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Abstract

The modelling of natural language tasks
using data-driven methods is often hin-
dered by the problem of insufficient nat-
urally occurring examples of certain lin-
guistic constructs. The task we address
in this paper – quality estimation (QE) of
machine translation – suffers from lack of
negative examples at training time, i.e.,
examples of low quality translation. We
propose various ways to artificially gener-
ate examples of translations containing er-
rors and evaluate the influence of these ex-
amples on the performance of QE models
both at sentence and word levels.

1 Introduction

The task of classifying texts as “correct” or “incor-
rect” often faces the problem of unbalanced train-
ing sets: examples of the “incorrect” class can be
very limited or even absent. In many cases, natu-
rally occurring instances of these examples are rare
(e.g. incoherent sentences, errors in human texts).
In others, the labelling of data is a non-trivial task
which requires expert knowledge.

Consider the task of quality estimation (QE) of
machine translation (MT) systems output. When
performing binary classification of automatically
translated sentences one should provide examples
of both bad and good quality sentences. Good
quality sentences can be taken from any parallel
corpus of human translations, whereas there are
very few corpora of sentences annotated as having
low quality. These corpora need to be created by
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human translators, who post-edit automatic trans-
lations, mark errors in translations, or rate transla-
tions for quality. This process is slow and expen-
sive. It is therefore desirable to devise automatic
procedures to generate negative training data for
QE model learning.

Previous work has followed the hypothesis that
machine translations can be assumed to have low
quality (Gamon et al., 2005). However, this is not
the case nowadays: many translations can be con-
sidered flawless. Particularly for word-level QE, it
is unrealistic to presume that every single word in
the MT output is incorrect. Another possibility is
to use automatic quality evaluation metrics based
on reference translations to provide a quality score
for MT data. Metrics such as BLEU (Papineni
et al., 2002), TER (Snover et al., 2006) and ME-
TEOR (Banerjee and Lavie, 2005) can be used to
compare the automatic and reference translations.
However, these scores can be very unreliable, es-
pecially for word-level QE, as every word that dif-
fers in form or position would be annotated as bad.

Previous efforts have been made for negative
data generation, including random generation of
sentences from word distributions and the use of
translations in low-ranked positions in n-best lists
produced by statistical MT (SMT) systems. These
methods are however unsuitable for QE at the word
level, as they provide no information about the
quality of individual words in a sentence.

In this paper we adopt a different strategy: we
insert errors in otherwise correct sentences. This
provides control over the proportion of errors in
the negative data, as well as knowledge about the
quality of individual words in the generated sen-
tences. The goals of the research presented here
are to understand the influence of artificially gener-
ated data (by various methods and in various quan-
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tities) on the performance of QE models at both
sentence and word levels, and ultimately improve
upon baseline models by extending the training
data with suitable artificially created examples. In
Section 2 we further review existing strategies for
artificial data generation. We explain our genera-
tion strategies in Section 3. In Section 4 we de-
scribe our experiment and their results.

2 Previous work

2.1 Discriminative language modelling

One example of task that requires low quality
examples is discriminative language modelling
(DLM), i.e., the classification of sentences as
”good” or ”bad”. It was first introduced in a mono-
lingual context within automatic speech recogni-
tion (Collins et al., 2005), and later applied to MT.
While in speech recognition negative examples can
be created from system outputs that differ from
the reference (Bhanuprasad and Svenson, 2008), in
MT there are multiple correct outputs, so negative
examples need to be defined more carefully.

In Okanohara (2007) bad sentences used as neg-
ative training instances are drawn from the dis-
tribution P (wi|wi−N+1, ..., wi−1): first the start
symbol < s > is generated, then the next words
are taken based on the word probability given the
already generated words.

Other approaches to discriminative LMs use the
n-best list of the MT system as training data (Li
and Khudanpur, 2008). The translation variant
which is closest to the oracle (e.g. has the highest
BLEU score) is used as a positive example, while
the variant with high system score and low BLEU
score is used as a negative example. Such dataset
allows the classifier to reduce the differences be-
tween the model score and the actual quality score
of a sentence.

Li et al. (2010) simulate the generation of an
n-best list using translation tables from SMT sys-
tems. By taking entries from the translation table
with the same source side they create a set of alter-
native translations for a given target phrase. For
each sentence, these are combined, generating a
confusion set for this sentence.

2.2 Quality estimation for MT

QE can be modelled as a classification task where
the goal is to distinguish good from bad transla-
tions, or to provide a quality score to each trans-
lation. Therefore, examples of bad sentences or

words produced by the MT system are needed. To
the best of our knowledge, the only previous work
on adding errors to well-formed sentences is that
by Raybaud et al. (2011).

