
Dynamic-oracle Transition-based Parsing with Calibrated Probabilistic Output

Yoav Goldberg
Computer Science Department

Bar Ilan University
Ramat Gan, Israel

yoav.goldberg@gmail.com

Abstract

We adapt the dynamic-oracle training method of
Goldberg and Nivre (2012; 2013) to train clas-
sifiers that produce probabilistic output. Eval-
uation of an Arc-Eager parser on 6 languages
shows that the AdaGrad-RDA based training
procedure results in models that provide the
same high level of accuracy as the averaged-
perceptron trained models, while being sparser
and providing well-calibrated probabilistic out-
put.

1 Introduction

For dependency parsing, it is well established that
greedy transition-based parsers (Nivre, 2008) are very
fast (both empirically and theoretically) while still
providing relatively high parsing accuracies (Nivre et
al., 2007; Kübler et al., 2009).

Recently, it has been shown that by moving
from static to dynamic oracles during training, to-
gether with a training method based on the averaged-
perceptron, greedy parsers can become even more ac-
curate. The accuracy gain comes without any speed
penalty at parsing time, as the inference procedure re-
mains greedy (Goldberg and Nivre, 2012).

In transition-based parsing, the parsing task is
viewed as performing a series of actions, which re-
sult in an incremental construction of a parse-tree. At
each step of the parsing process, a classification model
is used to assign a score to each of the possible ac-
tions, and the highest-scoring action is chosen and ap-
plied. When using perceptron based training, the ac-
tion scores are in the range (−∞,∞), and the only
guarantee is that the highest-scoring action should be
considered “best”. Nothing can be inferred from the

scale of the highest-scoring action, as well as from the
scores assigned to the other actions.

In contrast, we may be interested in a classification
model which outputs a proper probability distribution
over the possible actions at each step of the process.
Such output will allow us to identify uncertain actions,
as well as to reason about the various alternatives.
Probabilistic output can also be used in situations such
as best-first parsing, in which a probabilistic score can
be used to satisfy the required “superiority” property
of the scoring function (Sagae and Lavie, 2006; Zhao
et al., 2013).

Classifiers that output probabilities are well estab-
lished, and are known as maximum-entropy or multi-
nomial logistic regression models. However, their ap-
plications in the context of the dynamic-oracle train-
ing is not immediate. The two main obstacles are (a)
the dynamic oracle may provide more than one correct
label at each state while the standard models expect a
single correct label, and (b) the exploration procedure
used by Goldberg and Nivre (2012; 2013) assumes an
online-learning setup, does not take into account the
probabilistic nature of the classifier scores, and does
not work well in practice.

This work is concerned with enabling training of
classifiers with probabilistic outputs in the dynamic-
oracle framework. Concretely, we propose a loss
function capable of handling multiple correct labels,
show how it can be optimized in the AdaGrad frame-
work (Duchi et al., 2010), and adapt the exploration
procedure used in dynamic-oracle training to the prob-
abilistic setup. We use a variant of AdaGrad that
performs RDA-based (Xiao, 2010) L1 regularization,
achieving sparse model at inference time.

We implemented our method and applied it to train-
ing an Arc-Eager dependency parser on treebanks in

82

6 languages. On all languages we achieve 1-best
parsing results which are on-par with the averaged-
perceptron trained models, while also providing well
calibrated probability estimates at each step. The
probabilistic models have 3-4 times fewer parameters
than the perceptron-trained ones. Our code is avail-
able for download at the author’s web page.

