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Abstract

We examine the ability of several mod-
els of computation and storage to explain
reading time data. Specifically, we demon-
strate on both the Dundee and the MIT
reading time corpora, that fragment gram-
mars, a model that optimizes the trade-
off between computation and storage, is
able to better explain people’s reaction
times than two baseline models which ex-
clusively favor either storage or computa-
tion. Additionally, we make a contribu-
tion by extending an existing incremental
parser to handle more general grammars
and scale well to larger rule and data sets.1

1 Introduction

A basic question for theories of language repre-
sentation, processing, and acquisition is how the
linguistic system balances storage and reuse of
lexical units with productive computation. At
first glance, the question appears simple: words
are stored; phrases and sentences are computed.
However, a closer look quickly invalidates this
picture. Some canonically computed structures,
such as phrases, must be stored, as witnesses
by verbal idioms like leave no stone unturned2

(Nunberg et al., 1994). There is also composi-
tionality at the sub-word level: affixes like ness
in pine-scentedness, are almost always composed
productively, whereas other affixes, e.g., th in
warmth, are nearly always stored together with
stems (O’Donnell, 2015). Facts such as these have

∗indicates equal contribution.
1Our code and data are available at http://

stanford.edu/˜lmthang/earleyx/.
2Meaning: prevent any rock from remaining rightside up.

led to a consensus in the field that storage and
computation are properties that cut across differ-
ent kinds of linguistic units and levels of linguistic
structure (Di Sciullo and Williams, 1987)—giving
rise to hetergeneous lexicon3 theories, in the ter-
minology of Jackendoff (2002b).

Naturally, the question of what is computed
and what is stored has been the focus of intense
empirical and theoretical research across the lan-
guage sciences. On the empirical side, it has
been the subject of many detailed linguistic anal-
yses (e.g., Jackendoff (2002a)) and specific phe-
nomena such as composition versus retrieval in
word or idiom processing have been examined
in many studies in experimental psycholinguistics
(Hay, 2003; O’Donnell, 2015). On the theoretical
side, there have been many proposals in linguistics
regarding the structure and content of the hetero-
geneous lexicon (e.g., Fillmore et al. (1988), Jack-
endoff (2002b)). More recently, there have been a
number of proposal from computational linguis-
tics and natural language processing for how a
learner might infer the correct pattern of compu-
tation and storage in their language (De Marcken,
1996; Bod et al., 2003; Cohn et al., 2010; Post and
Gildea, 2013; O’Donnell, 2015).

However, there remains a gap between de-
tailed, phenomenon-specific studies and broad ar-
chitectural proposals and learning models. Re-
cently, however, a number of methodologies have
emerged which promise to bridge this gap. These
methods make use of broad coverage probabilis-
tic models which can encode representational and
inferential assumptions, but which can also be ap-
plied to make detailed predictions on large psy-
cholinguistic datasets encompassing a wide vari-

3A hetergeneous lexicon contains not only words but also
affixes, stems, and phrasal units such as idioms.
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ety of linguistic phenomena. In the realm of syn-
tax, one recent approach has been to use proba-
bilistic models of sentence structures, paired with
incremental parsing algorithms, to produce precise
quantitative predictions for variables such as read-
ing times (Roark et al., 2009) or eye fixation times
(Demberg and Keller, 2008; Mitchell et al., 2010;
Frank and Bod, 2011; Fossum and Levy, 2012;
van Schijndel and Schuler, 2013). To date, no
models of storage and computation in syntax have
been applied to predict measures of human read-
ing difficulty.

In this work, we employ several of the models
of computation and storage studied by O’Donnell
(2015), to examine human sentence process-
ing. We demonstrate that the fragment grammars
model (O’Donnell et al., 2009; O’Donnell et al.,
2011)—a model that treats the question of what to
store and what to compute productively as a prob-
abilistic inference—better explains human read-
ing difficulty than two “limiting-case” baselines,
MAP adaptor grammars (maximal storage) and
Dirichlet-multinomial PCFG (maximal computa-
tion), in two datasets: the Dundee eye-tracking
corpus (Kennedy and Pynte, 2005) and the MIT
reading time dataset (Bachrach et al., 2009).

