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Abstract

Previous studies of the effect of word
alignment on translation quality in SMT
generally explore link level metrics only
and mostly do not show any clear connec-
tions between alignment and SMT qual-
ity. In this paper, we specifically inves-
tigate the impact of word alignment on
two pre-reordering tasks in translation, us-
ing a wider range of quality indicators
than previously done. Experiments on
German–English translation show that re-
ordering may require alignment models
different from those used by the core trans-
lation system. Sparse alignments with
high precision on the link level, for trans-
lation units, and on the subset of cross-
ing links, like intersected HMM models,
are preferred. Unlike SMT performance
the desired alignment characteristics are
similar for small and large training data
for the pre-reordering tasks. Moreover,
we confirm previous research showing that
the fuzzy reordering score is a useful and
cheap proxy for performance on SMT re-
ordering tasks.

1 Introduction

Word alignment is a key component in all state-of-
the-art statistical machine translation (SMT) sys-
tems, and there has been some work exploring the
connection between word alignment quality and
translation quality (Och and Ney, 2003; Fraser and
Marcu, 2007; Lambert et al., 2012). The standard
way to evaluate word alignments in this context is
by using metrics like alignment error rate (AER)
and F-measure on the link level, and the general
conclusion appears to be that translation quality
benefits from alignments with high recall (rather
than precision), at least for large training data. Al-
though many other ways of measuring alignment

quality have been proposed, such as working on
translation units (Ahrenberg et al., 2000; Ayan and
Dorr, 2006; Søgaard and Kuhn, 2009) or using link
degree and related measures (Ahrenberg, 2010),
these methods have not been used to study the re-
lation between alignment and translation quality,
with the exception of Lambert et al. (2012).

Word alignment is also used for many other
tasks besides translation, including term bank
creation (Merkel and Foo, 2007), cross-lingual
annotation projection for part-of-speech tagging
(Yarowsky et al., 2001), semantic roles (Pado and
Lapata, 2005), pronoun anaphora (Postolache et
al., 2006), and cross-lingual clustering (Täckström
et al., 2012). Even within SMT itself, there are
tasks such as reordering that often make crucial
use of word alignments. For instance, source lan-
guage reordering commonly relies on rules learnt
automatically from word-aligned data (e.g., Xia
and McCord (2004)). As far as we know, no one
has studied the impact of alignment quality on
these additional tasks, and it seems to be tacitly
assumed that alignments that are good for transla-
tion are also good for other tasks.

In this paper we set out to explore the impact
of alignment quality on two pre-reordering tasks
for SMT. In doing so, we employ a wider range of
quality indicators than is customary, and for refer-
ence these indicators are used also to assess over-
all translation quality. To allow an in-depth explo-
ration of the connections between several aspects
of word alignment and reordering, we limit our
study to one language pair, German–English. We
think this is a suitable language pair for studying
reordering since it has both short range and long
range reorderings. Our main focus is on using rel-
atively large training data, 2M sentences, but we
also report results with small training data, 170K
sentences. The main conclusion of our study is
that alignments that are optimal for translation are
not necessarily optimal for reordering, where pre-
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cision is of greater importance than recall. For
SMT the best alignments are different depending
on corpus size, but for the reordering tasks results
are stable across training data size.

In section 2 we discuss previous work related
to word alignment and SMT. In section 3, we in-
troduce the word alignment quality indicators we
use, and show experimental results for a number
of alignment systems on an SMT task. In sec-
tion 4, we turn to reordering for SMT and use
the same quality indicators to study the impact of
alignment quality on reordering quality. In section
5 we briefly describe results using small training
data. In section 6, we conclude and suggest direc-
tions for future work.

2 Word Alignment and SMT

Word alignment is the task of relating words
in one language to words in the translation in
another language, see an example in Figure 1.
Word alignment models can be learnt automati-
cally from large corpora of sentence aligned data.
Brown et al. (1993) proposed the so-called IBM
models, which are still widely used. These five
models estimate alignments from corpora using
the expectation-maximization algorithm, and each
model adds some complexity. Model 4 is com-
monly used in SMT systems. There have been
many later suggestions of alternatives to these
models. These are often alternatives to model 2,
such as the HMM model (Vogel et al., 1996) and
fast align (Dyer et al., 2013).

