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Abstract

Temporal information extraction is im-
portant to understanding text in clin-
ical documents. Temporal expression
extraction provides explicit grounding
of events in a narrative. In this work
we provide a direct comparison of vari-
ous ways of extracting temporal expres-
sions, using similar features as much
as possible to explore the advantages
of the methods themselves. We evalu-
ate these systems on both the THYME
(Temporal History of Your Medical
Events) and i2b2 Challenge corpora.
Our main findings are that simple se-
quence taggers outperform conditional
random fields on the new data, and
higher-level syntactic features do not
seem to improve performance.

1 Introduction

Temporal information is ubiquitous in clini-
cal narratives, and accurately extracting tem-
poral information has recently been the fo-
cus of a great deal of work in clinical natural
language processing (NLP) (Raghavan et al.,
2012; Miller et al., 2013; Sun et al., 2013). Rel-
evant temporal information includes events,
time expressions, and temporal relations be-
tween pairs of events and/or times. The
accurate extraction of temporal information
would be enabling technology for sophisticated
downstream processing that requires tempo-
ral awareness of patient status. One promis-
ing application is question answering, where
a physician can directly ask questions about a
patient’s medical record. Many question types
of interest are explicitly temporal (When was
the patient’s last colonoscopy? ), but almost all
are implicitly temporal in the sense that ev-
ery question needs to be understood relative

Time Class Example
Date February 2 2010, Friday morning
Time 5:30 PM, 20 minutes ago
Duration For the next 24 hours, nearly 2 weeks
Quantifier twice, three times
Prepostexp postoperatively, post-surgery
Set twice daily, weekly

Table 1: Time expression classes and two ex-
amples of each class.

to some time frame (What drugs is the pa-
tient on? cannot simply return all drugs in
the record but has to understand the question
itself is anchored in the present).

This work focuses on the automatic iden-
tification of time expressions in clinical text.
Time expressions are words and phrases that
correspond to points or spans on a timeline,
such as dates or times. Other temporal ex-
pression types include Durations, Quantifiers,
Sets, and Prepostexps. Table 1 shows the time
expression classes used in this work, with ex-
amples given of each class. The significant de-
viation from general domain methods is the
Prepostexp type, which is specific to the clini-
cal domain. Exemplified by terms like postop-
eratively, this type represents time spans rela-
tive to some event, often an operation.

Temporal information extraction has been
a topic of a great deal of work both in the
clinical and general NLP domains. In the gen-
eral NLP domain, the TimeBank (Pustejovsky
et al., 2003) spurred much of the early re-
search by providing a manually annotated cor-
pus of events, times and temporal relations.
Shared tasks such as TERN1, which focused
on time expressions, and TempEval (Verhagen
et al., 2007; Verhagen et al., 2010; UzZaman
et al., 2013), which included events and tem-
poral relations as well, helped build a com-

1http://www.itl.nist.gov/iad/mig/tests/ace/2004/
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munity around temporal information extrac-
tion. The community explored a wide variety
of approaches, the best of which used either
manually engineered databases of regular ex-
pression rules (Strötgen et al., 2013) or a su-
pervised learning word classification paradigm
(Bethard, 2013), and achieved precisions and
recalls above 80% in the shared tasks.

In the clinical domain, temporal information
extraction has seen a great deal of recent inter-
est, with the i2b2 (Informatics for Integrating
Biology and the Bedside) shared task on tem-
poral information extraction (Sun et al., 2013)
and the recent release of the THYME (Tem-
poral History of Your Medical Events) corpus
of clinical annotations (Styler IV et al., 2014).
The i2b2 shared task contained a track explic-
itly focusing on extraction of temporal expres-
sions. In that task, a variety of approaches
were used for time expression extraction. The
best performing system (Xu et al., 2013) used
machine learning, with a conditional random
field classifier (CRF) for finding spans and a
support vector machine classifier for classify-
ing attributes. Other top approaches used
adapted regular expressions (Sohn et al., 2013)
on top of the off the shelf Heideltime system (a
general-domain NLP system for parsing time
expressions) (Strötgen and Gertz, 2010). An-
other approach used a hybrid system where
the output from a CRF-based system was com-
bined with the output of a rule-based sys-
tem (Kovačević et al., 2013).