2 Goals and Scope of the Paper

Before moving on, we remark on the goals and
scope of the current study. The emergence meth-
ods connecting wide-coverage probabilistic gram-
mars and psycholinguistic data offer great poten-
tial to test theoretical models quantitatively, at
scale, and on a variety of detailed phenomena.
However, studies using these methods also involve
many moving parts, often making their results dif-
ficult to interpret.

To connect probabilistic models of syntactic
computation and storage to reading time or eye fix-
ation data, practioners need to:

1. Preprocess train and test data sets by tok-
enizing words, limiting sentence lengths, and
handling unknown words.

2. Decide on a suitable grammatical formalism:
determine a hypothesis space of stored items
and specify a probability model over that
space.

3. Choose and implement a probabilistic model
to extract grammars from the training set.

4. Pick a test set annotated with reading diffi-
culty information, e.g., eye fixation or read-
ing times.

5. Choose a specific incremental parsing algo-
rithm to generate word-by-word parsing pre-
dictions.

6. Determine the theoretical quantity that will
be used as a predictor, e.g., surprisal or en-
tropy reduction.

7. Choose a suitable linking model to regress
theoretical predictions against human data,
controlling for participant-specific factors
and nuisance variables.

Given this wide array of design decisions, it
is often difficult to compare results across stud-
ies or to determine which theoretical assumptions
are crucial to the performance of models. For the
field to make progress, studies must be replicable
and each of the above factors (and potentially oth-
ers) must be varied systematically in order to iso-
late their specific consequences. We contribute to-
wards this process in three ways.

First, we report results for three models which
differ only in terms of how they address the prob-
lem of what to store and what to compute (see
Section 3). Otherwise, modeling and analysis as-
sumptions are exactly matched. Moreover, the
models represent three “limiting cases” in the
space of storage and computation — store all max-
imal structures, store only minimal structures, and
treat the problem as a probabilistic inference. Al-
though none of the models represents a state-of-
the-art model of syntactic structure, this study
should provide important baselines against which
to compare in future proposals.

Second, to make this study possible, we extend
an existing incremental parser to address two tech-
nical challenges by: (a) handling more general in-
put grammars and (b) scaling better to extremely
large rule sets. This parser can be used with any
model that can be projected to or approximated by
a probabilistic context-free grammar. We make
this parser available to the community for future
research.

Third, and finally, unlike previous studies
which only report results on a single dataset, we
demonstrate consistent findings over two popular
datasets, the Dundee eye-tracking corpus and the
MIT reading times corpus. We make available our
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predicted values for all examined data points to-
gether with our analysis scripts. This should fa-
cilitate the replication of these specific results and
direct numerical comparison with later proposals.

3 Approaches to Computation and
Storage

In this paper we study the ability of three mod-
els to predict reading difficulty as measured
by either eye-fixation or reading times — the
full-parsing model, implemented by Dirichlet-
multinomial probabilistic context-free grammars
(DMPCFG) (Kurihara and Sato, 2006; Johnson et
al., 2007), the full-listing mode, implemented by
maximum a posteriori adaptor grammars (MAG)
(Johnson et al., 2006), and the inference-based
model, implemented by fragment grammars (FG)
(O’Donnell, 2015).

All three models start with the same un-
derlying base system—a context-free grammar
(CFG) specifying the space of possible syntactic
derivations—and the same training data—a cor-
pus of syntactic trees. However, the models dif-
fer in what they store and what they compute. The
full-parsing model can be understood as a fully-
compositional baseline equivalent to a Bayesian
version of the underlying CFG. The full-listing
model, by contrast, stores all full derivations (i.e.,
all derivations down to terminal symbols) and sub-
derivations in the input corpus. These stored
(sub)trees can be thought of as extending the CFG
base component with rules that directly rewrite
nonterminal symbols to sequence of terminals in
a single derivational step.