All these generative models produce directional
alignments where one word in the source can be
linked to many target words (1–m links) but not
vice versa. It is generally desirable to also allow
n–1 and n–m links, and to achieve this it is com-
mon practice to perform word alignment in both
directions and to symmetrize them using some
heuristic. A number of common symmetrization
strategies are described in Table 1 (Koehn et al.,
2005). There are also other alternatives, such as
the refined method (Och and Ney, 2003), or link
deletion from the union (Fossum et al., 2008).

There is also a wide range of alternative ap-
proaches to word alignment. For example, various
discriminative models have been proposed in the
literature (Liu et al., 2005; Moore, 2005; Taskar
et al., 2005). Their advantage is that they may
integrate a wide range of features that may lead
to improved alignment quality. However, most of

Symmetrization Description
int: intersection ATS ∩AST

uni: union ATS ∪AST

gd: grow-diag intersection plus adjacent links
from the union if both linked
words are unaligned

gdf: grow-diag-final gd with links from the union
added in a final step if either
linked word is unaligned

gdfa:
grow-diag-final-and

gd with links from the union
added in a final step if both linked
words are unaligned

Table 1: Symmetrization strategies for word align-
ments ATS and AST in two directions

these models require external tools (for creating
linguistic features) and manually aligned training
data, which we do not have for our data sets (be-
sides the data we need for evaluation). Investigat-
ing these types of models are outside the scope of
our current work.

Word alignments are used as an important
knowledge source for training SMT systems. In
word-based SMT, the parameters of the gener-
ative word alignment models are essentially the
translation model of the system. In phrase-based
SMT (PBSMT) (Koehn et al., 2003), which is
among the state-of-the-art systems today, word
alignments are used as a basis for extracting
phrases and estimating phrase alignment probabil-
ities. Similarly, word alignments are also used for
estimating rule probabilities in various kinds of hi-
erarchical and syntactic SMT (Chiang, 2007; Ya-
mada and Knight, 2002; Galley et al., 2004).

Intrinsic evaluation of word alignment is gener-
ally based on a comparison to a gold standard of
human alignments. Based on the gold standard,
metrics like precision, recall and F-measure can
be calculated for each alignment link, see Eqs. 1–
2, where A are hypothesized alignment links and
G are gold standard links. Another common met-
ric is alignment error rate (AER) (Och and Ney,
2000), which is based on a distinction between
sure, S, and possible, P , links in the gold stan-
dard. 1−AER is identical to balanced F-measure
when the gold standard does not make a distinc-
tion between S and P.

Precision(A,G) =
|G ∩A|
|A| (1)

Recall(A,G) =
|G ∩A|
|G| (2)

AER = 1− |P ∩A|+ |S ∩A||S|+ |A| (3)

276



Crossing = 8

SKDT =
√

8/66 ≈ 0.65
6 1–1 links
3 multi links
0 null links

Figure 1: An example alignment illustrating n–1, 1–m and crossing links.

The relation between word alignment qual-
ity and PBSMT has been studied by some re-
searchers. Och and Ney (2000) looked at the im-
pact of IBM and HMM models on the alignment
template approach (Och et al., 1999) in terms of
AER. They found that AER correlates with human
evaluation of sentence level quality, but not with
word error rate. Fraser and Marcu (2007) found
that there is no correlation between AER and Bleu
(Papineni et al., 2002), especially not when the P -
set is large. They found that a balanced F-measure
is a better indicator of Bleu, but that a weighted
F-measure is even better (see Eq. 4) mostly with
a higher weight for recall than for precision. This
weight, however, needs to be optimized for each
data set, language pair, and gold standard align-
ment separately.

F(A,G, α) =

(
α

Precision(A,G)
+

1− α
Recall(A,G)

)−1

(4)

Ayan and Dorr (2006) on the other hand found
some evidence for the importance of precision
over recall. However, they used much smaller
training data than Fraser and Marcu (2007). They
also suggested using a measure called consistent
phrase error-rate (CPER), but found that it was
hard to assess the impact of alignment on MT, both
with AER and CPER. Lambert et al. (2012) per-
formed a study where they investigated the effect
of word alignment on MT using a large number of
word alignment indicators. They found that there
was a difference between large and small datasets
in that alignment precision was more important
with small data sets, and recall more important
with large data sets. Overall they did not find any
indicator that was significant over two language
pairs and different corpus sizes. There were more
significant indicators for large datasets, however.