In this work, we develop and evaluate sev-
eral machine learning methods for extracting
time expressions from clinical text. These
methods include simple sequential classifiers,
a sequential model (conditional random field),
a constituency parser-based method, and an
ensemble sequence method that attempts to
leverage the differing performance of all the
other models. The contributions of this work
are the comparison and analysis of a large
number of different machine learning models
for this task, the first use of deep syntactic fea-
tures for this task, and an evaluation on two
different corpora, including the first evaluation
of these methods on the THYME corpus.

THYME (TempEval) i2b2
Date 1271 1639
Time 54 69

Duration 195 406
Quantifier 61 n/a

Set 83 n/a
Prepostexp 149 n/a
Frequency n/a 249

Table 2: Descriptive statistics of THYME and
i2b2 corpora. Frequency in i2b2 is roughly the
union of set and quantifier in THYME.

2 Materials and Methods

2.1 Corpora

We use two corpora for training and evaluating
the methods described above. The first is the
THYME corpus (Styler IV et al., 2014), which
consists of clinical and pathology notes of pa-
tients with colon cancer from Mayo Clinic.
The THYME corpus is split into training,
development, and test sets based on patient
number, with 50% in training and 25% each
in development and test sets. For our experi-
ments we use the same patient set as the up-
coming TempEval 20152, patients 28-127. The
training data contains 1874 time expressions,
the development contains 1119, and the test
set contains 1047. We used the development
set for optimizing learning parameters, then
combined it with the training set to build the
system used for reporting results in Section 3.

The second corpus we use is the i2b2 2012
Challenge dataset (Sun et al., 2013). The
i2b2 dataset contains discharge summaries
from Partners Healthcare and Beth Israel Dea-
coness Medical Center. This data is split into a
training and test set, with no predefined devel-
opment set. We arbitrarily set aside filenames
above 600 from the training set as a develop-
ment set and for tuning parameters. Under
this configuration, the i2b2 dataset contained
1856 training examples, 507 development ex-
amples, and 1820 test examples. Again, train-
ing and development examples were combined
to build the system that is evaluated in Sec-
tion 3.

Table 2 shows the distribution of the dif-
ferent time classes in the THYME and i2b2

2http://alt.qcri.org/semeval2015/task6/
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corpora. While distribution is broadly simi-
lar, i2b2 had a higher percentage of duration
expressions while THYME had many prepost-
exp expressions, which in i2b2 were annotated
as the date category.

2.2 Systems

We implemented a variety of systems in an at-
tempt to empirically evaluate the best way to
model the time span classification task. For all
systems, the temporal expression extractor is
implemented within Apache cTAKES3 (clini-
cal Text Analysis and Knowledge Extraction
System) (Savova et al., 2011), making use of
its components for feature generation as well
as its interface to the source general-domain
NLP system ClearTK (Bethard et al., 2014)
which in turn interfaces with different machine
learning libraries, including LibSVM (Chang
and Lin, 2011) and CRFSuite (Okazaki, 2007).

2.2.1 Sequence Models
We developed three sequence-based models
for this task, each with different perceived
strengths. The first system is perhaps the sim-
plest, a standard BIO (Begin-Inside-Outside)
tagger using an off the shelf support vector
machine (SVM) classifier (Cortes and Vapnik,
1995). BIO taggers work by labeling every
token in a sentence as the beginning (B), in-
side (I), or outside (O) of some subsequence in
the data (in this case a temporal expression).
The tagger progresses left to right through a
sentence, making a classification decision at
each word, with features based on any infor-
mation that would be available to a system at
run time. After processing a sentence, tag se-
quences are converted to time expression spans
and evaluated in the span format. The main
benefit of this system is its efficiency, as it op-
erates in a “greedy” fashion, getting a locally
optimal labeling.

The second sequence system is a backwards
BIO tagger. This system works just like the
BIO tagger described above, except it starts
at the end of the sentence and works its way
forward. As mentioned above, this family of
models is not globally optimal. In preliminary
work, we found that the BIO tagger frequently
left off the first word of a time expression, es-
pecially if it was a common word like ‘the’ or

3http://ctakes.apache.org

‘this.’ Additionally, time expressions are of-
ten noun phrases, which typically carry a lot
of meaning in the right-most word, so start-
ing from the right has that advantage as well.
For evaluation purposes, this model and the
forward BIO tagger can be given exactly the
same features, so there is a very clear eval-
uation of just the single difference in model
strategy, going forwards or backwards.