2 Background

2.1 Transition Based Parsing

We begin with a quick review of transition-based de-
pendency parsing (Nivre, 2008), establishing nota-
tion. Transition-based parsing assumes a transition
system, an abstract machine that processes sentences
and produces parse trees. The transition system has a
set of states (also called configurations) and a set of
actions (also called transitions) which are applied to
states, producing new states. In what follows we de-
note a state as x ∈ X , an action as y ∈ Y , and an
application of an action to a state as y(x). When pars-
ing, the system is initialized to an initial state based
on the input sentence S, to which actions are applied
repeatedly. After a finite (in our case linear) number
of action applications, the system arrives at a terminal
state, and a parse tree is read off the terminal configu-
ration. In a greedy parser, a classifier is used to choose
the action to take in each state, based on features ex-
tracted from the state itself. Transition systems differ
by the way they define states, and by the particular set
of transitions available. One such system is the Arc-
Eager system (Nivre, 2003), which has 4 action types,
SHIFT, REDUCE, LEFTlb, RIGHTlb, where the last two
are parameterized by a dependency label lb, resulting
in 2+2L actions for a treebank with L distinct arc la-
bels. The system parses a sentence with nwords in 2n
actions. The reader is referred to (Nivre, 2003; Nivre,
2008; Goldberg and Nivre, 2013) for further details
on this system.

2.2 Greedy parsing algorithm

Assuming we have a function score(x, y;w) parame-
terized by a vector w and assigning scores to pairs of
states x and actions y, greedy transition-based pars-
ing is simple and efficient using Algorithm 1. Starting
with the initial state for a given sentence, we repeat-
edly choose the highest-scoring action according to
our model parameters w and apply it, until we reach

Algorithm 1 Greedy transition-based parsing
1: Input: sentence S, parameter-vector w
2: x← INITIAL(S)
3: while not TERMINAL(x) do
4: y ← argmaxy∈LEGAL(x) score(x, y;w)
5: x← y(x)

6: return tree(x)

a terminal state, at which point we stop and return the
parse tree accumulated in the configuration.

In practice, the scoring function takes a linear (or
log-linear) form:

score(x, y;w) ∝ w · φ(x, y)

where φ is a feature extractor returning a high-
dimensional sparse vector, and · is the dot-product op-
eration. The role of training a model is to a set good
weights to the parameter vector w, based on a training
corpus of 〈x, y〉 pairs. The corpus is provided in the
form of 〈sentence, tree〉 pairs, from which states and
actions are extracted.

2.3 Static vs. Dynamic Oracles
Until recently, the training corpus of 〈x, y〉 pairs was
extracted by use of a static-oracle – a function map-
ping a 〈sentence, tree〉 pair to a sequence of 〈x, y〉
pairs.

Recently, Goldberg and Nivre (2012; 2013) pro-
posed the notion of a dynamic parsing oracle. Dy-
namic parsing oracles are functions oracle(x;T) from
a state x to set of actions Y (given a reference tree T).
Note that unlike the static oracles which provide only
〈x, y〉 pairs that are part of a single action sequence
leading to a gold tree (and associate a single action y
with each state x on this path), the dynamic oracles
are defined for every state x (even states that cannot
lead to the gold tree), and may associate more than
a single action y with each state. The semantics of
the dynamic oracle is that the set Y associated with
state x contains all and only actions that can lead to
an optimal tree (in terms of hamming distance from
the reference tree T) which is reachable from state x.

2.4 A Dynamic Oracle for the Arc-Eager System
Goldberg and Nivre (2013) provide a concrete dy-
namic oracle for the Arc-Eager system, which we use
in this work and repeat here for completeness.

83

We use a notation in which dependency arcs are of
the form (h,m) where h is a head and m is a modi-
fier, and a tree T is represented as a set of dependency
arcs. Each state x is of the form x = (σ|s, b|β,A)1

where σ|s is a stack with body σ and top s, b|β is a
buffer (queue) with body β and top b, and A is a set of
dependency arcs.

The dynamic oracle for the Arc-Eager system
works by calculating the cost of each action in a given
state, and returning the set of actions with a cost of
zero (the set is guaranteed to be non-empty):

oracle(x, T) = {a | cost(a;x, T) = 0}

The cost of an action at a state is the number of gold
arcs which are mutually-reachable from the state, but
will not be reachable after taking the action. The cost
function cost(ACTION;x, T) of taking an action at
state x with respect to a gold set T of dependency
arcs is calculated as follows (for further details, see
(Goldberg and Nivre, 2013)):

• cost(LEFT;x, T): Adding the arc (b, s) and pop-
ping s from the stack means that s will not be
able to acquire any head or dependents in β. The
cost is therefore the number of arcs in T of the
form (k, s) or (s, k) such that k ∈ β. Note that
the cost is 0 for the trivial case where (b, s) ∈ T ,
but also for the case where b is not the gold head
of s but the real head is not in β (due to an erro-
neous previous transition) and there are no gold
dependents of s in β.

