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Abstract

Electronic health records have emerged
as a promising source of information
for pharmacovigilance. Adverse drug
events are, however, known to be heavily
underreported, which makes it important
to develop capabilities to detect such
information automatically in clinical
text. While machine learning offers
possible solutions, it remains unclear
how best to represent clinical notes
in a manner conducive to learning
high-performing predictive models.
Here, 42 representations are explored
in an empirical investigation using 27
real, clinical datasets, indicating that
combining local and global (distributed)
representations of words and named
entities yields higher accuracy than
using either in isolation. Subsequent
analyses highlight the relative importance
of various named entity classes for
predicting adverse drug events.

1 Introduction

Electronic health records (EHRs) have emerged as
a potentially valuable, and complementary, source
of information for pharmacovigilance, which, as
a result of the limitations of clinical trials –
in terms of duration and sample size – needs
to be carried out throughout the life-cycle of a
drug to inform decisions about sustained use.
Adverse drug events (ADEs), defined as undesired
harms resulting from the use or misuse of a drug
(Nebeker et al., 2004), are the most common
iatrogenic injury, being responsible for around
3.7% of hospital admissions worldwide (Howard
et al., 2007). The adverse effects of drugs cause
suffering in patients and put an economic burden
on healthcare – often unnecessarily, as ADEs are

in many cases preventable (Hakkarainen et al.,
2012).

A challenge for pharmacovigilance is that
ADEs are heavily underreported (Hazell and
Shakir, 2006), both in so-called spontaneous
reporting systems, whereby reports of ADE
cases are submitted voluntarily by patients and
clinicians, and in EHRs, in which ADEs can
be encoded by a set of diagnosis codes. To
address the problem of underreporting, systems
that can automatically detect ADEs in EHRs are
potentially valuable, and much research has been
conducted to that end (Harpaz et al., 2012). While
many efforts have aimed at using machine learning
for detecting ADEs on the basis of structured
EHR data (Chazard et al., 2011; Zhao et al.,
2014a; Zhao et al., 2014b; Zhao et al., 2015),
attempts have also been made to exploit the more
unstructured data in the form of clinical notes
(Eriksson et al., 2013; LePendu et al., 2013).
These have either relied on manually constructed
rules and extensive dictionaries or on applying
disproportionality methods1 to counts of terms
extracted from clinical notes. In a recent study
(Henriksson et al., 2015a), information pertaining
to ADEs – including named entities such as
drugs and medical problems, as well as relations
between them, i.e., whether one exists and whether
it expresses, e.g., an indication or an ADE – were
detected in clinical notes using machine learning;
this approach, however, relies on the availability
of data that has been manually labeled outside
the clinical setting. There have also been efforts
to combine information from the structured and
unstructured sections of EHRs for ADE detection
(Harpaz et al., 2010; Eriksson et al., 2014). In one
of these (Henriksson et al., 2015b), heterogeneous
types of clinical data, including free-text notes,

1Disproportionality methods describe to what extent the
co-occurrence frequency of two events deviates from what is
expected (Suling and Pigeot, 2012).
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were represented using distributional semantics,
the use of which is also investigated in this
study. In the previous study, however, many
possible alternative ways of representing clinical
notes were left unexplored. A more in-depth
investigation is conducted in the present study,
focusing on the representation of clinical notes for
ADE detection.

In this study, ADE detection using clinical notes
is approached as a binary classification task, in
which the presence or absence of a particular
ADE in a healthcare episode is to be determined;
for this purpose, diagnosis codes assigned in the
clinical setting are used as class labels. This
raises the question of how best to represent
clinical notes. There are certainly challenges
involved in applying machine learning to high-
dimensional and sparse data, which, as a result
of prevalent misspellings and creative shorthand,
clinical notes are a prime example of. These
challenges will be considered when exploring
possible representations of clinical notes.