Most researchers who propose new alignment
models perform both a gold standard evalua-
tion and an SMT evaluation (Liang et al., 2006;
Ganchev et al., 2008; Junczys-Dowmunt and Szał,
2012; Dyer et al., 2013). The relation between the
two types of evaluation is often quite weak. Sev-

eral of these studies only show AER on their gold
standard, despite its well-known shortcomings.

Even though many studies have shown some
relation between translation quality and AER or
weighted F-measure, it has rarely been investi-
gated thoroughly in its own right, and, as far as we
are aware, not for other tasks than SMT. Further-
more, most of these studies considers nothing else
but link level agreement. In this paper we take a
broader view on alignment quality and explore the
effect of other types of quality indicators as well.

3 Word Alignment Quality Indicators

We investigate four groups of quality indicators.
The first group is the classic group where met-
rics are calculated on the alignment link level,
which has been used in several studies. In our
experiments we use a gold standard that does not
make use of distinctions between sure and possible
links, as suggested by Fraser and Marcu (2007).
With this, we can calculate the standard metrics
P(recision) R(ecall) and F(-measure). We will
mainly use balanced F-measure, but occasionally
also report weighted F-measure. As noted before,
1−AER is equivalent to balanced F when only
sure links are used, and will thus not be reported
separately.

Søgaard and Kuhn (2009) and Søgaard and Wu
(2009) suggested working on the translation unit
(TU) level, instead of the link level. A translation
unit, or cept (Goutte et al., 2004), is defined as
a maximally connected subgraph of an alignment.
In Figure 1, the twelve links form nine translation
units. Søgaard and Wu (2009) suggest the metric
TUER, translation unit error rate, shown in Eq. 5,
where AU are hypothesized translation units, and
GU are gold standard translation units.1 They use
TUER to establish lower bounds for the cover-
age of alignments from different formalisms, not
to evaluate SMT. While they only use TUER, it

1TUER is similar to CPER (Ayan and Dorr, 2006), which
measures the error rate of extracted phrases. Due to how
phrase extraction handle null links, there are differences,
however.

277



is also possible to define Precision, Recall and F-
measure over translation units in the same way as
for alignment links. We will use these three mea-
sures to get a broader picture of TUs in alignment
evaluation. Also in this case, 1−TUER is equiva-
lent to F-measure.

TUER(A,G) = 1− 2|AU ∩GU |
|AU |+ |GU | (5)

The TU metrics are quite strict, since they re-
quire exact matching of TUs. Tiedemann (2005)
suggested the MWU metrics for word alignment
evaluation, which also consider partial matches
of annotated multi-word units, which is a similar
concept to TUs. In those metrics, precision and
recall grow proportionally to the number of cor-
rectly aligned words within translation units. Pro-
posed links are in this way scored according to
their overlap with translation units in the gold stan-
dard. Precision and recall are defined in Eqs. 6–7,
where overlap(XU , Y ) is the number of source
and target words in XU that overlap with transla-
tion units in Y normalized by the size of XU (in
terms of source and target words). Note, that TUs
need to overlap in source and target. Otherwise,
their overlap will be counted as zero.

PMWU =
∑

AU∈A

overlap(AU , G)

|A| (6)

RMWU =
∑

GU∈G

overlap(GU , A)

|G| (7)

There have also been attempts at classifying
alignments in other ways, not related to a gold
standard. Ahrenberg (2010) proposed several
ways to categorize human alignments, including
link degree, reordering of links, and structural cor-
respondence. He used these indicators to profile
hand-aligned corpora from different domains. We
will not use structural correspondence, which re-
quires a dependency parser, and which we believe
is error prone when performed automatically. We
will use what we call link degree, i.e., how many
alignment links each word obtains. Ahrenberg
(2010) used a fine-grained scheme of the percent-
age for different degrees, including isomorphism
1–1, deletion 0–1, reduction m–1, and paraphrase
m–n. Similar link degree classes were used by
Lambert et al. (2012). In this work we will re-
duce these classes into three: 1–1 links, null links,
which combine the 0–1 and 1–0 cases, and multi
links where there are many words on at least one
side.