• cost(RIGHT;x, T): Adding the arc (s, b) and
pushing b onto the stack means that b will not be
able to acquire any head in σ or β, nor any depen-
dents in σ. The cost is therefore the number of
arcs in T of the form (k, b), such that k ∈ σ ∪ β,
or of the form (b, k) such that k ∈ σ and there
is no arc (u, k) in Ac. Note again that the cost is
0 for the trivial case where (s, b) ∈ T , but also
for the case where s is not the gold head of b but
the real head is not in σ or β (due to an erroneous
previous transition) and there are no gold depen-
dents of b in σ.

• cost(REDUCE;x, T): Popping s from the stack
means that s will not be able to acquire any de-

1This is a slight abuse of notation, since for the SHIFT action
s may not exist, and for the REDUCE action b may not exist.

pendents in B = b|β. The cost is therefore the
number of arcs in T of the form (s, k) such that
k ∈ B. While it may seem that a gold arc of the
form (k, s) should be accounted for as well, note
that a gold arc of that form, if it exists, is already
accounted for by a previous (erroneous) RIGHT

transition when s acquired its head.

• cost(SHIFT;x, T): Pushing b onto the stack
means that b will not be able to acquire any head
or dependents in S = s|σ. The cost is there-
fore the number of arcs in T of the form (k, b) or
(b, k) such that k ∈ S and (for the second case)
there is no arc (u, k) in Ac.

2.5 Training with Exploration

An important assumption underlying the training of
greedy transition-based parsing models is that an ac-
tion taken in a given state is independent of previous
or future actions given the feature representation of
the state. This assumption allows treating the train-
ing data as a bag of independent 〈state, action〉 pairs,
ignoring the fact that the states and actions are part
of a sequence leading to a tree, and not considering
the interactions between different actions. If the data
(both at train and test time) was separable and we
could achieve perfect classification at parsing time,
this assumption would hold. In reality, however, per-
fect classification is not possible, and different actions
do influence each other. In particular, once a mistake
is made, the parser may either reach a state it has not
seen in training, or reach a state it has seen before,
but needs to react differently to (previous erroneous
decisions caused the state to be associated with dif-
ferent optimal actions). The effect of this is error-
propagation: once a parser erred, it is more likely to
err again, as it reaches states it was not trained on, and
don’t know how to react to them.

As demonstrated by (Goldberg and Nivre, 2012),
error propagation can be mitigated to some extent by
training the parser on states resulting from common
parser errors. This is referred to as “training with ex-
ploration” and is enabled by the dynamic oracle. In
(Goldberg and Nivre, 2012), training with exploration
is performed by sometimes following incorrect classi-
fier predictions during training.

Training with exploration still assumes that the
〈x, y〉 pairs are independent from each other given the

84

feature representation, but instead of working with a
fixed corpus D of 〈x, y〉 pairs, the set D is generated
dynamically based on states x the parser is likely to
reach, and the optimal actions Y = oracle(x;T) pro-
posed for these states by the dynamic oracle.

In practice, training with exploration using the dy-
namic oracle yields substantial improvements in pars-
ing accuracies across treebanks.

3 Training of Sparse Probabilistic Classifiers

As discussed in the introduction, our aim is to replace
the averaged-perceptron learner and adapt the train-
ing with exploration method of (Goldberg and Nivre,
2012) to produce classifiers that provide probabilistic
output.

3.1 Probabilistic Objective Function and Loss

Our first step is to replace the perceptron hinge-loss
objective with an objective based on log-likelihood.
As discussed in section 2.5 the training corpus is
viewed as a bag of states and their associated actions,
and our objective would be to maximize the (log) like-
lihood of the training data under a probability model.