2 Materials and Methods

This study explores 42 different ways of
representing clinical notes and evaluates their
effectiveness, in terms of classification accuracy,
on the task of detecting the presence of an
ADE in a healthcare episode. The use of
both local and global (distributed) representations
of words and named entities, as well as their
combination, is investigated in an experiment
using 27 ADE datasets, followed by a number
of further analyses. Local representations are
ones that do not incorporate any prior (semantic)
knowledge of the similarity of token types, while
global representations do, in this case by applying
models of distributional semantics to a much
larger corpus, resulting in word embeddings
that are then exploited in the ADE detection
task. While local representations are commonly
employed for document classification, the use of
global, distributed representations has been less
thoroughly investigated, with a few exceptions
(Sahlgren and Cöster, 2004; Henriksson et al.,
2015b). Here, various types of local and global
representations are compared and combined in an
exploratory fashion.

2.1 Data Source

The 27 datasets were extracted from a Swedish
EHR database (Dalianis et al., 2012), which
contains health records over a two-year period
from Karolinska University Hospital2. The
learning task is to detect healthcare episodes
that involve a certain ADE, i.e., in which an
ADE-specific ICD-10 diagnosis code has been
assigned. A healthcare episode is here defined
based on the time interval between recorded
activities for a patient, delimited by at least
three days of inactivity. Each of the 27
datasets thus consists of healthcare episodes,
where the positive examples have been assigned
an ADE-related diagnosis code, and the negative
examples are an equal number of randomly
selected healthcare episodes in which that same
code has not been assigned. The ADE-related
diagnoses were selected on the basis of having
been classified as indicating ADEs in a previous
study (Stausberg and Hasford, 2011) and being
sufficiently frequent (> 10) in the database. The
datasets are described in Table 1. In addition
to the labeled datasets, the entire two years of
data is used for obtaining global, distributed
representations of words. The notes, containing
approximately 3M unique types (700M tokens),
are preprocessed by using Stagger (Östling, 2013)
for tokenization and lemmatization of Swedish
text.

2.2 Data Representations

14 × 3 = 27 representations of clinical notes are
explored. Each of the fourteen representations of
words and/or named entities are weighted in three
different ways. The local representations include
the commonly employed unigrams, bigrams and
trigrams, as well as their combination. In addition,
a named entity recognition (NER) model trained
on Swedish clinical text (Henriksson et al., 2015a)
is applied to the healthcare episodes to extract
mentions of the following named entity types:
Finding, Disorder, Drug, Body Part and ADE
Cue3. Local representations of identified named
entities, without specifying type (denoted Terms),
as well as a combination of unigrams and terms,

2This research has been approved by the Regional
Ethical Review Board in Stockholm (Etikprövningsnämnden
i Stockholm), permission number 2012/834-31/5.

3An ADE Cue corresponds to an expression that indicates
the presence of an ADE without revealing its precise
manifestation, e.g., side effect or drug-induced.
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Unigrams Bigrams Trigrams Terms
Dataset Episodes Types Tokens Types Tokens Types Tokens Types Tokens
D64.2 416 58,455 2,642,271 432,235 2,380,942 895,864 2,121,106 18,204 187,885
E27.3 34 10,990 142,365 55,922 127,740 78,222 113,136 2,729 11,907
F11.0 76 13,906 285,629 73,688 257,154 107,216 228,707 3,532 21,448
F11.2 308 35,340 1,118,138 234,855 1,005,677 422,609 893,405 10,620 83,574
F13.0 120 16,759 264,555 93,847 238,388 144,340 212,272 4,204 18,262
F13.2 76 14,226 262,901 73,413 237,228 106,560 211,607 3,546 19,140
F15.0 32 6,498 48,919 25,674 43,859 31,226 38,818 1,362 3,755
F15.1 46 10,849 136,093 51,897 123,224 72,081 110,391 2,438 9,776
F15.2 256 30,098 812,312 193,693 729,918 340,491 647,691 8,896 61,548
F19.0 122 18,257 341,225 100,890 307,757 152,834 274,353 4,671 23,638
F19.1 74 14,279 216,583 75,268 194,519 109,675 172,500 3,457 16,504
F19.2 288 34,925 992,236 229,330 891,735 404,862 791,349 10,645 76,797
F19.9 68 14,938 221,480 78,506 198,688 112,658 175,942 3,571 16,205
G24.0 28 11,293 125,342 57,711 112,935 81,196 100,542 2,897 9,454
G62.0 20 5,121 44,776 19,564 40,609 23,359 36,449 1,027 3,350
I95.2 70 13,321 179,622 69,127 161,505 99,732 143,442 3,336 14,651
L27.0 274 41,669 1,394,815 281,601 1,255,535 513,539 1,116,442 12,908 109,896
L27.1 78 15,495 291,266 84,668 261,351 125,632 231,491 4,118 23,824
N14.1 28 10,383 101,969 49,864 92,098 67,286 82,247 2,585 7,979
O35.5 128 11,810 145,344 57,172 131,075 79,992 116,826 2,745 10,313
T59.9 40 6,355 57,773 26,831 51,763 34,017 45,766 1,474 4,492
T78.2 102 15,272 236,489 80,533 212,753 118,274 189,062 3,845 19,461
T78.3 266 26,716 503,385 161,366 451,831 265,928 400,439 7,912 43,832
T78.4 1520 56,244 1,950,200 396,818 1,752,142 783,547 1,555,017 18,415 167,620
T80.8 732 48,299 2,053,152 349,030 1,845,434 698,814 1,638,072 16,247 169,391
T88.6 96 17,453 280,652 96,546 252,705 145,766 224,818 4,714 23,191
T88.7 564 51,922 1,422,450 357,484 1,600,899 680,750 1,422,450 16,738 138,899