Finally, the inference-based model treats the
problem of what tree fragments to store, and which
parts of derivations to compute as an inference
in a Bayesian framework, learning to store and
and reuse those subtrees which best explain the
data while taking into account two prior biases
for simplicity. The first bias prefers to explain
the data in terms of a smaller lexicon of stored
tree fragments. The second bias prefers to ac-
count for each input sentence with smaller num-
bers of derivational steps (i.e., fragments). Note
that these two biases compete and thus give rise
to a tradeoff. Storing smaller, more abstract frag-
ments allows the model to represent the input with
a more compact lexicon, at the cost of using a
greater number of rules, on average, in individual
derivations. Storing larger, more concrete frag-

ments allows the model to derive individual sen-
tences using a smaller number of steps, at the cost
of expanding the size of the stored lexicon. The
inference-based model can be thought of as ex-
tending the base CFG with rules, inferred from the
data, that expand larger portions of derivation-tree
structure in single steps, but can also include non-
terminals on their right-hand side (unlike the full-
listing model).

As we mentioned above, none of these models
take into account various kinds of structure—such
as headedness or other category-refinements—that
are known to be necessary to achieve state-of-the-
art syntactic parsing results (Petrov et al., 2006;
Petrov and Klein, 2007). However, the results re-
ported below should be useful for situating and in-
terpreting the performance of future models which
do integrate such structure. In particular, these re-
sults will enable ablation studies which carefully
vary different representational devices.

4 Human Reading Time Prediction

To understand the effect of different approaches to
computation and storage in explaining human re-
action times, we employ the surprisal theory pro-
posed by Hale (2001) and Levy (2008). These
studies introduced surprisal as a predictor of the
difficulty in incremental comprehension of words
in a sentence. Because all of the models described
in the last section can be used to compute sur-
prisal values, they can be used to provide predic-
tions for processing complexity and hence, gain
insights about the use of stored units in the human
sentence processing. The surprisal values for these
different models are dervied by means of a proba-
bilistic, incremental Earley parser (Stolcke, 1995;
Earley, 1968), which we describe below.

4.1 Surprisal Theory

The surprisal theory of incremental language pro-
cessing characterizes the lexical predictability of a
word wt in terms of a surprisal value, the negative
log of the conditional probability of a word given
its preceding context, − log P (wt|w1 . . . wt−1).
Higher surprisal values mean smaller conditional
probabilities, that is, words that are less pre-
dictable are more surprising to the language user
and thus harder to process. Surprisal theory was
first introduced in Hale (2001) and studied more
extensively by Levy (2008). It has also been
shown to have a strong correlation with reading
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time duration in both eye-tracking and self-paced
reading studies (Boston et al., 2008; Demberg and
Keller, 2008; Roark et al., 2009; Frank, 2009; Wu
et al., 2010; Mitchell et al., 2010).

4.2 The Incremental Parser

The computation of surprisal values requires ac-
cess to an incremental parser which can compute
the prefix probabilities associated with a string s
under some grammar—the total probability over
all derivation using the grammar which generate
strings prefixed by s (Stolcke, 1995). The pre-
fix probability is an important concept in compu-
tational linguistics because it enables probabilis-
tic predictions of possible next words (Jelinek and
Lafferty, 1991) via the conditional probabilities
P (wt|w1 . . . wt−1) = P (w1...wt)

P (w1...wt−1)
. It also allows

estimation of incremental costs in a stack decoder
(Bahl et al., 1983). Luong et al. (2013) used pre-
fix probabilities as scaling factors to avoid numer-
ical underflow problems when parsing very long
strings.

We extend the implementation by Levy (2008)
of the probabilistic Earley parser described in Stol-
cke (1995) which computes exact prefix probabil-
ities. Our extension allows the parser (a) to handle
arbitrary CFG rewrite rules and (b) to scale well to
large grammars.4

The implementation of Levy (2008) only ex-
tracts grammars implicit in treebank inputs and
restricts all pre-terminal rules to single-terminal
rewrites. To approximate the incremental predic-
tions of the models in this paper, we require the
ability to process rules that include sequences of
multiple terminal and non-terminal symbols on
their right-hand side. Thus, we extend the im-
plementation to allow efficient processing of such
structures (property a).