The third system is a conditional ran-
dom field (CRF) sequence labeler. Condi-
tional random fields (Lafferty et al., 2001) are
discriminatively-trained undirected graphical
models that find the globally optimal label-
ing for a given configuration of random vari-
ables. We use a standard CRF architecture,
the linear-chain CRF, where the random vari-
ables for sequence labels have only dependen-
cies between the previous and next label, and
random variables for arbitrary features of the
observed evidence. Like the sequential taggers
above, the CRF tagger assigns BIO tags to ev-
ery word in a sequence, and time expressions
are deterministically extracted from those as-
signments. The CRF tagger processes one sen-
tence at a time, assigning labels to all tokens
within that sentence simultaneously.

2.2.2 Constituency Model

The other system we developed is based on
a constituency parse representation. Con-
stituency trees represent the phrasal structure
of a sentence, building up structure from the
word level to a single tree which encloses the
whole sentence. Our time expression classifica-
tion model starts at the root of a tree and tra-
verses it depth-first for a given sentence, and
at each node in the tree classifies the enclosed
span of words as a time expression or not a
time expression, using a support vector ma-
chine classifier. During the depth-first traver-
sal, further downward traversal is terminated
with a positive classification (a time expres-
sion is found) or with a constituency spanning
a single word. Figure 1 shows an example con-
stituency tree with a time expression.

During training, the depth-first search will
compare the span of every constituent in the
search path with the spans of the gold stan-
dard, and any matching constituents are pos-
itive instances. Any non-matching spans are
negative training instances. Features for each
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Figure 1: Example constituency tree containing a time expression. This sentence con-
tains a single time-expression (June 17, 2010 ), spanned by the bolded NP in the figure. That
NP is a single positive training instance, while all other constituents will be negative training
instances.

positive or negative instance (described in de-
tail below) can be extracted arbitrarily based
on the position of the instance in the tree,
but this representation obviously lends itself
more to hierarchical, syntax-based features
and makes sequence-based features more diffi-
cult (though not impossible) to represent.

The appeal of this approach is that time ex-
pressions will nearly always be constituents, so
the classifier is constrained to select only con-
stituent sequences. This also seems to combine
advantages of the systems above, as it gets to
consider whole spans at once (like the global
optimization of the CRF), while using a sim-
ple binary classifier (like the SVM-based BIO
taggers). One potential drawback is that it re-
quires high accuracy parsing, at least for con-
stituents composed of temporal expressions.

2.2.3 Ensemble Model

The final model we developed is an ensemble
sequence model that is trained on features en-
capsulating the outputs of the four above sys-
tems and making predictions based on those
features. The rationale for this model is that
our other models differ enough to have vary-
ing strengths and weaknesses, and an ensem-
ble system may be able to learn when to se-

lect which system. The features at each word
in the sequence are the outputs of the compo-
nent systems at a window of width n around
the word. So, for systems i the features at
position j in the document are the following
set:

featsj = ∪i ∪j+n
j′=j−n {outij′} (1)

where outji ∈ {B, I, O}, indicating the output
label of system i at position j.

We use a CRF-based tagger for this model
– with a much smaller (and thus more learn-
able) feature space, our intuition is that a glob-
ally optimal model should have even more of
an advantage over word-by-word discrimina-
tive taggers. In preliminary work we found
that a window of n = 1 gave the best per-
formance on the development set, so the final
model was trained using that value.

2.3 Features

To make the comparison fair, we made an ef-
fort to have feature parity between systems
as much as possible. For the three sequence-
based models this was largely accomplished.
For the constituency parser-based model the
approach is so different that the features do
not align perfectly with the other systems, but
roughly the same information is present.
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Feature Type Features
Tokens Word=June,Word=17,Word=COMMA,Word=2010
POS tags POS=NNP,POS=CD,POS=COMMA,POS=CD
Character classes Char=LuLlLlLl,CharCollapsed=LuLl,Char=NdNd,CharCollapsed=Nd,

Char=Pc,CharCollapsed=Pc,Char=NdNdNdNd,CharCollapsed=Nd
Gazetteer MonthOfYear,Number,Year
Parse node=NP,parent=PP,prod=NP→NP-COMMA-NP,root=false,leaf=false

Table 3: Table representing features extracted from the time expression in Figure 1, organized
by feature type. The comma character is represented as COMMA so it is not confused with the
commas used to separate features. Character classes are explained in the main text.