In (Raybaud et al., 2011), the training data
for the negative data generation process consists
of a set of MT hypotheses manually post-edited
by a translator. Hypotheses are aligned with the
corresponding post-editions using the TERp tool
(Snover et al., 2008). The alignment identifies the
edit operations performed on the hypothesis in or-
der to convert it to the post-edited version: leave
word as is (no error), delete word, insert new word,
substitute word with another word. Two models of
generation of error strings from a well-formed sen-
tence are proposed. Both are based on the observed
frequency of errors in the post-edited corpus and
do not account for any relationships between the
errors and the actual words. The bigram error
model draws errors from the bigram probabilities
P (Ci|Ci−1) where Ci is an error class. The clus-
ter error model generates clusters of errors based
on the distribution of lengths of erroneous word
sequences in the training data. Substituting words
are chosen from a probability distribution defined
as the product of these words’ probabilities in the
IBM-1 model and a 5-gram LM. A model trained
only on artificial data performs slightly better than
one trained on a small manually annotated corpus.

2.3 Human error correction

Another task that can benefit from artificially gen-
erated examples is language learner error correc-
tion. The input for this task is text that potentially
contains errors. The goal is to find these errors,
similarly to QE at the word level, and additionally
correct them. While the text is written by humans,
it is assumed that these are non-native speakers,
who possibly translate the text from their native
language. The difference is that in this task the
source text is a hidden variable, whereas in MT it
is observed.

The strategy of adding errors to correct sen-
tences has also been used for this task. Human
errors are more intuitive to simulate as language
learners explicitly attempt to use natural language
grammars. Therefore, rule-based systems can be
used to model some grammar errors, particularly
those affecting closed class words, e.g. determiner
errors (Izumi et al., 2003) or countability errors
(Brockett et al., 2006).
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More recent statistical methods use the distribu-
tions of errors in corpora and small seed sets of
errors. They often also concentrate on a single er-
ror type, usually with closed class words such as
articles and prepositions (Rozovskaya and Roth,
2010). Felice and Yuan (2014) go beyond closed
class words to evaluate how errors of different
types are influenced by various linguistic param-
eters: text domain, learner’s first language, POS
tags and semantic classes of erroneous words. The
approach led to the generation of high-quality ar-
tificial data for human error correction. However,
it could not be used for MT error identification,
as MT errors are different from human errors and
usually cannot be assigned to a single type.

3 Generation of artificial data

The easiest choice for artificial data generation is
to create a sentence by taking all or some of its
words from a probability distribution of words in
some monolingual corpus. The probability can
be defined for unigrams only or conditioned on
the previous words (as it was done for discrimina-
tive LMs). This however is a target language-only
method that does not suit the QE task as the “qual-
ity” of a target word or sentence is dependent on
the source sentence, and disregarding it will cer-
tainly lead to generation of spurious data.

Random target sentences based on a given
source sentence could be generated with bilingual
LMs. However another limitation of this approach
is the assumption that all words in such sentences
are wrong, which makes the data useless for word-
level QE.

Alternatively, the artificial sentences can be gen-
erated using MT systems for back-translation. The
target sentences are first fed to a target–source
MT system, and then its output is passed to a
source–target system. However, according to our
experiments, if both systems are statistical the
back-translation is too similar to the original sen-
tence, and the majority of their differences are in-
terchangeable paraphrases. Rule-based systems
could be more effective, but the number of rule-
based systems freely available would limit the
work to a small number of language pairs.

3.1 A two-stage error generation method

As previously discussed, existing methods that ar-
tificially generate entire sentences have drawbacks
that make them difficult or impossible to use for

QE. Therefore, following Raybaud et al. (2011)
and previous work on human error correction, our
approach is to inject errors into otherwise correct
texts. This process consists of two stages:

• labelling of a sentence with error tags,
• insertion of the errors into that sentence.

The first stage assigns an error tag to every word
in a sentence. The output of this stage is the initial
sentence where every word is assigned a tag de-
noting a type of error that needs to be incurred on
this word. We use five tags corresponding to edit
operations in the TERp tool: no error (OK), sub-
stitution (S), deletion (D), insertion (I) and shift
(H). During the second stage the words in the sen-
tence are changed according to their tag: substi-
tuted, deleted, shifted, or left in place if word has
the tag OK. Figure 1 gives an example of the com-
plete generation process.