Ahrenberg (2010) also proposed to measure re-
orderings. He does this by calculating the percent-
age of links with crossings of different lengths. To
define this he only considers adjacent links in the
source using the distance between corresponding
target words, which means that his metric becomes
a directional measure. Reorderings of alignments
was also used by Genzel (2010), who used cross-
ing score, the number of crossing links, to rank
reordering rules. This is non-directional and sim-
pler to calculate than Ahrenberg (2010)’s metrics,
and implicitly covers length since a long distance
reordering leads to a higher number of pairwise
crossing links. Birch and Osborne (2011) sug-
gest using squared Kendall τ distance (SKTD), see
Eq. 8, where n is the number of links, as a basis
of LR-score, an MT metric that takes reordering
into account. They found that squaring τ better
explained reordering, than using only τ . In this
study we will use both, crossing score and SKTD.
Figure 1 shows these scores for an example sen-
tence. These two measures only tell us how much
reordering there is. To quantify this relative to the
gold standard we also report the absolute differ-
ence between the number of gold standard cross-
ings and system crossings, which we call Crossd-
iff. To account for the quality of crossings, to some
extent, we will also report precision, recall, and F-
measure for the subset of translation units that are
involved in a crossing.

SKTD =

√
|crossing link pairs|

(n2 − n)/2
(8)

3.1 Alignment Experiments
We perform all our experiments for German–
English. The alignment indicators are calculated
on a corpus of 987 hand aligned sentences (Pado
and Lapata, 2005). The gold standard contains
explicit null links, which the symmetrized auto-
matic alignments do not. To allow a straightfor-
ward comparison we consistently remove all null
links when comparing system alignments to the
gold standard.

For creating the automatic alignments we used
GIZA++ (Och and Ney, 2003) to compute direc-
tional alignments for model 2–4 and the HMM
model, and fast align (fa) (Dyer et al., 2013) as
newer alternatives to model 2. These models re-
quire large amounts of data to be estimated reli-
ably. To achieve this we concatenated the gold
standard with the large SMT training data (see
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Section 3.2) of 2M sentences during alignment.
For symmetrization we used all methods in Table
1, as implemented in the Moses toolkit (Koehn et
al., 2007) and in fast align (Dyer et al., 2013).

Based on the automatically aligned gold stan-
dard, we calculated all alignment indicators for all
settings. The complete results can be found in
Table 2, where we have ordered the symmetriza-
tion methods with the most sparse, intersection, on
top. Overall we can see that while several of the
alignment methods create a much higher number
of alignment links than the gold standard, they do
not produce many more translation units. This is
very interesting and indicates why link level statis-
tics may not be accurate enough to predict the per-
formance of certain downstream applications. As
expected, the metric scores for translation units
are lower than for link level metrics. This is
partly due to the fact that these measures do not
count any partially correct links; the MWU met-
rics which considers partial matches often have
higher scores than link level metrics. Another
finding is that the number of crossings vary a lot
with more than twice as many as the reference for
model2+union, and less than three times as many
for HMM+intersection. The HMM and fa models
have fewer reorderings than the IBM models.

We are now interested in the relation between
alignment evaluation on the link level and on the
translation unit level, which has not been thor-
oughly investigated before. Table 3 shows the cor-
relations between the various metrics. Both preci-
sion and F-measure at the link level have signifi-
cant correlations to all TU metrics. Link level re-
call, on the other hand, is significantly negatively
correlated with TU precision, but not significantly
correlated to any other TU metric, not even TU re-
call. Link level precision is thus highly important
for matching translation units. We can also note
here that while there is a trade-off between preci-
sion and recall on link level, this is not the case for
translation units, which can have both high pre-
cision and high recall. The same is not true for
MWU, that allows partial matching, where we also
see at least some precision/recall trade-off.

3.2 SMT Experiments

For reference, we first study the impact of align-
ment on SMT performance. Our SMT system
is a standard PBSMT system trained on WMT13

Translation unit
Link level ↓ P R F
P .95 .77 .90
R −.57 −.22 −.42
F .70 .90 .83

Table 3: Pearson correlations between gold stan-
dard word alignment evaluation on the link level
and on translation unit level. Significant correla-
tions are marked with bold (< 0.01).

data.2 We trained a German–English system on
2M sentences from Europarl and News Commen-
tary. We used the target side of the parallel corpus
and the SRILM toolkit (Stolcke, 2002) to train a 5-
gram language model. For training the translation
model and for decoding we used the Moses toolkit
(Koehn et al., 2007). We applied a standard feature
set consisting of a language model feature, four
translation model features, word penalty, phrase
penalty, and distortion cost. For tuning we used
minimum error-rate training (Och, 2003). In or-
der to minimize the risk of tuning influencing the
results, we used a fixed set of weights for each
experiment, tuned on a model 4+gdfa alignment.3

For tuning we used newstest2009 with 2525 sen-
tences, and for testing we used newstest2013 with
3000 sentences. Evaluation was performed using
the Bleu metric (Papineni et al., 2002). The same
system setup was used for the SMT systems with
reordering.