Static-oracle objective In static-oracle training
each state x is associated with a single action y.

Denoting the label by y ∈ Y and the states by
x ∈ X , we would like to find a parameter vector w
to maximize the data log-likelihood L of our training
data D under parameter values w:

L(D;w) =
∑

〈x,y〉∈D
logP (y|x;w)

where P (y|x;w) takes the familiar log-linear form:

P (y|x;w) = expw · φ(x, y)∑
y′∈Y expw · φ(x, y′)

in which φ is a feature extraction function and
· is the dot-product operation. This is the well
known maximum-entropy classification formulation,
also known as multinomial logistic regression.

Dynamic-oracle objective When moving to the dy-
namic oracle setting, each state x is now associated
with a set of correct actions Y ⊆ Y , and we would
like at least one of these actions y ∈ Y to get a
high probability under the model. To accommodate

this, we change the numerator to sum over the ele-
ments y ∈ Y , resulting in the following model form
(the same approach was taken by Riezler et al. (2002)
for dealing with latent LFG derivations in LFG parser
training, and by Charniak and Johnson (2005) in the
context of discriminative reranking):

L(D;w) =
∑

〈x,Y 〉∈D
logP (Y |x;w)

P (Y |x;w) =
∑

y∈Y expw · φ(x, y)∑
y′∈Y expw · φ(x, y′)

Note the change from y to Y , and the difference be-
tween the Y in the numerator (denoting the set of cor-
rect outcomes) and Y in the denominator (denoting
the set of all possible outcomes). This subsumes the
definition of P (y|x;w) given above as a special case
by setting Y = {y}. We note that the sum ensures
that at least one y ∈ Y receives a high probability
score, but also allows other elements of Y to receive
low scores.

The (convex) loss for a given 〈x, Y 〉 pair under this
model is then:

loss(Y, x;w) = log
∑

y∈Y
ew·φ(x,y) − log

∑

y∈Y
ew·φ(x,y)

and the gradient of this loss with respect to w is:

∂loss
∂wi

=
∑

y∈Y

ew·φ(x,y)

ZY
φi(x, y)−

∑

y∈Y

ew·φ(x,y)

ZY
φi(x, y)

where:

ZY =
∑

y′∈Y
ew·φ(x,y

′) ZY =
∑

y′∈Y
ew·φ(x,y

′)

3.2 L1 Regularized Training with AdaGrad-RDA
The generation of the training set used in the training-
with-exploration procedure calls for an online opti-
mization algorithm. Given the objective function and
its gradient, we could have used a stochastic gradi-
ent based method to optimize the objective. How-
ever, recent work in NLP (Green et al., 2013; Choi
and McCallum, 2013) demonstrated that the adaptive-
gradient (AdaGrad) optimization framework of Duchi
et al. (2010) converges quicker and produces superior

85

results in settings which have a large number of train-
ing instances, each with a very high-dimensional but
sparse feature representation, as common in NLP and
in dependency-parsing in particular.

Moreover, a variant of the AdaGrad algorithm
called AdaGrad-RDA incorporates an L1 regulariza-
tion, and produces sparse, regularized models. Regu-
larization is important in our setting for two reasons:
first, we would prefer our model to not overfit acci-
dental features of the training data. Second, smaller
models require less memory to store, and are faster
to parse with as more of the parameters can fit in the
CPU cache.2

For these reasons, we chose to fit our model’s pa-
rameters using the regularized-dual-averaging (RDA)
variant of the AdaGrad algorithm. The AdaGrad
framework works by maintaining a per-feature learn-
ing rate which is based on the cumulative gradient val-
ues for this feature. In the RDA variant, the regular-
ization depends on the average vector of all the gradi-
ents seen so far.