3.1.1 Error tagging of sentences
We generate errors based on a corpus of post-

edited machine translations. We align transla-
tions and post-editions using the TERp tool (ex-
act matching) and extract counts on the number
of shifts, substitutions, insertions and deletions.
TERp does not always capture the true errors, in
particular, it fails to identify phrase substitutions
(e.g. was → has been). However, since editors
are usually asked to minimise the number of ed-
its, translations and post-editions are often close
enough and the TERp alignment provide a good
proxy to the true error distribution.

The TERp alignments can be used to collect the
statistics on errors alone or to combine the fre-
quency of errors with the words they are incurred
on. We suggest three methods of generation of an
error string for a sentence:

• bigramEG: the bigram error generation that
uses a bigram error model regardless of the
actual words (Raybaud et al., 2011).

• wordprobEG: the conditional probability of
an error given a word.

• crfEG: the combination of the bigram error
model and error probability conditioned on a
word. This generation method can be mod-
elled with Hidden Markov Model (HMM) or
conditional random fields (CRF).

The first model has the advantage of keeping
the distribution of errors as in the training data,
because the probability distributions used depend

53



Figure 1: Example of the two-stage artificial data generation process

only on the frequency of errors themselves. The
second model is more informed about which words
commonly cause errors. Our implementation of
the third method uses CRFs to train an error model.
We use all unigrams, bigrams and trigrams that in-
clude the target word as features for training. This
method is expected to produce more plausible er-
ror tags, but it can have the issue that the vocab-
ulary we want to tag is not fully covered by the
training data, so some words in the sentences to
tag will be unknown to the trained model. If an
unknown word needs to be tagged, it will more of-
ten be tagged with the most frequent tag, which is
“Good” in our case. In order to avoid this problem
we replace rare words in training set with a default
string or with the word class, e.g. a POS tag.

3.1.2 Insertion of errors
We consider errors of four types: insertion,

deletion, substitution and shift. Word marked
with the ‘deletion’ error tag are simply removed.
Shift errors require the distribution of shift dis-
tances which are computed based on a TERp-
aligned corpus. Substitutions and insertions re-
quire word insertion (WI) and the new words need
to be drawn from some probability distribution.
We suggest two methods for the generation of
these distributions:

• unigramWI: word frequencies computed
based on a large monolingual corpus.

• paraphraseWI: distributions of words that
can be used instead of the current word in the
translation. This computation is performed
as follows: first all possible sources of a tar-
get word are extracted from an SMT system’s
translation table, then all possible targets for
these sources. That gives us a confusion set
for each target word.

4 Experiments

We conducted a set of experiments to evaluate the
performance of artificially generated data on dif-
ferent tasks of QE at the sentence and word levels.

4.1 Tools and datasets

The tools and resources required for our experi-
ments are: a QE toolkit to build QE models, the
training data for them, the data to extract statistics
for the generation of additional examples.

The for sentence-level QE we used the QUEST

toolkit (Specia et al., 2013). It trains QE mod-
els using sklearn1 versions of Support Vec-
tor Machine (SVM) classifier (for ternary clas-
sification task, Section 4.4) and SVM regression
(for HTER prediction, Section 4.5). The word-
level version of QUEST2 was used for word-level
feature extraction. Word-level classifiers were
trained with CRFSuite3. The CRF error mod-
els were trained with CRF++4. POS tagging
was performed with TreeTagger (Schmid, 1994).
Sentence-level QuEst uses 17 baseline features5

for all tasks. Word-level QuEst reimplements the
set of 30 baseline features described in (Luong
et al., 2014). The QE models were built and
tested based on the data provided for the WMT14
English–Spanish QE shared task (Section 4.3).

The statistics on error distributions were com-
puted using the English–Spanish part of training
data for WMT13 shared task on QE6. The statis-
tics on the distributions of words, alignments and
lexical probabilities were extracted from the Eu-
roparl corpus (Koehn, 2005). We trained the align-
ment model with FastAlign (Dyer et al., 2013) and
extracted the lexical probabilities tables for words
using scripts for phrase table building in Moses
(Koehn et al., 2007). For all the methods, errors
were injected into the News Commentary corpus7.

1http://scikit-learn.org/
2http://github.com/ghpaetzold/quest
3http://www.chokkan.org/software/crfsuite/
4https://code.google.com/p/crfpp/
5http://www.quest.dcs.shef.ac.uk/
quest files/features blackbox baseline 17
6http://www.quest.dcs.shef.ac.uk/
wmt13 qe.html
7http://statmt.org/wmt14/
training-parallel-nc-v9.tgz
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4.2 Generated data
Combining three methods of errors generation and
two methods of errors insertion into sentences re-
sulted in a total of six artificial datasets. Here we
perform some analysis on the generated data.

The datasets differ in the percentage of errors
injected into the sentences. BigramEG datasets
have 23% of edits which matches the distribution
of errors on the real data. WordprobEG datasets
contain fewer errors — 17%.