2.3.1 Sequence Features

Sequence features include lexical features,
gazetteer features, syntactic parse features,
and section features. Lexical and gazetteer
features are both token-based, and are de-
fined for both the current token under con-
sideration (i.e., the one the classifier is cur-
rently trying to label) and the three tokens on
either side of the token under consideration.
These features include token part of speech
(POS) tags and two character based features.
The part of speech tags are obtained from the
cTAKES POS tagger (a clinical data-trained
wrapper for the Apache OpenNLP4 POS tag-
ger). The character-based features map every
character in the token to a unicode character
category5, for example, uppercase letter (Lu),
lowercase letter (Ll), decimal digit (Nd), etc.
This character-mapped token representation is
then turned into two features, one in the un-
modified format and one where repeats are col-
lapsed. For example, the token “2004” would
map to two features: one where its represented
as four digit characters (NdNdNdNd) and one
where the repeats are collapsed (Nd).

Gazetteer features rely on a lookup table
that contains information about lexical items
that are very likely to generalize. We define
a small set of temporal word classes and cre-
ated a gazetteer that maps lexical items to
those classes. The set of classes with repre-
sentative examples is: {Number (numbers up
to 200), Year (four-digit numbers that could
reasonably appear in current notes), Unit (sec-
ond, minute), PartOfDay (morning), Day-
OfWeek (Monday), WeekendOfWeek (week-

4http://opennlp.apache.org
5http://www.unicode.org/reports/tr44/

#General_Category_Values

end), MonthOfYear (January, jan), SeasonO-
fYear (Summer), DecadeOfCentury (nineties),
Time (noon), Age (teenager), TimeReference
(previously), Frequency (monthly), Adjuster
(next), Modifier (nearly), PrePost (postopera-
tive), TimeSeparator (:)}. The full list of items
is too long to list here but will be part of the
open source release of this system.

Parse features for the sequence model are
not as natural a fit as with a constituency
node-based model, but some features can be
derived based on spans. With the BIO tag-
ger models (forward and backward) we define
a candidate span to consider, defined in terms
of the forward tagger but easily extendable to
the backwards tagger. A candidate span for
the current token we are classifying has as its
rightmost token the current token, and its left-
most token as the start of the sequence that
the current token would be a part of if it is clas-
sified as part of a temporal expression. This
is simple to find in practice: if the previous
token is O (not part of a temporal expression)
then the current candidate span is only the
current token; otherwise the candidate span
starts at the most recent token labeled B (the
start of a temporal expression). For the CRF
sequence tagger, classification decisions have
not yet been made, so the candidate span al-
ways covers only the current token.

Given this definition of a candidate span,
we define several features. We have one fea-
ture for the category of the lowest constituent
that dominates the current span, a feature for
the parent category of the dominating node, a
feature that indicates whether the dominating
node is a leaf (preterminal) node, and a fea-
ture to indicate whether the dominating node
matches the current span exactly.
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We then have production-rule associated
features. First, we simply represent the pro-
duction rule of the dominating node as a string
(e.g., “NP -> DT NN”). We also use “bag of
children” features which represent each of the
elements of the right hand side of the produc-
tion rule, ignoring ordering.

The next feature type is based on surround-
ing classifications. Here the BIO taggers have
access to the previous classification decision
(B, I, or O). The CRF in the linear chain con-
figuration can use labels on either side of the
current word. While this represents a differ-
ence in features available to the systems, it is
one that is inherent to the methodology (some-
thing that is only possible with CRFs and not
with BIO taggers) so we consider this to not
violate our goal of feature parity.

The last feature type is specific to the
THYME corpus, as it is based on identifiers
in the section headers of Mayo Clinic notes.
These identifiers are easily extracted with reg-
ular expressions and are codes that indicate
the purpose of a section (e.g., medications, al-
lergies, etc.). For this feature we simply use
the string representing the code for the sec-
tion that encloses the token under considera-
tion. These are intended to capture the fact
that some sections may contain condensed nar-
rative, and are likely to contain time expres-
sions, while others have expressions that re-
semble time expressions but are not (5/9 to
mean five out of nine).

2.3.2 Constituency Features

The constituency parse-based system at-
tempts to use similar features where possible –
we will refer to the features above when possi-
ble and point out implementation differences.