Formally, the weight after the J + 1th AdaGrad-
RDA update with a regularization parameter λ is:

wJ+1
i ← α

1√
Gi + ρ

shrink(gi, Jλ)

where wJ+1
i is the value of the ith coordinate of w at

time J + 1, α is the learning rate, and ρ is a ridge pa-
rameter used for numerical stability (we fix ρ = 0.01
in all our experiments). G is the sum of the squared
gradients seen so far, and g is the sum of the gradients
seen so far.

Gi =

J∑

j=0

(∂ji)
2 gi =

J∑

j=0

∂ji

shrink(gi, Jλ) is the regularizer, defined as:

shrink(gi, Jλ) =

gi − Jλ if gi > 0, |gi − Jλ| > 0

gi + Jλ if gi < 0, |gi − Jλ| > 0

0 otherwise

2Note that in contrast to the perceptron loss that considers only
the highest-scoring and the correct class for each instance, the
multilabel log-likelihood loss considers all of the classes. When
the number of classes is large, such as in the case of labeled pars-
ing, this will result in very many non-zero scores, unless strong
regularization is employed.

For efficiency reasons, the implementation of the
AdaGrad-RDA learning algorithm keeps track of the
two vectors G and g, and calculates the needed coor-
dinates of w based on them as needed. When training
concludes, the final w is calculated and returned. We
note that while the resulting w is sparse, the G and g
vectors are quite dense, requiring a lot of memory at
training time.3

For completeness, the pseudo-code for an
AdaGrad-RDA update with our likelihood objective
is given in algorithm 2.

Algorithm 2 Adagrad-RDA with multilabel logistic
loss update.
Globals The global variables G, g and j are initialized to 0.
The vectors g and G track the sum and the squared sum of the
gradients. The scalar j tracks the number of updates.
Parameters α: learning rate, ρ: ridge, λ: L1 penalty.
Arguments w: current weight vector, φ feature extraction
function, x: state, Y : set of good labels (actions) for x.
Others ZY , ZY and shrink(·,·) are as defined above.
Returns: An updated weight vector w.

1: function ADAGRADUPDATE(w, φ, x, Y)

2: ∀y ∈ Y fy =

{
ew·φ(x,y)
ZY

if y ∈ Y
0 otherwise

3: ∀y ∈ Y py =
ew·φ(x,y)
ZY

4: for i s.t. ∃y, φi(x, y) 6= 0 do
5: ∂i =

∑
y∈Y φi(x, y)(fy − py)

6: gi ← gi + ∂i
7: Gi ← Gi + ∂2i
8: wi ← α 1√

Gi+ρ
shrink(gi, jλ)

9: j ← j + 1
return w

3.3 Probabilistic Data Exploration

A key component of dynamic-oracle training is that
the training set D is not fixed in advance but changes
according to the training progression. As we cannot
explore the state set X in its entirety due to its expo-
nential size (and because the optimal actions Y at a
state x depend on the underlying sentence), we would
like to explore regions of the state space that we are
likely to encounter when parsing using the parameter

3For example, in our implementation, training on the English
treebank with 950k tokens and 42 dependency labels requires al-
most 12GB of RAM for AdaGrad-RDA vs. less than 1.8GB for
the averaged-perceptron.

86

vector w, together with their optimal actions Y ac-
cording to the dynamic oracle.

That is, our set D is constructed by sampling val-
ues from X in accordance to our current belief w, and
using the oracle oracle(x;T) to associate Y values
with each x. In the averaged-perceptron setup, this
sampling is achieved by following the highest-scoring
action rather than a correct one according to the or-
acle with some (high) probability p. This approach
does not fit well with our probabilistic framework, for
two reasons. (a) Practically, the efficiency of the Ada-
Grad optimizer results in the model achieving a good
fit of the training data very quickly, and the highest
scoring action is all too often a correct one. While
great from an optimization perspective, this behavior
limits our chances of exploring states resulting from
incorrect decisions. (b) Conceptually, focusing on the
highest scoring action ignores the richer structure that
our probabilistic model offers, namely the probabilis-
tic interpretation of the scores and the relations be-
tween them.