With regards to property (b), we note that pars-
ing against the full-listing model (MAG) is pro-
hibitively slow because the approximating gram-
mars for the model contain PCFG rules which ex-
haustively list the mappings from every nontermi-
nal in the input corpus to its terminal substring,
leading to thousands of rules. For example, for the
Brown corpus section of the Penn Treebank (Mar-

4Other recent studies of human reading data have made
use of the parser of Roark (2001). However, this parser inco-
porates many specific design decisions and optimizations—
”baking in” aspects of both the incremental parsing algorithm
and a model of syntactic structure. As such, since it does not
accept arbitrary PCFGs, it is unsuitable for this present study.

cus et al., 1993), we extracted 778K rules for the
MAG model, while the number of rules in the DM-
PCFG and the inference-based (FG) grammars are
75K and 146K respectively. Parsing the MAG is
also memory intensive due to multi-terminal rules
that rewrite to long sequences of terminals, be-
cause, for example, an S node must rewrite to an
entire sentence. Such rules result in an exploding
number of states during parsing as the Earley dot
symbol moves from left to right.

To tackle this issue, we utilize a trie data struc-
ture to efficiently store multi-terminal rules and
quickly identify (a) which rules rewrite to a par-
ticular string and (b) which rules have a particular
prefix.5 These extensions allow our implementa-
tion to incorporate multi-terminal rules in the pre-
diction step of the Earley algorithm, and to effi-
ciently incorporate which of the many rules can
contribute to the prefix probability in the Earley
scanning step.

We believe that our implementation should be
useful to future studies of reading difficulty, allow-
ing efficient computation of prefix probabilities for
any model which can be projected to (or approxi-
mated by) a PCFG—even if that approximation is
very large. publicly available at http://url.

5 Experiments

5.1 Data

Our three models models are trained on the Wall
Street Journal (WSJ) portion of the Penn Treebank
(Marcus et al., 1994). In particular, because we
have access to gold standard trees from this cor-
pus, it is possible to compute the exact maximum a
posteriori full-parsing (DMPCFG) and full-listing
(MAG) models, and output PCFGs corresponding
to these models.6

We evaluate our models on two different cor-
pora: (a) the Dundee corpus (Kennedy and Pynte,
2005) with eye-tracking data on naturally occur-
ring English news text and (b) the MIT corpus
(Bachrach et al., 2009) with self-paced reading
data on hand-constructed narrative text. The for-

5Specifically, terminal symbols are used as keys in our
trie and at each trie node, e.g., corresponding to the key se-
quence a b c, we store two lists of nonterminals: (a) the
complete list – where each non-terminal X corresponds to
a multi-terminal rule X → a b c, and (b) the prefix list –
where each non-terminal X corresponds to a multi-terminal
rule X → a b c . . . d. We also accumulated probabilities for
each non-terminal in these two lists as we traverse the trie.

6Note that for DMPCFG, this PCFG is exact, whereas for
MAG, it represents a truncated approximation.
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mer has been a popular choice in many sentence
processing studies (Demberg and Keller, 2008;
Mitchell et al., 2010; Frank and Bod, 2011; Fos-
sum and Levy, 2012; van Schijndel and Schuler,
2013). The latter corpus, with syntactically com-
plex sentences constructed to appear relatively
natural, is smaller in size and has been used in
work such as Roark et al. (2009) and Wu et al.
(2010). We include both corpora to demonstrate
the reliability of our results.