Table 1: Description of the 27 ADE datasets used in the study

are explored.
In addition to the local representations, the use

of global, distributed representations of words and
terms is explored. Word embeddings are obtained
using a recently introduced model of distributional
semantics – see (Cohen and Widdows, 2009) for
an overview – based on shallow neural networks
with a single hidden layer: the skip-gram
model (Mikolov et al., 2013) as implemented
in word2vec. It was chosen for its ability to
produce high-quality vector representations of
words, outperforming traditional context-counting
based methods on a range of tasks (Baroni
et al., 2014). The algorithm obtains vector
representations of the words in the training set by
learning to predict nearby context words of each
target word; the learned weights within the neural
network are then used as vector representations.
In a basic configuration, a symmetric context
window size of 10 and a dimensionality of 200 is
employed4. Distributed representations of clinical
notes are obtained by simply summing the vectors
corresponding to the constituent token types;

410 is the “recommended” context window size for
the skip-gram model; employing a higher dimensionality
generally, but not necessarily, leads to better representations
(Mikolov, 2015).

when representing notes by terms, the words that
make up multiword terms are likewise summed.
As it has been shown that improved performance
can be obtained by combining various word
representations (Henriksson et al., 2014), we also
explore the use of distributed ensembles created
by employing a number of different context
window sizes: 6, 8, 10, 12, 14. The
representations of healthcare episodes are then
obtained by fusing the features from each
distributional semantic space. The intuition
behind this is that they will capture different
aspects of the data. Both single distributed
representations and ensembles thereof are used to
model healthcare episodes as a combination of
unigrams and terms.

Finally, combinations of local and global
representations are explored: (1) combining local
and global representations of unigrams and terms
from a single semantic space, and (2) combining
them from multiple semantic spaces. In all
representations, the lowercase lemma of the
tokens is used. The three weighting strategies
are: (1) binary, (2) term frequency (TF), and
(3) term frequency-inverse document frequency
(TF-IDF). The binary representation corresponds
to the so-called one-of-K or one-hot encoding,
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indicating the presence or absence of a feature; TF
corresponds to the bag-of-words representations;
finally, TF-IDF is the product of TF in a particular
document and the term’s IDF. It thus gives less
weight to common terms with little discriminative
value.