Instead, we propose a natural sampling procedure.
Given a state x we use our model to obtain a multino-
mial distribution P (y|x;w) over possible next actions
y, sample an action from this distribution, and move
to the state resulting from the sampled action.4 This
procedure focuses on states that the model has a high
probability of landing on, while still allowing explo-
ration of less likely states.

The training procedure is given in algorithm 3.
In the first iteration, we focus on states that are on the
path to the gold tree by following actions ŷ in accor-
dance to the oracle set Y (line 6), while on subsequent
iteration we explore states which are off of the gold
path by sampling the next action ŷ in accordance to
the model belief P (y|x;w) (line 8).

4 Evaluation and Results

Data and Experimental Setup We implemented
the above training procedure in an Arc-Eager tran-
sition based parser, and tested it on the 6 languages

4Things are a bit more complicated in practice: as not all ac-
tions are valid at each state due to preconditions in the transition
system, we restrict P (y|x;w) to only the set of valid actions at x,
and renormalize. In case x is a terminal state (and thus having no
valid actions) we move on to the initial state of the next sentence.
The sentences are sampled uniformly without replacement at each
training round.

Algorithm 3 Online training with exploration for
probabilistic greedy transition-based parsers (ith iter-
ation)

1: for sentence S with gold tree T in corpus do
2: x← INITIAL(S)
3: while not TERMINAL(x) do
4: Y ← oracle(x, T)
5: P (y|x;w)← expw·φ(x,y)∑

y′∈Y expw·φ(x,y′) ∀y ∈ Y
6: if i ≤ k then
7: ŷ ← argmaxy∈Y P (y|x;w)
8: else
9: Sample ŷ according to P (y|x;w)

10: w ← ADAGRADUPDATE(w, φ, x, Y)
11: x← ŷ(x)

return w

comprising the freely available Google Universal De-
pendency Treebank (McDonald et al., 2013). In all
cases, we trained on the training set and evaluated the
models on the dev-set, using gold POS-tags in both
test and train time. Non-projective sentences were re-
moved from the training set. In all scenarios, we used
the feature set of (Zhang and Nivre, 2011). We com-
pared different training scenarios: training percep-
tron based models (PERCEP) and probabilistic mod-
els (ME) with static (ST) and dynamic (DYN) oracles.
For the dynamic oracles, we varied the parameter k
(the number of initial iterations without error explo-
ration). For the probabilistic dynamic-oracle mod-
els further compare the sampling-based exploration
described in Algorithm 3 with the error-based ex-
ploration used for training the perceptron models in
Goldberg and Nivre (2012, 2013). All models were
trained for 15 iterations. The PERCEP+DYN models
are the same as the models in (Goldberg and Nivre,
2013). For the ME models, we fixed the values of
ρ = 0.01, α = 1 and λ = 1/20|D| where we take |D|
to be the number of tokens in the training set.5

Parsing Accuracies are listed in Table 1. Two
trends are emergent: Dynamic Oracles with Error Ex-

5We set the ρ and α values based on initial experiments on an
unrelated dataset. The formula for the L1 penalty λ is based on an
advice from Alexandre Passos (personal communication) which
proved to be very effective. We note that we could have proba-
bly gotten a somewhat higher scores in all the settings by further
optimizing the ρ, α and λ parameters, as well as the number of
training iterations, on held-out data.

87

SETUP DE EN ES FR KO SV

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS
PERCEP+ST 84.95 / 80.32 91.06 / 89.48 85.93 / 82.82 85.75 / 82.44 79.96 / 71.90 83.21 / 79.40
ME+ST 84.71 / 80.06 90.83 / 89.32 85.72 / 82.59 85.42 / 82.19 80.47 / 72.15 83.12 / 79.36
PERCEP+DYN(K=1) 86.30 / 81.67 92.22 / 90.72 86.68 / 83.64 86.95 / 83.93 80.59 / 72.66 84.16 / 80.48
PERCEP+DYN(K=0) 86.50 / 81.88 92.28 / 90.82 86.18 / 83.19 86.87 / 83.70 80.59 / 73.06 84.79 / 81.00
ME+DYN(K=1,SAMPLE) 86.34 / 82.04 92.16 / 90.73 86.38 / 83.57 86.59 / 83.46 80.92 / 73.06 84.56 / 80.97
ME+DYN(K=0,SAMPLE) 86.51 / 82.19 92.30 / 90.83 86.66 /83.77 86.69 / 83.61 81.17 / 73.19 84.17 / 80.54