The crfEG models contain the lowest number
of errors — 5% of the total number of words. As it
was expected, data sparsity makes the CRF model
tag the majority of the words with the most fre-
quent tag (“Good”). Replacing rare words with a
default word token or with a POS tag did not im-
prove these statistics.

Word inserters Unigram Paraphrase
Error generators
Bigram 699.9 888.64
Wordprob 538.84 673.61
CRF + default word 165.36 172.97
CRF + POS tag 161.59 167.23

Table 1: Perplexities of the artificial datasets

We computed the perplexity of all datasets with
respect to an LM trained on the Spanish part of the
Europarl corpus (see Table 1). The figures match
the error percentages in the data — the lower the
number of errors, the more is kept from the original
sentence, and thus the more natural it looks (lower
perplexity). Note that sentences where errors were
inserted from a general distribution (unigramWI)
have lower perplexity than those generated using
using paraphrases. This can be because the un-
igramWI model tends to choose high-frequency
words with lower perplexity, while the constructed
paraphrases contain more noise and rare words.

4.3 Experimental setup
We evaluated the performance of the artificially
generated data in three tasks: the ternary clas-
sification of sentences as “good”, “almost good”
or “bad”, the prediction of HTER (Snover et al.,
2009) score for a sentence, and the classification
of words in a sentence as “good” or “bad” (tasks
1.1, 1.2 and 2 of WMT14 QE shared task8, respec-
tively).
8http://statmt.org/wmt14/
quality-estimation-task.html

The goal of the experiments was to check
whether it is possible to improve upon the baseline
results by adding artificially generated examples
to the training sets. The baseline models for all
tasks were trained on the data provided for the cor-
responding shared tasks for the English–Spanish
language pair. All models were tested on the offi-
cial test sets provided for the corresponding shared
tasks.

Since we know how many errors were injected
into the sentences, we know the TER scores for our
artificial data. The discrete labels for the ternary
classification task are defined as follows: “bad”
sentences have four or more non-adjacent errors
(two adjacent erroneous words are considered one
error), “almost good” sentences contain one er-
roneous phrase (possibly of several words), and
“good” sentences are error-free.

The new training examples were added to the
baseline datasets. We ran a number of experiments
gradually increasing the number of artificially gen-
erated sentences used. At every run, the new data
was chosen randomly in order to reduce the influ-
ence of outliers. In order to make the results more
stable, we ran each experiment 10 times and aver-
aged the evaluation scores.

4.4 Sentence-level ternary QE task

The original dataset for this task contains 949
“good”, 2010 “almost good”, and 857 “bad” sen-
tences, whereas the test set has 600 entries: 131
“good”, 333 “almost good”, 136 “bad”. The re-
sults were evaluated using F1-score.

The addition of new “bad” sentences leads to
an improvement in quality, regardless of the sen-
tence generation method used. Models trained on
datasets generated by different strategies display
the same trend: adding up to 400 sentences results
in a considerable increase in quality, while fur-
ther addition of data only slightly improves qual-
ity. Figure 2 shows the results of the experiments
– here for clarity we included only the results
for datasets generated with the unigramWI, al-
though the paraphraseWI demonstrates a similar
behaviour with slightly lower quality. The best F1-
score of 0.49 is achieved by a model trained on the
data generated with the crf error generator, which
is an absolute improvement of 1.9% over the base-
line.

However, adding only negative data makes the
distribution of classes in the training data less
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Figure 2: Ternary classification: performance of
error generators

similar to that of the test set, which might af-
fect performance negatively. Therefore, we con-
ducted other three sets of experiments: we added
(i) equal amount of artificial data for the “good”
and “bad” classes (ii) batches of artificial data
for all classes that keep the original proportion of
classes in the data (iii) artificial data for only the
“good” class. The latter setting is tested in order to
check whether the classifier benefits from negative
instances, or just from having new data added to
the training sets.

The results are shown in Figure 3. We plot only
the results for the bigramEG + unigramWI set-
ting as it achieved the best result in absolute val-
ues, but the trends are the same for all data gen-
eration techniques. The best strategy was to add
both “good” and “bad” sentences: it beats the mod-
els which uses only negative examples, but after
1000 artificial sentences its performance degrades.
Keeping the original distribution of classes is not
beneficial for this task: it performs worse than
any other tested scenario since it decreases the F1-
score for the “good” class dramatically.

Overall, the additional negative training data im-
proves the ternary sentence classification. The ad-
dition of both positive and negative examples can
further improve the results, while providing addi-
tional instances of the “almost good” class did not
seem to be as helpful.