Table 4 shows the results on the SMT task.
Model 3 and 4 with gd/gdfa symmetrization yield
the highest scores. There is a larger difference be-
tween systems with different symmetrization than
between systems with different alignment models.
The sparse intersection symmetrization gives the
poorest results. The top row in Table 5 shows
correlations between Bleu and all word alignment
quality indicators. There are significant correla-
tions with link level recall. A weighted link level
F-measure with α = 0.3 gives a significant corre-
lation of .72, which confirms the results of Fraser
and Marcu (2007). There are no significant corre-
lations with the TU metrics but a positive correla-
tion with the number of TUs. For the MWU met-
rics the correlations are similar to the link level,

2http://www.statmt.org/wmt13/
translation-task.html

3This could have disfavored the other alignments, so we
also performed control experiments where we ran separate
tunings for each alignment. While the absolute results varied
somewhat, the correlations with alignment indicators were
stable.
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m2 m3 m4 HMM fa
inter 18.1 19.1 19.3 18.8 18.9
gd 20.4 20.9 20.9 20.5 20.6
gdfa 20.4 20.7 20.8 20.5 20.5
gdf 19.4 19.7 20.1 19.9 20.0
union 19.2 19.6 19.8 19.7 20.0

Table 4: Baseline Bleu scores for different sym-
metrization heuristics

suggesting that they measure similar things. Intu-
itively it seems important for SMT to match full
translation units, but it might be the case that the
phrase extraction strategy is robust as long as there
are partial matches. There are no significant cor-
relations with link degree or link crossings, ex-
cept a negative correlation with Crossdiff, which
means that it is good to have a similar number of
crossings as the baseline. These results confirm
results from previous studies that link level mea-
sures, especially recall and weighted F-measure
show some correlation with SMT quality whereas
precision does not.

4 Reordering Tasks for SMT

Reordering is an important part of any SMT sys-
tem. One way to address it is to add reorder-
ing models to standard PBSMT systems, for in-
stance lexicalized reordering models (Koehn et al.,
2005), or to directly model reordering in hierarchi-
cal (Chiang, 2007) or syntactic translation models
(Yamada and Knight, 2002). Another type of ap-
proach is preordering, where the source side is re-
ordered to mimic the target side before translation.
There have also been approaches where reordering
is modeled as part of the evaluation of MT systems
(Birch and Osborne, 2011).

We can distinguish two main types of ap-
proaches to preordering in SMT, either by using
hand-written rules, which often operate on syn-
tactic trees (Collins et al., 2005), or by reordering
rules that are learnt automatically based on a word
aligned corpus (Xia and McCord, 2004). The lat-
ter approach is of interest to us, since it is based
on word alignments.

There has been much work on automatic learn-
ing of reordering rules, which can be based on dif-
ferent levels of annotation, such as part-of-speech
tags (Rottmann and Vogel, 2007; Niehues and
Kolss, 2009; Genzel, 2010), chunks (Zhang et
al., 2007) or parse trees (Xia and McCord, 2004).
In general, all these approaches lead to improve-
ments of translation quality. The reordering is

always applied on the translation input. It can
also be applied on the source side of the train-
ing corpora, which sometimes improves the results
(Rottmann and Vogel, 2007), but sometimes does
not make a difference (Stymne, 2012). When pre-
ordering is performed on the translation input, it
can be presented to the decoder as a 1-best reorder-
ing (Xia and McCord, 2004), as an n-best list (Li
et al., 2007), or as a lattice of possible reorderings
(Rottmann and Vogel, 2007; Zhang et al., 2007).

In the preordering studies cited above it is often
not even stated which alignment model was used.
A few authors mention the alignment tool that has
been applied but no comparison between different
alignment models is performed in any of the pa-
pers we are aware of. Li et al. (2007), for exam-
ple, simply state that they used GIZA++ and gdf
symmetrization and that they removed less proba-
ble multi links. Lerner and Petrov (2013) use the
intersection of HMM alignments and claims that
model 4 did not add much value. Genzel (2010)
did mention that using a standard model 4 was
not successful for his rule learning approach. In-
stead he used filtered model-1-alignments, which
he claims was more successful. However, there
are no further analyses or comparisons between
the alignments reported in any of these papers.