Table 1: Labeled (LAS) and Unlabeled (UAS) parsing accuracies of the different models on various datasets. All scores
are excluding punctuations an using gold POS-tags. Dynamic-oracle training with error exploration clearly outperforms
static-oracle training. The perceptron and ME results are equivalent.

SETUP DE EN ES FR KO SV

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS
ME+DYN(K=1,ERR) 85.26 / 80.94 91.62 / 90.10 86.08 / 82.92 86.13 / 83.06 80.42 / 71.97 83.73 / 80.03
ME+DYN(K=0,ERR) 85.78 / 81.63 91.77 / 90.30 86.37 / 83.33 86.53 / 83.23 80.94 / 72.57 83.73 / 80.05
ME+DYN(K=1,SAMPLE) 86.34 / 82.04 92.16 / 90.73 86.38 / 83.57 86.59 / 83.46 80.92 / 73.06 84.56 / 80.97
ME+DYN(K=0,SAMPLE) 86.51 / 82.19 92.30 / 90.83 86.66 /83.77 86.69 / 83.61 81.17 / 73.19 84.17 / 80.54

Table 2: Comparing the sampling-based exploration in Algorithm 3 with the error-based exploration of Goldberg and Nivre
(2012, 2013). Labeled (LAS) and Unlabeled (UAS) parsing accuracies of the different models on various datasets. All
scores are excluding punctuations an using gold POS-tags. The sampling based algorithm outperforms the error-based one.

ploration in training (DYN) models clearly outperform
the models trained with the traditional static oracles
(ST), and the probabilistic models (ME) perform on
par with their averaged-perceptron (PERCEP) counter-
parts.

Sampling vs. Error-Driven Exploration Table 2
verifies that the sampling-based exploration proposed
in this work is indeed superior to the error-based
exploration which was used in Goldberg and Nivre
(2012, 2013), when training multinomial logistic-
regression models with the AdaGrad-RDA algorithm.

Model Sizes Table 3 lists the number of parameters
in the different models. RDA regularization is effec-
tive: the regularization ME models are much smaller.
In the accurate dynamic oracle setting, the regularized
ME models are 3-4 times smaller than their averaged-
perceptron counterparts, while achieving roughly the
same accuracies.
Calibration To asses the quality of the probabilistic
output of the ME+DYN models, we binned the prob-
ability estimates of the highest-scored actions into 10
equally-sized bins, and for each bin calculated the per-
centage of time an action falling in the bin was correct.
Table 4 lists the results, together with the bin sizes.

SETUP DE EN ES FR KO SV

PERCEP+ST 438k 5.4M 1.2M 849k 1.9M 912k
ME+ST 150k 1.9M 448k 294k 725k 304k
PERCEP+DYN 525k 8.5M 1.7M 1.1M 2.9M 1.2M
ME+DYN 160k 2.4M 516k 336k 755k 357k

Table 3: Model sizes (number of non-0 parameters).

First, it is clear that the vast majority of parser ac-
tions fall in the 0.9-1.0 bin, indicating that the parser
is confident, and indeed the parser is mostly correct
in these cases. Second, the models seem to be well
calibrated from the 0.5-0.6 bin and above. The lower
bins are under-estimating the confidence, but they also
contain very few items. Overall, the probability out-
put of the ME+DYN model is calibrated and trust-
worthy.6

5 Conclusions

We proposed an adaptation of the dynamic-oracle
training with exploration framework of Goldberg and
Nivre (2012; 2013) to train classifiers with probabilis-
tic output, and demonstrated that the method works:

6Note, however, that with 69k predictions in bin 0.9-1.0 for
English, an accuracy of 98% means that almost 1400 predictions
with a probability score above 0.9 are, in fact, wrong.