First, the features for character class and
part of speech for tokens are replicated, by
applying them to all the tokens within the
span of the current tree node being classified.
Gazetteer features are replicated similarly –
each word covered by the current tree node is
mapped to its time class, if it exists. This is
done without reference to ordering.

From the tree itself, we use several features
similar to those above, but explicitly based on
the tree rather than having to be mapped to
the tree. For the current node and its parent,
we have features for node category (e.g., NP).

For the current node alone we use boolean fea-
tures for whether it is the root node of the
sentence and whether it is a leaf node. We
have string features for the bag of children, as
well as a feature representing the production
rule. Table 3 shows the features that would
be extracted for this classifier for the time ex-
pression in Figure 1.

2.4 Evaluation

Our evaluation looks at three variables – dif-
ferent machine learning methods, the useful-
ness of automatic parses at deriving syntac-
tic features, and the domain of the data. For
scoring the evaluation, we primarily use a sim-
ple scorer built into ClearTK that requires
exact span matching. We also track par-
tially overlapping spans and count them as
correct for overlapping span matching. For
comparability, we also use the 2012 i2b2 Chal-
lenge scoring tool for i2b2 data, which allows
both exact and overlapping matching. We
use exact span matching as our primary scor-
ing method to conservatively estimate perfor-
mance, in part because the output of these
systems will typically be passed to a time nor-
malization system, which may not be able to
handle the variations in input. The metrics
we use are precision

(
#correcttimespans

#predictedtimespans

)
, re-

call
(

#correcttimespans
#goldtimespans

)
, and F1

(
2∗p∗r
p+r

)
.

We look first at multiple methods on two
different corpora. In this experiment we are
looking to see whether there is any method
which is clearly superior to the others, espe-
cially across corpora. This experiment is im-
portant because methods like the CRF and
the CRF-based ensemble have some nice the-
oretical properties (finding the globally opti-
mal sequence), but as a result have slower run
time, and to understand this tradeoff we need
to measure performance differences. For the
first four systems (the non-ensemble systems),
we simply train each method on the combined
training and development sets for each corpus,
and test on the test set for that corpus.

For the ensemble system, we note that since
it is trained on the outputs of other systems,
we must do an internal cross-validation of
the component systems before performing the
tests, to ensure that the labels provided to the
ensemble method are representative of what it
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THYME i2b2 2012 Challenge
Exact Overlapping Exact Overlapping

P R F P R F P R F
BIO 0.784 0.676 0.726 0.948 0.836 0.888 0.775 0.718 0.745 0.921 0.853 0.886
Backwards 0.770 0.687 0.726 0.948 0.846 0.894 0.786 0.740 0.762 0.917 0.862 0.889
CRF 0.788 0.584 0.671 0.961 0.712 0.818 0.814 0.617 0.702 0.960 0.728 0.828
Constituency 0.715 0.563 0.630 0.989 0.799 0.884 0.657 0.545 0.596 0.920 0.762 0.834
Ensemble 0.784 0.669 0.722 0.962 0.841 0.897 0.809 0.706 0.754 0.948 0.828 0.884
Xu et al.(2013) 0.881 0.950 0.914

Table 4: Precision (P), Recall (R), and F1-Score (F) for different systems and corpora. The
highest score in each column is in bold. BIO=Begin-Inside-Outside tagger, Backwards=Reverse
BIO tagger,CRF=Conditional Random Field tagger,Constituency=Constituency parser-based
classifier, Ensemble=CRF-based ensemble classifier. Italicized results from Xu et al. indicated
reported, not replicated, results.

will see on test data. We first perform a 5-fold
cross validation on the training set, for each
fold training the component on four folds and
running the trained component on the fifth.
The output on that fifth fold forms the train-
ing data that the ensemble method will see.
By repeating that for each fold, the ensem-
ble method obtains proper system-generated
labels from the component system for the en-
tire training set to use as its training data.

The second experiment looks at the impor-
tance of accurate syntactic parsing for gener-
ating features. For the syntax-focused experi-
ments, we use only the THYME corpus, since
it has a layer of gold standard treebank an-
notations. The tagger we evaluate is the best
performing system on the first experiment, the
Backwards BIO tagger. In this case we exam-
ine three different conditions: First, using gold
standard treebank for feature extraction; sec-
ond, using automatic parses from a THYME-
trained parser; and finally, without any syn-
tactic features at all.