Another type of approach to reordering is to
only reorder the data in order to improve word
alignments, and to restore the original word or-
der before training the SMT system. This type
of approach has the advantage that no modifica-
tions are needed for the translation input. This ap-
proach has also been used both with hand-written
rules (Carpuat et al., 2010; Stymne et al., 2010)
and with rules based on initial word alignments on
non-reordered texts (Holmqvist et al., 2009). For
the latter approach a small study of the effect of gd
and gdfa symmetrizations was presented, which
only showed small variations in quality scores
(Holmqvist et al., 2012).

Below we present the two tasks that we study
in this paper: part-of-speech-based reordering for
creating input lattices for SMT and alignment-
based reordering for improving phrase-tables. We
evaluate the performance of these tasks in rela-
tion to the use of different alignment models and
symmetrization heuristics. For these tasks we are
mainly interested in the full translation task, for
which we report Bleu scores. In addition we also
show fuzzy reordering score (FRS), which focuses
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Alignment links Translation units MWU
Total P R F Total P R F P R F

SMT, Bleu .33 −.25 .56 .46 .65 −.20 .16 −.02 −.29 .59 .44
POSReo, FRS −.80 .87 −.49 .75 −.23 .90 .81 .89 .82 −.45 .22
POSReo, Bleu −.64 .74 −.27 .85 .05 .80 .80 .86 .67 −.23 .35
AlignReo, FRS −.77 .88 −.43 .84 −.11 .90 .88 .92 .81 −.37 .31
AlignReo, Bleu −.81 .83 −.58 .61 −.24 .75 .64 .72 .71 −.53 .04

Link degree Link crossings
1-1 null multi Total SKTD P R F Crossdiff

SMT, Bleu .33 −.30 .21 −.05 −.14 −.09 .25 .07 −.63
POSReo, FRS −.41 .84 −.89 −.81 −.70 .90 .21 .86 −.41
POSReo, Bleu −.17 .66 −.80 −.71 −.60 .79 .42 .89 −.49
AlignReo, FRS −.32 .77 −.86 −.80 −.73 .94 .27 .92 −.38
AlignReo, Bleu −.57 .83 −.79 −.93 −.91 .86 −.07 .69 −.52

Table 5: Pearson correlations between different alignment characteristics and scores for the translation
and reordering tasks. Significant correlations are marked with bold (< 0.01).

only on the reordering component (Talbot et al.,
2011). It compares a system reordering to a refer-
ence reordering, by measuring how many chunks
that have to be moved to get an identical word or-
der, see Eq. 9, where C is the number of con-
tiguously aligned chunks, and M the number of
words. To find the reference ordering we apply
the method of Holmqvist et al. (2009), described
in Section 4.2, to the gold standard alignment.

FRS = 1− C − 1

M − 1
(9)

4.1 Part-of-Speech-Based Reordering

Our first reordering task is a part-of-speech-based
preordering method described by Rottmann and
Vogel (2007) and Niehues and Kolss (2009),
which was successfully used for German–English
translation. Rules are learnt from a word aligned
POS-tagged corpus. Based on the alignments, tag
patterns are identified that give rise to specific re-
orderings. These patterns are then scored based
on relative frequency.4 The rules are then applied
to the translation input to create a reordering lat-
tice, with normalized edge scores based on rule
scores. In our experiments we only use rules with
a score higher than 0.2, to limit the size of the lat-
tices. For calculating FRS, we pick the highest
scoring 1-best word order from the lattices.

We learn rules from our entire SMT training
corpus varying alignment models and symmetriza-
tion. To investigate only the effect of word align-
ment for creating reordering rules, we do not

4Note that we do not use words (Rottmann and Vogel,
2007) or wild cards (Niehues and Kolss, 2009) in our rules.

m2 m3 m4 HMM fa
inter .577 .575 .581 .596 .567
gd .555 .559 .570 .589 .546
gdfa .540 .540 .559 .579 .539
gdf .439 .499 .542 .560 .495
union .442 .492 .544 .563 .486

Table 6: Fuzzy reordering scores for part-of-
speech-based reordering for different alignments

m2 m3 m4 HMM fa
inter 21.4 21.6 21.8 21.6 21.6
gd 21.5 21.6 21.6 21.7 21.5
gdfa 21.4 21.5 21.7 21.7 21.4
gdf 20.3 21.0 21.4 21.5 21.0
union 20.3 21.5 21.6 21.5 20.8

Table 7: Bleu scores for part-of-speech-based re-
ordering for different alignments

change the SMT system, which is trained based
on model 4+gdfa alignments. The only thing that
varies for the translation task is thus the input lat-
tice given to this SMT system.