4.5 Sentence-level HTER QE task

Figure 4 shows that the addition of any type of ar-
tificial data leads to substantial improvements in
quality for this task. The results were evaluated
in terms of Mean Absolute Error (MAE). The ini-

Figure 3: Ternary classification: artificial exam-
ples of different classes

tial training dataset was very small – 896 sentences
(200 sentences for test), which may explain the
substantial improvements in prediction quality as
new data is added. We also noticed that the perfor-
mance of the generated datasets was primarily de-
fined by the method of errors generation, whereas
different word choice strategies did not impact the
results as much. Figure 4 depicts the results for the
unigramWI words selection method only with all
error generation methods.

The addition of data from datasets generated
with crfEG gives the largest drop in MAE (from
0.161 to 0.14). This result is achieved by a model
that uses 1200 artificial sentences. Further addi-
tion of new data harms performance. The data
generated by other error generators does not cause
such a large improvement in quality, although it
also helps reduce the error rate.

As it was described earlier, the crfEG model
generates sentences with a small number of er-
rors. Since the use of this dataset leads to the
largest improvements, we can suggest that in the
HTER prediction task, using the baseline dataset
only, the majority of errors is found in sentences
whose HTER score is low. However, the reason
might also be that the distributions of scores in the
baseline training and test sets are different: the test
set has lower average score (0.26 compared to 0.31
in the training set) and lower variance (0.03 versus
0.05 in the training set). The use of artificial data
with a small number of errors changes this distri-
bution.

We also experimented with training a model us-
ing only artificial data. The results of models
trained on only 100 artificial sentences for each
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Figure 4: HTER regression results

generation method were surprisingly good: their
MAE ranged from 0.149 to 0.158 (compared to
the baseline result of 0.161 on the original data).
However, the further addition of new artificial sen-
tences did not lead to improvements. Thus, despite
the positive impact of the artificial data on the re-
sults, the models cannot be further improved with-
out real training examples.

4.6 Word-level QE task

Here we tested the impact of the artificial data on
the task of classifying individual words as “good”
or “bad”. The baseline set contains 47335 words,
35% of which have the tag “bad”. The test set has
9613 words with the same label distribution.

All the datasets led to similar results. Overall,
the addition of artificial data harms prediction per-
formance: the F1-score goes down until 1500 sen-
tences are added, and then levels off. The perfor-
mance for all datasets is similar. However, analo-
gously to the previous tasks, there are differences
between crfEG and the other two error generation
techniques: the former leads to faster deterioration
of F1-score. No differences were observed among
the word insertion techniques tested.

Figure 5 shows the average weighted F1-score
and F1-scores for both classes. Since all datasets
behave similarly, we show the results for two
of them that demonstrate slightly different per-
formance: crfEG+unigramWI is shown with
solid blue lines, while bigramEG+unigramWI is
shown with dotted red lines. The use of data gen-
erated with CRF-based methods results in slightly
faster decline in performance than the use of data
generated with bigramEG or wordprobEG. One
possible reason is that the CRF-generated datasets

Figure 5: Word-level QE. Blue solid lines – results
for crfEG, red dotted lines – bigramEG

have fewer errors, hence they change the original
tags distribution in the training data. Therefore,
test instances are tagged as “bad” less often. That
explains why the F1-score of the “bad” class de-
creases, whereas the F1-score of the “good” class
stays at the same.

To summarise our findings for word-level QE,
the strategies of data generation proposed and
tested thus far do not lead to improvements. The
word-level predictions are more sensitive to indi-
vidual words in training sentences, so the replace-
ment of tokens with random words may confuse
the model. Therefore, the word-level task needs
more elaborate methods for substituting words.

5 Conclusions and future work

We presented and experimented with a set of new
methods of simulation of errors made by MT sys-
tems. Sentences with artificially added errors were
used as training data in models that predict the
quality of sentences or words.

The addition of artificial data can help improve
the output of sentence-level QE models, with sub-
stantial improvements in HTER score prediction
and some improvements in sentences classification
into “good”, “almost good” and “bad”. However,
the largest improvements are related to the fact that
the additional data changes the overall distribution
of scores in the training set, making it more sim-
ilar to the test set. On the other hand, the fact
that the artificial sentences did not decrease the
quality in such cases proves that it can be used
to counter-balance the large number of positive
examples. Unlike sentence-level QE, the task of
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word-level QE did not benefit from the artificial
data. That may relate to our choice of method to
replace words in artificial sentences.

While thus far we analysed the usefulness of ar-
tificial data for the QE task only, it would be in-
teresting to check if this data can also improve the
performance of discriminative LMs.
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