The final experiment examines the domain-
specificity of the systems and corpora. In this
experiment we train the best performing sys-
tem (Backwards BIO tagger) on THYME data
and then test on i2b2 data, and vice versa.

3 Results

Results are shown in Tables 4-6. Table 4
shows the results of the primary experiment
– performance of the various systems on both
THYME and i2b2 corpora. In most condi-
tions, the Backwards BIO Tagger obtains the
highest or tied for the highest F-score, while
the regular BIO tagger and ensemble method

THYME
Exact

P R F
Gold 0.771 0.699 0.733
Automatic 0.770 0.687 0.726
No Syntax 0.773 0.690 0.729

Table 5: Precision (P), recall (R), and F1-
Score (F) for different syntactic configurations
of the Backwards BIO tagger system. Gold -
Manually annotated trees from Treebank used
for features. Automatic – parser trained on
clinical text from THYME Treebank, itali-
cized to denote that it is copied from Table 4
above. No Syntax – Backwards BIO tagger
system with no syntactic features.

obtain very competitive F-scores. The Back-
wards BIO tagger tends to have the best recall
of all systems, while preserving precision at a
relatively high level. The CRF, despite being
theoretically globally optimal, is not compet-
itive in terms of F-score with the SVM-based
taggers. The ensemble CRF nominally obtains
the best performance in the Overlapping met-
ric on the THYME corpus, but the improve-
ment is marginal.

The backwards BIO tagger achieved an F-
score of 0.889 on the i2b2 Challenge data al-
lowing for partial matches (the Overlapping
column). The best performing system in the
i2b2 Challenge (Xu et al., 2013) is shown in
the last row, with an F1 score of 0.914, with an
advantage on recall. Our best system perfor-
mance would tie for 4th in the span matching
part of that challenge, without tuning for that
dataset. While we incorporated features based
on the best-performing similar system (Xu et
al., 2013), including punctuation information,
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prepositions, and chunk information, these did
not improve performance. Their paper de-
scribed a larger system and did not contain
enough detail on time expression extraction
to replicate exactly (e.g., the Other Keywords
section in the online supplement is not exhaus-
tive and probably is important to their result).

Table 5 shows the results of experiments ex-
amining the role of syntactic features on our
best performing system, the Backwards BIO
tagger. This experiment suggests syntactic
features are not valuable for the test set. Nei-
ther using gold standard trees for extracting
features, nor removing syntactic features alto-
gether, changed performance meaningfully.

Finally, Table 6 shows results of cross-
domain experiments, using the best-
performing Backwards BIO tagger. Per-
formance falls quite a bit relative to the
in-domain trained experiments, even in the
relaxed Overlapping condition. Training
on THYME and testing on i2b2 results in
the worst performance, with an exact span
matching F1 Score of 0.422.

4 Discussion

While the results are competitive with the best
systems at the i2b2 Challenge, they raise many
interesting questions.

First, it is very interesting that the best per-
forming systems are the simplest and fastest.
Despite the theoretical advantages of the con-
ditional random field’s global sequence opti-
mization, the BIO approaches using local clas-
sifiers typically obtain the best performance.
This is also in contrast with results from the
i2b2 Challenge, where the best performing sys-
tem used a CRF approach. We extensively ex-
plored the parameter space for CRFs on devel-
opment data and our sense was that through-
out this entire space performance lagged SVM-
based tagging systems.

Next, it is unfortunate but interesting that
the ensemble method does not improve per-
formance over the component systems. Error
analysis for this system showed both examples
where the first word was missed and examples
where the last word was missed. The forwards
and backwards BIO taggers should be obtain-
ing complementary errors of these types. Thus
it is not clear why the ensemble method is un-

able to take advantage of the information from
multiple systems to improve performance.

The syntax-based system shows the biggest
gain when switching from the scorer that con-
siders exact spans to one that considers over-
lapping spans. In preliminary work using gold
standard parses, the exact span scores were
significantly higher. These two facts suggest
that the primary reason for the low accuracy
of this model on exact spans is parsing errors.
This was, in fact, one motivation for incorpo-
rating parser features – if the parser cannot re-
liably find exact spans, perhaps it is still pos-
sible to use its output at word levels to find
patterns that a sequence-based model could
use.