The results are shown in Tables 6 and 7. Most
Bleu scores are better than using the same SMT
system without preordering, with a Bleu score of
20.8. The results on FRS and Bleu are highly cor-
related at .94, despite the fact that we use a lattice
as SMT input, and the 1-best order for FRS. For
both metrics sparse symmetrization like intersec-
tion and gd performs best. Model 4 and HMM
perform best with similar Bleu scores, but FRS is
better for the HMM model.

Table 5 shows the correlations with the word
alignment indicators, in the rows labeled POSReo.
There are strong correlations with all TU metrics,
contrary to the SMT task. There are also signifi-
cant correlations with link level precision and bal-
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anced F-measure. The correlation with weighted
link level F-measure is even higher, .91 for α =
0.6. This is an indication that this algorithm is
more sensitive to precision than the SMT task. As
for the SMT task, the correlation patterns are simi-
lar for the MWU metrics as for link level. For link
degree, null alignments are correlated, but there is
a negative correlation for multi links. The correla-
tions with the number of crossings and SKTD are
negative, which means that it is better to have a
low number of crossings. This may seem counter-
intuitive, but note in Table 1 that many alignments
have a much higher number of crossings than the
baseline. The precision of the crossing links is
highly correlated with performance on this task,
while the recall is not. This tells us that it is impor-
tant that the crossings we find in the alignment are
good, but that it is less important that we find all
crossings. This makes sense since the rule learner
can then learn at least a subset of all existing cross-
ings well.

4.2 Reordering for Alignment

In our second reordering task we investigate
alignment-based reordering for improving phrase-
tables (Holmqvist et al., 2009; Holmqvist et al.,
2012). This strategy first performs a word align-
ment, based on which the source text is reordered
to remove all crossings. A second alignment is
trained on the reordered data, which is then re-
stored to the original order before training the
full SMT system. In Holmqvist et al. (2012) it
was shown that this strategy leads to improve-
ments in link level recall and F-measure as well
as small translation improvements for English–
Swedish. It also led to small improvements for
German–English translation.

Similar to the previous experiments, we now
vary alignment models and symmetrization that
are used for reordering during the first step. The
second step is kept the same using model 4+gdfa
in order to focus on the reordering step in our com-
parisons. Tables 8 and 9 show the results of these
experiments. In this case the reordering strat-
egy was not successful, always producing lower
Bleu scores than the baseline of 20.8. However,
there are some interesting differences in these out-
comes. On this task as well, FRS and Bleu scores
are highly correlated at .89, which was expected,
since this method directly uses the reordered data
to train phrase tables. For the best systems, the

m2 m3 m4 HMM fa
inter .583 .604 .669 .654 .598
gd .548 .583 .646 .642 .561
gdfa .532 .564 .633 .645 .553
gdf .422 .482 .571 .574 .474
union .395 .455 .552 .545 .452

Table 8: Fuzzy reordering scores for alignment-
based reordering for different alignments

m2 m3 m4 HMM fa
inter 19.5 19.5 19.9 20.2 19.4
gd 19.3 19.5 19.8 20.2 19.3
gdfa 19.1 19.2 19.6 20.0 19.2
gdf 18.3 18.2 18.6 19.0 18.9
union 17.4 17.8 18.4 18.8 18.8

Table 9: Bleu scores for alignment-based reorder-
ing for different alignments

FRS scores are higher than for the previous task,
see Table 6, which shows that reordering directly
based on alignments is easier than learning and ap-
plying rules based on them, given suitable align-
ments. On this task, again, the sparser alignments
are the most successful on both tasks. Here, how-
ever, the HMM model gives the best Bleu scores,
and similar FRS scores to model 4.

Table 5 shows the correlations with the word
alignment indicators, in the rows labeled Align-
Reo. The correlation patterns are very similar
to the previous task. A few more indicators are
significantly negatively correlated with alignment-
based reordering than with the other reordering
tasks and metrics. The performance on our two
reordering tasks are significantly correlated at .76.
Again alignments with good scores on TU met-
rics, link level precision and crossing link preci-
sion are preferable. For this task, the best correla-
tion with weighted link level F-measure is .86 for
α = 0.8. Again, we thus see that sparse align-
ments with high precision on all measures includ-
ing the crossing subset, are important.

