, 2006).

Segments used as the input were selected

from the Edinburgh paraphrase corpus (Cohn,

Callison-Burch and Lapata, 2008) (in Macken,

2009). We use a paraphrase corpus because we

wish to investigate the effect of using a clause

splitter in pre-processing to retrieve both

segments that contain the entire input clause

and segments that do not contain the exact

input clause but may still be relevant as they

contain a clause that shares a considerable

degree of similarity with the input.

We examine the segments retrieved using

both the default fuzzy match threshold (75%

for Wordfast and 70% for SDL Trados) and the

minimum threshold (40% for Wordfast and

30% for Trados). It is not normally

recommended for translators to set a low fuzzy

match threshold, as this might result in the

retrieval of too many irrelevant segments if the

translation memory is large. However, in this

study, we argue it would be beneficial to

examine matches retrieved with the minimum

threshold as well. Given that translation

memory match scores are mainly calculated

using Levenshtein distance, if only one clause

in a segment in the TM matches the input, there

is a greater chance of the segment being

retrieved with a lower threshold. We therefore

wish to examine whether the employment of

clause splitting will still result in a considerable

improvement from using the Levenshtein

distance-based matching algorithm in most TM

tools if the match threshold setting is already

optimised for the retrieval of sub-segment

clauses.

It must also be noted that for this study, we

are working with the source segments only.

Therefore, in the TM files used, both the source

and target segments are in English.

We conducted two main sets of experiments

referred to as Set A and Set B which are

outlined below. In Set A we selected sentences

from the Edinburgh corpus that contained

more than one clause. We use one clause, or

part of it, as the input segment, and we store

the entire sentence in the TM. In the

experiments where no clause splitting is done,

the sentence is stored as is. In the experiments

with clause splitting, the original input

segments are split into clauses (if there are
more than one) and the segments in the TM are

the component clauses of the original sentence.

For the experiments done without clause

splitting, there are 150 input segments and for

each one, we test whether the longer

corresponding segment in the TM can be

retrieved. For the experiments where clause

splitting is used, the 150 input segments are

split into 180 segments as some of these

segments contain more than one clause. We

then test whether the corresponding clause

from the original longer sentence can be

retrieved. An example is presented in Table 1.

19

 The underlined segments are the

corresponding segments that should be

retrieved.

In Set B there are also 150 input segments

for the experiments where no clause splitting

is used, and the corresponding segment in the

TM is a longer sentence containing a
paraphrase of the input segment. For the

experiments with clause splitting, there are

185 input segments (as in set A, some of the

original 150 have more than one clause) and in

the TM, the component clauses of the original

longer segment are stored, and we test

whether the clause that is a paraphrase of the

input can be retrieved. Below is an example.

Without clause splitting

Input Segment in TM

the ministry of defense

once indicated

that about 20,000

soldiers were missing in

the korean war

the ministry of defense

once indicated that about

20,000 soldiers were

missing in the korean war

and that the ministry of

defense believes there

may still be some

survivors .

With clause splitting

Input Segments in TM

- the ministry of defense

once indicated

- that about 20,000

soldiers were missing in

the korean war

- the ministry of defense

once indicated

- that about 20,000

soldiers were missing in

the korean war

- and that the ministry of

defense believes

- there may still be some

survivors .

Table 1. Set A ExampleWithout clause

splitting

Input Segment in TM

a member of the chart-

topping collective so

solid crew dumped a

loaded pistol in an

alleyway

a member of the rap

group so solid crew threw

away a loaded gun during

a police chase, southwark

crown court was told

yesterday .

With clause splitting

Input Segments in TM

a member of the chart-

topping collective so

solid crew dumped a

loaded pistol in an

alleyway

- a member of the rap

group so solid crew threw

away a loaded gun during

a police chase ,

- southwark crown court

was told yesterday .

Table 2. Set B Example

5 Results

WORDFAST

W/o clause

splitting

W/ clause

splitting

% Retrieved

(Default

threshold) 23.33% 90.00%

% Retrieved

(Minimum

threshold) 38.00% 92.22%

TRADOS

W/o clause

splitting

W/ clause

splitting

% Retrieved

(Default

threshold) 14.00% 88.89%

% Retrieved

(Minimum

threshold) 14.00% 96.67%

Table 3. Percentage of correctly retrieved

segments in Set A

Table 3 shows the results of the experiments in

set A. It is clear that clause splitting

considerably increases the number of matches

in instances where the input segment can be

found in a longer segment stored in the TM.

When the corresponding segments that could

not be retrieved even with the minimum

threshold were analysed, we found that in set

A, all instances were due to errors in clause

splitting, more specifically the fact that the

clause splitter failed to split a sentence

containing more than one clause.

Table 4 summarises the percentage of

correctly retrieved segments in set B. In this

set, it was observed that although the

percentage of retrieved matches is generally

lower than the percentages in set A, there is

20

still a noticeable increase in the percentage of

matches retrieved.

Table 4. Percentage of correctly retrieved

segments in Set B

Upon examination of the segments that

could not be retrieved even with the default

threshold, we found that in both Wordfast and

Trados, around 24% had clause splitting

errors, such as when a segment is not split at

all when it has more than one clause, or when

the segment is incorrectly split. As for the rest

of the unretrieved segments, we presume that

they are so heavily paraphrased that even

when clause splitting is performed correctly,

the TM tools are still unable to retrieve them.