2.3 Experimental Setup

The main experiment involves a comparison
of the 42 representations and their impact on
classification accuracy. Here, the random
forest algorithm (Breiman, 2001) is used due
to its reputation of achieving high accuracy,
its ability to handle high-dimensional data, as
well as the possibility of obtaining estimates of
variable importance. The algorithm constructs an
ensemble of decision trees, which together vote
for what class label to assign to an example. Each
tree in the forest is built from a bootstrap replicate
of the original instances, while a subset of all
features is sampled at each node when building
the tree. This procedure is intended to increase
diversity among the trees. When the number of
trees in the forest increases, the probability that a
majority of trees makes an error decreases, given
that the trees perform better than random and that
the errors are made independently. Although this
can only be guaranteed in theory, the algorithm has
often been shown in practice to result in state-of-
the-art predictive performance. In this study, we
use random forest with 500 trees, while

√
n of all

available n features are inspected at each node.
Using the terms representation, a follow-

up analysis is conducted to gain insight into
which (types of) terms are most useful in the
classification task. Variable importance can be
estimated in different ways (Breiman, 2001).
Here, Gini importance is used as the variable
importance metric, where high Gini importance
means that a feature plays a greater role in
splitting the data into the defined classes. A
Gini importance of zero indicates that a feature
is considered useless or is never selected to
build any tree. We inspect the twenty most
important features, averaged over datasets, but
we also calculate the average rank of terms
of various lengths and named entity classes
to understand which types of terms are more
informative. Finally, the frequency of various
named entity types across the two classes is an-
alyzed in an attempt to identify potentially impor-

tant differences.
Models are built and evaluated using ten

iterations of stratified 10-fold cross validation.
For testing the statistical significance of observed
differences between the various representations,
the Friedman test, as suggested in (Garcia and
Herrera, 2008), is employed, where the null
hypothesis is that the methods perform equally
well.

3 Results

The accuracy scores, averaged over the 27
datasets, produced with the various data
representations are shown in Table 2. A
Friedman test rejects the null hypothesis that
the various representations perform equally well
(p < 0.0001). Of the three weighting strategies,
the binary strategy perfroms almost invariably
better than the TF and TF-IDF strategies. When
comparing the ngram representations, unigrams
perform considerably better than bigrams and
trigrams, while their combination is plausibly
negatively affected by the latter two. Using only
extracted terms performs slightly better than using
all unigrams or a combination of unigrams and
terms, albeit the differences are small. The global,
distributed representations only outperform the
local representations when multiple semantic
spaces are used in an ensemble. Moreover,
all ensembles outperform their single-model
counterparts. The best predictive performance
is obtained when combining local and global
representations – in a semantic space ensemble –
of unigrams and terms, yielding an accuracy of
83.89%.

The twenty most important term features are
listed in Table 3. All of these are names of drugs,
findings and disorders. Some of the drugs are
known to cause ADEs, while others are used for
treating ADEs. Many of the highly-ranked terms
appear only in a single or a handful of datasets;
additional highly-ranked terms that appear in
all 27 datasets – and conceivably important for
detecting ADEs generally – include smärta (Eng:
pain), trött (Eng: tired), feber (Eng: fever) and
utslag (Eng: rash). Named entity mentions of type
ADE Cue were ranked somewhat lower (out of
∼78k): reaktion (Eng: reaction) – 53, biverkan
(Eng: side effect) – 332, läkemedelsbiverkan
(Eng: drug reaction) – 855 and läkemedelsutlöst
(Eng: drug-induced) – 19602. When inspecting
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Binary TF TF-IDF

Unigrams 83.05 81.70 81.72
Bigrams 76.65 75.98 75.67
Trigrams 68.13 66.93 67.02
Ngrams (Unigrams + Bigrams + Trigrams) 79.47 78.33 78.43
Terms 83.12 81.47 81.59
Unigrams + Terms 83.09 81.81 81.76
Distributed (Unigrams) 81.13 79.59 78.16
Distributed (Terms) 82.82 82.99 75.12
Distributed Ensemble (Unigrams) 82.23 81.53 79.30
Distributed Ensemble (Terms) 83.51 82.82 75.71
Distributed (Unigrams + Terms) 82.04 80.63 76.84
Distributed Ensemble (Unigrams + Terms) 83.71 82.93 80.78
Unigrams + Terms + Distributed (Unigrams + Terms) 83.31 82.30 82.32
Unigrams + Terms + Distributed Ensemble (Unigrams + Terms) 83.89 82.72 82.96

Table 2: Average accuracy (%) over 27 ADE datasets with different representations of clinical notes

the average rank of terms of varying length,
unigrams were ranked the highest, followed by
bigrams, trigrams and ngrams with n > 3.
Calculating the average rank of terms of various
named entity types revealed that ADE Cue was
ranked the highest, followed by Disorder, Body
Part, Drug and Finding.