88

BIN DE EN ES FR KO SV

0.1 (7) 71% (1) 0% (3) 66% (2) 1% (0) 0% (2) 50%
0.2 (51) 51% (38) 55% (26) 57% (17) 64% (2) 100% (21) 57%
0.3 (121) 54% (139) 54% (83) 65% (58) 72% (29) 55% (100) 61%
0.4 (292) 54% (323) 62% (206) 65% (146) 57% (178) 63% (193) 63%
0.5 (666) 66% (1.2k) 64% (642) 68% (453) 66% (464) 55% (578) 62%
0.6 (787) 66% (1.4k) 69% (694) 73% (469) 70% (616) 60% (636) 70%
0.7 (840) 73% (1.7k) 74% (853) 77% (546) 73% (739) 65% (747) 75%
0.8 (1.5k) 78% (2.9k) 82% (1.2k) 80% (810) 78% (1.1k) 72% (1.2k) 80%
0.9 (18.5k) 97% (69k) 98% (16k) 97% (13k) 97% (9k) 96% (14k) 96%
1.0 (800) 100% (1.7k) 100% (370) 100% (366) 100% (588) 100% (493) 100%

Table 4: Calibration of the ME+DYN(K=0,SAMPLE) scores. (num) denotes the number of items in the bin, and num% the
percent of correct items in the bin. The numbers for ME+DYN(K=1,SAMPLE) are very similar.

the trained classifiers produce well calibrated proba-
bility estimates, provide accuracies on par with the
averaged-perceptron trained models, and, thanks to
regularization, are 3-4 times smaller. However, the
training procedure is slower than for the averaged-
perceptron models, requires considerably more mem-
ory, and has more hyperparameters. If probabilistic
output or sparse models are required, this method is
recommended. If one is interested only in 1-best pars-
ing accuracies and can tolerate the larger model sizes,
training with the averaged-perceptron may be prefer-
able.

References

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine
n-best parsing and MaxEnt discriminative reranking. In
Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 173–
180.

Jinho D. Choi and Andrew McCallum. 2013. Transition-
based dependency parsing with selectional branching.
In Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 1052–1062, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In Proceedings
of the 24th International Conference on Computational
Linguistics (COLING).

Yoav Goldberg and Joakim Nivre. 2013. Training deter-
ministic parsers with non-deterministic oracles. Trans-
actions of the association for Computational Linguistics,
1.

Spence Green, Sida Wang, Daniel Cer, and Christopher D.
Manning. 2013. Fast and adaptive online training of
feature-rich translation models. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 311–
321, Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009.
Dependency Parsing. Morgan and Claypool.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu Castelló,
and Jungmee Lee. 2013. Universal dependency anno-
tation for multilingual parsing. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 92–
97, Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald,
Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The CoNLL 2007 shared task on dependency parsing.
In Proceedings of the CoNLL Shared Task of EMNLP-
CoNLL 2007, pages 915–932.

Joakim Nivre. 2003. An efficient algorithm for projective
dependency parsing. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT), pages
149–160.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguistics,
34:513–553.

89

Stephan Riezler, Margaret H. King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell III, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
Lexical-Functional Grammar and discriminative estima-
tion techniques. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 271–278.

Kenji Sagae and Alon Lavie. 2006. A best-first proba-
bilistic shift-reduce parser. In Proceedings of the COL-
ING/ACL 2006 Main Conference Poster Sessions, pages
691–698.

Lin Xiao. 2010. Dual averaging methods for regularized
stochastic learning and online optimization. Journal of
Machine Learning Research, 9:2543–2596.

Yue Zhang and Joakim Nivre. 2011. Transition-based de-
pendency parsing with rich non-local features. In Pro-
ceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 188–193.

Kai Zhao, James Cross, and Liang Huang. 2013. Dynamic
programming for optimal best-first shift-reduce parsing.
In EMNLP.

90