Detailed statistics of these corpora are given
in Table 1. The last column indicates the num-
ber of data points (i.e., word-specific fixation or
reading times) used in our analyses below. This
dataset was constructed by excluding data points
with zero reading times and removing rare words
(with frequencies less than 5 in the WSJ training
data). We also exclude long sentences (of greater
than 40 words) for parsing efficiency reasons.

sent word subj orig filtered
Dundee 2,370 58,613 10 586,131 228,807
MIT 199 3,540 23 81,420 69,702

Table 1: Summary statistics of reading time cor-
pora – shown are the number of sentences, words,
subjects, data points before (orig) and after filter-
ing (filtered).

5.2 Metrics
Following (Frank and Bod, 2011; Fossum and
Levy, 2012), we present two analyses of the sur-
prisal predictions of our models: (a) a likelihood
evaluation and (b) a psychological measure of the
ability of each model to predict reading difficulty.

For the former, we simply average the negative
surprisal values, i.e., log p(wn|w1 . . . wn−1), of all
words in the test set, computing the average log
likelihood of the data under each model.7 This can
be understood as simply a measure of goodness of
fit of each model on each test data set.

For the latter, we perform a linear mixed-effects
analysis (Baayen et al., 2008) to evaluate how well
the model explains reading times in the test data.
The lme4 package (Bates et al., 2011) is used
to fit our linear mixed-effects models. Following
(Fossum and Levy, 2012), eye fixation and reading
times are log-transformed to produce more nor-
mally distributed data.8 We include the follow-

7Exponentiating this value gives the perplexity score.
8For the Dundee corpus, we use the first-pass reading

time.

ing common predictors as fixed effects for each
word/participant pair: (i) position of the word in
the sentence, (ii) the number of characters in the
word, (iii) whether the previous word was fixated,
(iv) whether the next word was fixated, and (v) the
log of the word unigram probability.9

All fixed effects were centered to reduce
collinearity. We include by-word and by-subject
intercepts as random effects. The base model re-
sults reported below include only these fixed and
random factors. To test the ability of our three
theoretical models of computation and storage to
explain the reading time data, we include surprisal
predictions from each model as an additional fixed
effect. To test the signficance of these results, we
perform nested model comparisons with χ2 tests.

5.3 Results
For the likelihood evaluation, the values in Table 2
demonstrate that the FG model provides the best
fit to the data. The results also indicate a ranking
over the three models, FG ≻ DMPCFG ≻ MAG.

Dundee MIT
DMPCFG -6.82 -6.80

MAG -6.91 -6.95
FG -6.35 -6.35

Table 2: Likelihood Evaluation – the average
negative suprirsal values given by each model
(DMPCFG, MAG, FG) on all words in each cor-
pus (Dundee, MIT).

For the psychological evaluation, we present re-
sults of our nested model comparisons under two
settings: (a) additive in which we independently
add each of the surprisal measures to the base
model and (b) subtractive, in which we take the
full model consisting of all the surprisal measures
and independently remove one surprisal measure
each time.

Results of the additive setting are shown in Ta-
ble 3, demonstrating the same trend as observed
in the likelihood evaluation. In particular, the FG
model yields the best improvement in terms of
model fit as captured by the χ2(1) statistics, indi-
cating that it is more explanatory of reaction times
when added to the base model as compared to the
DMPCFG and the MAG predictions. The ranking

9The unigram probability was estimated from the WSJ
training data, the written text portion of the BNC corpus, and
the Brown corpus. We make use of the SRILM toolkit (Stol-
cke, 2002) for such estimation.
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is also consistent with the likelihood results: FG
≻ DMPCFG ≻ MAG.

Models Dundee MIT
χ2(1) p χ2(1) p

base+DMPCFG 70.9 < 2.2E-16 38.5 5.59E-10
base+MAG 10.9 9.63E-04 0.1 7.52E-01
base+FG 118.3 < 2.2E-16 62.5 2.63E-15

Table 3: Psychological accuracy, additive tests –
χ2(1) and p values achieved by performing nested
model analysis between the models base+X and
the base model.