5 Small Training Data

Since previous work has suggested that training
data size influences the relation between align-
ment and SMT quality for small and large training
data (Lambert et al., 2012), we investigated this is-
sue also for our reordering tasks. We repeated all
our experiments on a small dataset, only the News
Commentary data from WMT13, with 170K sen-
tences. Due to space constraints we cannot show
all results in the paper, but the main findings are
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summarized in this section.
To acquire alignment results we realigned the

gold standard concatenated with the smaller data,
to reflect the actual quality of alignment with a
small dataset. As expected the quality scores tend
to be lower with less data. Overall the same sys-
tems tend to perform good on each metric with the
small and large data, even though there is some
variation in the ranking between systems. On the
SMT task as well, the Bleu scores are lower, as
expected. In this case fast align is doing best fol-
lowed by model 4 and 3. The best symmetrization
is again gd and gdfa. There are also some differ-
ences in the correlation profile. Link recall and
number of translation units are no longer signifi-
cantly correlated, whereas the number of crossings
and SKTD are. The highest correlation for link
level F-measure is .60 for balanced F-measure,
showing that precision is equally important to re-
call with less data.

For the reordering tasks the scores are again
lower. The POS-based reorderings again help over
the baseline SMT, whereas the alignment-based
reordering leads to slightly lower scores. The cor-
relation profile look exactly the same for Bleu
for POS-based reordering. FRS for both tasks
and Bleu for alignment-based reordering have the
same correlation profiles as Bleu for alignment-
based reordering on large data. There are thus
very small differences in the word alignment qual-
ity indicators that are relevant with large and small
training data, while there are some differences on
the SMT task. For weighted link level F-measure,
the highest correlations are found with α = 0.6–
0.7 on the different metrics, again showing that
precision is more important than recall. For FRS
on both tasks and Bleu for alignment-based re-
ordering, model4 and HMM with intersection and
gd still perform best. For Bleu for POS-based re-
ordering, gdfa and model 3 also give good results.

6 Conclusion and Future Work

We have shown that the best combination of align-
ment and symmetrization models for SMT are not
the best models for reordering tasks in our ex-
perimental setting. For SMT, high recall is more
important than precision with large training data,
while precision and recall are of equal impor-
tance with small training data. This finding sup-
ports previous research (Fraser and Marcu, 2007;
Lambert et al., 2012). Translation unit metrics

are not predictive of SMT performance. For the
large data condition model 3 and 4 with gd and
gdfa symmetrization gave the best results, whereas
fast align with gd and gdfa was best with small
training data.

For the two preordering tasks we investigated,
however, link level weighted F-measure that gave
more weight to precision was important, as well as
all TU metrics. It was also important to have high
precision for the crossing subset of TUs. Hence,
it is more important to reliably find some cross-
ings than to find all crossings. This make sense
since the extracted rules or performed reorderings
are likely good in such cases, even if we are not
able to find all possible reorderings. In conclu-
sion, based on this study, we recommend intersec-
tion symmetrization with model 4 and HMM for
SMT reordering tasks.

We have studied two relatively different re-
ordering tasks with two training data sizes, but
found that they to a large extent prefer the same
types of alignments. Moreover, the results on
these two reordering tasks correlates strongly with
FRS, which is much cheaper to calculate than
SMT metrics that may even require retraining of
full SMT systems. This is consistent with Tal-
bot et al. (2011) who suggested FRS for preorder-
ing tasks. We thus would encourage developers
of alignment methods to not only give results for
SMT, but also for FRS, as a proxy for reordering
tasks. Furthermore, it is also useful to give results
on TU metrics in addition to link level metrics to
complement the evaluation.

In this paper, we have looked at existing genera-
tive alignment and symmetrization models. In fu-
ture work, we would also like to investigate other
models, including the removal of low-confidence
links, which has previously been proposed for pre-
reordering (Li et al., 2007; Genzel, 2010). Given
the results, it also seems motivated to develop
or adapt the existing models in general, to bet-
ter fit the properties of specific auxiliary tasks.
Furthermore, we need to validate our findings on
other language pairs, especially for non-related
languages with even more diverse word order.
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