Rank Term (Swedish) Term (English) NE Type Support

1 missbruk addiction Finding 23
2 bev-fl-iri bev-fl-iri Drug 2
3 amfetamin amphetamine Drug 20
4 cyanokit cyanokit Drug 1
5 läkemedels-

utlöst dystoni
drug-induced
dystonia

Disorder 1

6 betapred betapred Drug 27
7 intox intoxication Disorder 22
8 akut

dystoni
acute
dystonia

Disorder 3

9 hepatit c hepatitis c Disorder 27
10 allergisk

reaktion
allergic
reaction

Disorder 25

11 tavegyl tavegyl Drug 25
12 syrgas oxygen Drug 27
13 amfetamin-

missbruk
amphetamine
abuse

Disorder 23

14 mätbar
sjukdom

measurable
disease

Disorder 1

15 stesosolid stesosolid Drug 26
16 svullnad swelling Finding 27
17 kontrahera contract Finding 1
18 bltr vara

stabil
blood pressure
be stable

Finding 1

19 klåda itching Finding 27
20 hjärtmuskel-

inflamation
myocarditis Disorder 1

Table 3: Variable importance of terms

A means of studying potential differences
between the two classes is simply to count
the number of terms in the healthcare episode
according to their class label. The result of this
is shown in Table 4. The number of terms per

healthcare episode is considerably higher for the
ADE class; however, this can partly be explained
by differences in average document length: 3575
tokens for positive episodes and 2098 for negative
episodes. A fairer comparison is, then, to calculate
the number of tokens per encountered term. This
comparison reveals that the numbers of Drug,
ADE Cue, Body Part and Finding mentions are
lower for the ADE class, especially the first two,
which means that they are more frequent.

ADE Not ADE

NE Type Term /
Episode

Tokens /
Term

Term /
Episode

Tokens /
Term

Disorder 34.65 103.19 21.57 97.28
Finding 124.14 28.80 68.07 30.83
Drug 74.68 47.87 39.68 52.89
Body Part 49.27 72.57 27.58 76.08
ADE Cue 1.94 1839.01 0.86 2432.98

Table 4: The distribution of terms over classes

4 Discussion

This study explored the use of 42 different
representations of clinical notes from healthcare
episodes for the automatic detection of adverse
drug events. It was shown that combining local
and global, distributed representations yielded
the highest predictive performance. While the
use of a simple unigram model worked well,
performance quickly deteriorated as larger ngrams
were used, most probably as a result of the ensuing
sparsity. Interestingly, using only extracted terms
outperformed the use of all unigrams, with the
added benefit that the former is much lower-
dimensional and thus computationally preferable.
Even lower-dimensional – and denser – are the
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distributed representations: in this case 200 with
a single semantic space and 200 × 5 with the
semantic space ensemble. A distinct advantage
of distributed representations is their scalability,
as the dimensionality does not grow with the
size of the vocabulary, allowing more information
to be exploited effectively, as demonstrated
by the distributed ensemble of unigrams and
terms. The best results were, however, obtained
when combining local and ensembles of global,
distributed representations. While the difference
to using a simple unigrams model is not very
large, it is interesting to note the bigger difference
to using the commonly employed bag-of-words
representation. The advantage of using a binary
representation over TF or TF-IDF weighting was
also somewhat surprising but can perhaps be
attributed to the noisy nature of clinical text.

An advantage of using the terms representation
is that, in comparison to the other representations
– in particular the distributed ones – it lends itself
to some degree of interpretability. While random
forest belongs to a family of opaque models,
inspection of variable importance provides some
insight. It was not surprising that ADE Cue terms
were, on average, ranked the highest, although
somewhat more so that Body Part terms were
ranked higher than Drug and Finding terms.
When inspecting the distribution of terms over
classes, however, it was confirmed that Drug
and ADE Cue terms were common in ADE
episodes than in non-ADE episodes, which seems
intuitive. For future work, it would be interesting
to study whether enriching the representation with
factuality – including negation and uncertainty
– and temporality would be lead to improved
predictive performance.
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