For the subtractive setting, results in Table 4
highlight the fact that several models significantly
(p < 0.01) explains variance in fixation times
above and beyond the other surprisal-based pre-
dictors. The FG measure proves to be the most
influential predictor (with χ2(1) = 62.5 for the
Dundee corpus and 42.9 for the MIT corpus). Ad-
ditionally, we observe that DMPCFG does not sig-
nificantly explain more variance over the other
predictors. This, we believe, is partly due to the
presence of the FG model, which captures much
of the same structure as the DMPCFG model.

Models Dundee MIT
χ2(1) p χ2(1) p

full-DMPCFG 4.0 4.65E-02 3.5 6.18E-02
full-MAG 14.3 1.58E-04 23.6 1.21E-06
full-FG 62.5 2.66E-15 42.9 5.88E-11

Table 4: Psychological accuracy, subtractive
test – χ2(1) and p values achieved by performing
nested model analysis between the models full-X
and the full model.

Additionally, we examine the coefficients of the
surprisal predictions of each model. We extracted
coefficients for individual surprisal measures in-
dependently from each of the models base+X. As
shown in the columns Indep in Table 5, all coef-
ficients are positive, implying, sensibly, that the
more surprising a word, the longer time it takes to
process that word.

Moreover, when all surprisal measures appear
together in the same full model (columns Joint),
we observe a consistent trend that the coefficients
for DMPCFG and FG are positive, whereas that of
the MAG is negative.

5.4 Discussion
Our results above indicate that the inference-based
model provides the best account of our test data,

Models Dundee MIT
Indep. Joint Indep. Joint

DMPCFG 5.94E-03 1.95E-03 8.08E-03 3.24E-03
MAG 1.00E-03 -1.41E-03 1.54E-04 -2.82E-03
FG 5.13E-03 5.49E-03 5.88E-03 6.97E-03

Table 5: Mixed-effects coefficients – the Indep.
columns refer to the coefficients learned by the
mixed-effects models base+X (one surprisal mea-
sure per model), whereas the Joint columns refer
to coefficients of all surprisal measures within the
full model.

both in terms of the likelihood it assigns to the test
corpora and in terms of its ability to explain human
fixation times. With respect to the full-parsing
model this result is unsurprising. It is widely
known that the conditional independence assump-
tions of PCFGs make them poor models of syn-
tactic strcutre, and thus—presumably—of human
sentence processing. Other recent work has shown
that reasonable (though not state-of-the-art) pars-
ing results can be achieved using models which re-
lax the conditional independence assumptions of
PCFGs by employing inventories of stored tree-
fragments (i.e., tree-substitution grammars) simi-
lar to the fragment grammars model (De Marcken,
1996; Bod et al., 2003; Cohn et al., 2010; Post and
Gildea, 2013; O’Donnell, 2015).

The comparison with the full-listing model is
more interesting. Not only does the full-listing
model produce the worst performance of the three
models in both corpora and for both evaluations, it
actually produces negative correlations with read-
ing times. We believe this result is indicative of a
simple fact: while it has become clear that there
is lexical storage of many syntactic constructions,
and—in fact—the degree of storage may be con-
siderably more than previously believed (Trem-
blay and Baayen, 2010; Bannard and Matthews,
2008)—syntax is still a domain which is mostly
compositional. The full-listing model overfits,
leading to nonsensical reading time predictions.
In fact, this is likely a logical necessity—the vast
combinatorial power implicit in natural language
syntax means that even for a system with tremen-
dous memory capacity, only a small fraction of po-
tential structures can be stored.

6 Conclusion

In this paper, we have studied the ability of sev-
eral models of computation and storage to explain
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human sentence processing, demonstrating that a
model which treates the problem as a case-by-case
probabilistic inference provides the best fit to read-
ing time datasets, when compared to two “limit-
ing case” models which always compute or always
store. However, as we emphasized in the introduc-
tion we see our contribution as primarily method-
ological. None of the models studied here repre-
sent state-of-the-art proposals for syntactic struc-
ture. Instead, we see these results together with the
tools that we make available to the community, as
providing a springboard for later research that will
isolate exactly which factors, alone or in concert,
best explain human sentence processing.
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