For each experiment, we conduct a paired t-

test using the match scores produced by the

TM tools when retrieving each segment (Table

5). When there are no matches or the correct

match is not retrieved, the match score is 0. In

instances where the original input segment has

more than one clause and is thus split by the

clause splitter, we take the average match

score of the clauses and take this as one case in

order to make the results comparable. In all

experiments, the difference is significant at the

0.0001 level when computed with SPSS. We

can therefore reject the null hypothesis and

conclude that there is a statistically significant

difference between the results.

SET A

WORDFAST

Mean

p-value

Without

clause

splitting

With clause

splitting

Default

threshold
19.23 85.30888891

0.000

Minimum

threshold
29.28 86.48888891

0.000

TRADOS

Without

clause

splitting

With clause

splitting p-value

Default

threshold 11.78 83.87777781 0.000

Minimum

threshold 11.78 88.07111113 0.000

SET B

WORDFAST

Mean

p-value

Without

clause

splitting

With clause

splitting

Default

threshold
2.23 17.21111111

0.000

Minimum

threshold
6.49 30.62111112

0.000

TRADOS

Without

clause

splitting

With clause

splitting p-value

Default

threshold
2.71 23.083

0.000

Minimum

threshold
16.83 46.36777779

0.000

Table 5. Paired t-test on all experiments

6 Conclusion

Our results show that introducing clause

splitting as a pre-processing step in TM match

retrieval can significantly increase matching

WORDFAST

W/o clause

splitting

W/ clause

splitting

% Retrieved

(Default

threshold) 2.67% 17.84%

% Retrieved

(Minimum

threshold) 10.00% 41.08%

TRADOS

W/o clause

splitting

W/ clause

splitting

% Retrieved

(Default

threshold) 3.33% 25.95%

% Retrieved

(Minimum

threshold) 36.00% 70.67%

21

performance in instances where the TM

contains segments of which one of the clauses

corresponds to the input segment or is a

paraphrase of the input segment.

It is worth mentioning that the data used in

these experiments are not data imported from

the translation memories of practicing
translators as they are not easily available. We

nevertheless believe that the results of this

study provide significant support to the proof-

of-concept of third-generation TM systems

where NLP processing is expected to improve

performance of operational TM systems.

In future work, we wish to incorporate

alignment so that on the target side, what is

retrieved is not the original target segment but

the corresponding clause, as in its current

state, our method would only be able to

retrieve the original target segment, given that

we perform clause splitting only on the source

side. It would also be desirable to implement a

working TM tool that incorporates clause

splitting and examine to what extent these help

a translator working on an actual translation

project, as the final test of the usefulness of the

methods employed is how they actually

increase the productivity of translators in

terms of time saved.

Acknowledgements

We would like to acknowledge the members of

the Research Group in Computational

Linguistics at University of Wolverhampton for

their support, especially Dr Georgiana Marsic,
Dr Constantin Orasan and Dr Sanja Štajner.

Part of the research reported in this paper is

supported by the People Programme (Marie

Curie Actions) of the European Unions

Framework Programme (FP7/2007-2013)

under REA grant agreement no. 317471.

References

Cohn, T., Callison-Burch, C. and Lapata, M.

(2008) Constructing Corpora for the

Development and Evaluation of paraphrase

systems. Computational Linguistics, 34(4),

597-614.

Hodász, G. and Pohl, G. (2005) MetaMorpho

TM: A Linguistically Enriched Translation

Memory. In Proceedings of the International

Conference on n Recent Advances in Natural

Language Processing (RANLP-05).

Borovets, Bulgaria.

Kriele, C. (2006) Vergleich der Beiden

Translation-Memory-Systeme TRADOS

und SIMILIS. Diploma thesis. Saarbrücken:

Saarland University [unpublished].

Lagoudaki, E. (2006) Translation Memories

Survey 2006: Users’ Perceptions around

TM Use. In proceedings of the ASLIB

International Conference Translating & the

Computer (Vol. 28, No. 1, pp. 1-29).

Macken, L. (2009) In Search of the

Recurrent Units of Translation. In

Evaluation of Translation Technology, ed.

by Daelemans, Walter and Véronique

Hoste, 195-212. Brussels: Academic and
Scientific Publishers.

Macklovitch, E. and Russell, G. (2000)

What’s been Forgotten in Translation

Memory. In Envisioning machine

translation in the information future (pp.

137-146). Springer Berlin Heidelberg.

Marsic, G. (2011) Temporal Processing of

News: Annotation of Temporal Expressions,

Verbal Events and Temporal Relations [PhD

thesis, University of Wolverhampton].

Pekar, V. and Mitkov. R. (2007) New

Generation Translation Memory: Content-

Sensitive Matching. In Proceedings of the

40th Anniversary Congress of the Swiss

Association of Translators, Terminologists

and Interpreters, 29-30 September 2006,

Bern.

Planas, E. (2005) SIMILIS - Second

generation TM software. In Proceedings of

the 27th International Conference

on Translating and the Computer (TC27).

London, UK.

22

Puscasu, G. (2004) A Multilingual Method

for Clause Splitting. In Proceedings of the

7th Annual Colloquium for the UK Special

Interest Group for Computational

Linguistics.

Reinke, U. (2013) State of the Art in

Translation Memory Technology.

Translation: Computation, Corpora,

Cognition, 3(1).

.

23