The lack of improvements with syntac-
tic features in these experiments is therefore
somewhat confusing, as using a totally syntax-
based system is able to obtain decent perfor-
mance. One hypothesis for their lack of impact
is that annotation consistency plays a role. We
noticed that annotations of time expressions
around prepositional phrases are inconsistent.
For example, in the prepositional phrase since
Tuesday, the time expression is only Tuesday,
but in some cases the whole PP is annotated
in the gold standard. This may help explain
the large jump in performance when partially
overlapping spans are included, as there are
many errors that are off by only an added or
dropped preposition at the start of the time
expression. (Note that this explanation may
also apply to the constituency parser model.)

The cross-corpus performance (training on
THYME and testing on i2b2 and vice versa) is
surprisingly low. While the annotation guide-
lines are similar, one major difference is the
addition of the prepostexp class to THYME,
for expressions like postoperative. Meanwhile,
i2b2 challenge data annotates expressions like
postoperative day 5, which do not occur in
THYME data, as the date class. This affects
both recall and precision on the THYME to
i2b2 evaluation as expressions like postopera-
tive day 5 cause both recall errors (not get-
ting the whole expression) and precision errors
(predicting the first word of the expression).
Additional errors in this direction are caused
by unseen abbreviations in THYME that are
common in i2b2 (POD for postoperative day,
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Exact Overlapping
Train Corpus Test Corpus P R F P R F
THYME THYME 0.770 0.687 0.726 0.948 0.846 0.894
i2b2 i2b2 0.786 0.740 0.762 0.917 0.862 0.889
THYME i2b2 0.436 0.410 0.422 0.722 0.679 0.700
i2b2 THYME 0.589 0.432 0.498 0.860 0.629 0.727

Table 6: Precision (P), recall (R), and F1-Score (F) for cross-domain experiments. We use
the best-performing system for each experiment (Backwards BIO), with automatic parse fea-
tures from a THYME-trained parser. Italicized rows are copied from Table 4 above for ease of
comparison.

x 2 for twice a day). In the other direction
(train on i2b2, test on THYME), recall errors
are worst because it does not correctly iden-
tify any of the prepostop expressions. Surpris-
ingly, in both directions there are relatively
simple date formats missed due to slight differ-
ences in convention – THYME data often uses
month names (e.g. Jan 5, 2014) while i2b2
typically does not, while i2b2 uses MM-YY
format (e.g., March 7 represented as 05-07)
while THYME does not. This suggests that a
better system could be obtained by training on
both corpora, although this will require some
reconciliation of the differences in time classes,
primarily what THYME calls prepostexp time
expressions.

Errors on the best-performing system are
primarily those where the start or end of the
time expression is off by one. As above, these
may be partially due to inconsistent prepo-
sitional phrase annotation, and the effect of
fixing this is roughly seen in the overlapping
scoring criterion. The remaining errors proba-
bly represent the most opportunity for system
improvement, so we focus on that briefly.

One common issue occurs with coordination
– phrases like 2003 or 2004. While these are
annotated as a single span, the system will get
the two individual years, resulting in one recall
error but two precision errors. This type of er-
ror might be fixed by a second pass that joins
together time expressions connected by coor-
dinators. A modified syntactic approach that
operates bottom-up instead of top-down might
also correctly recognize such expressions. An-
other source of error is in expressions that are
unusually expressed in a few instances, such
as times three to mean something happened
three times. While this is in the training data,
it is not the primary way of indicating this
meaning, and there are not enough instances

to learn this modification. Similarly, some-
times punctuation is inserted or modified into
an expression that slightly changes its repre-
sentation to the classification algorithm (e.g.,
one-year with a dash rather than one year).
Fixing this issue in a general way is a tricky
problem, as it is related to the larger issue of
there being many ways to instantiate any given
concept (half past 7, half of 8, 7:30, etc.). In
the clinical domain one hopes that usage is a
bit more constrained and that one might be
able to get away with a simpler approach such
as just ignoring punctuation.

In conclusion, we have presented and eval-
uated multiple machine learning methods for
temporal expression extraction. Our results
suggest that simpler and faster BIO sequence
tagger methods are as good as more complex
models or ensemble methods. We also show
that deep syntax does not seem beneficial to
this task. Finally, we show that there is signif-
icance performance degradation when apply-
ing to new corpora, despite similar annotation
guidelines and domains.
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