
Proceedings of the Fourth Workshop on Teaching Natural Language Processing, pages 18–26,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Introducing Computational Concepts in a Linguistics Olympiad

Patrick Littell
Department of Linguistics

University of British Columbia
Vancouver, BC V6T1Z4, Canada

littell@interchange.ubc.ca

Lori Levin
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

lsl@cs.cmu.edu

Jason Eisner
Computer Science Department

Johns Hopkins University
Baltimore, MD 21218, USA
jason@cs.jhu.edu

Dragomir R. Radev
Department of EECS
School of Information

and Department of Linguistics
University of Michigan
radev@umich.edu

Abstract

Linguistics olympiads, now offered
in more than 20 countries, provide
secondary-school students a compelling
introduction to an unfamiliar field. The
North American Computational Lin-
guistics Olympiad (NACLO) includes
computational puzzles in addition to
purely linguistic ones. This paper ex-
plores the computational subject matter
we seek to convey via NACLO, as well
as some of the challenges that arise
when adapting problems in computational
linguistics to an audience that may have
no background in computer science,
linguistics, or advanced mathematics.
We present a small library of reusable
design patterns that have proven useful
when composing puzzles appropriate for
secondary-school students.

1 What is a Linguistics Olympiad?

A linguistics olympiad (LO) (Payne and Derzhan-
ski, 2010) is a puzzle contest for secondary-school
students in which contestants compete to solve
self-contained linguistics problem sets. LOs have
their origin in the Moscow Traditional Olympiad
in Linguistics, established in 1965, and have since
spread around the world; an international contest
(http://www.ioling.org) has been held
yearly since 2003.

In an LO, every problem set is self-contained,
so no prior experience in linguistics is necessary
to compete. In fact, LO contests are fun and re-
warding for exactly this reason: by the end of the

contest, contestants are managing to read hiero-
glyphics, conjugate verbs in Swahili, and perform
other amazing feats. Furthermore, they have ac-
complished this solely through their own analyti-
cal abilities and linguistic intuition.

Based on our experience going into high
schools and presenting our material, this “linguis-
tic” way of thinking about languages almost al-
ways comes as a novel surprise to students. They
largely think about languages as collections of
known facts that you learn in classes and from
books, not something that you can dive into and
figure out for yourself. This is a hands-on antidote
to the common public misconception that linguists
are fundamentally polyglots, rather than language
scientists, and students come out of the experience
having realized that linguistics is a very different
field (and hopefully a more compelling one) than
they had assumed it to be.

2 Computational Linguistics at the LO

Our goal, since starting the North American
Computational Linguistics Olympiad (NACLO) in
2007 (Radev et al., 2008), has been to explore how
this LO experience can be used to introduce stu-
dents to computational linguistics. Topics in com-
putational linguistics have been featured before in
LOs, occasionally in the Moscow LO and with
some regularity in the Bulgarian LO.

Our deliberations began with some trou-
bling statistics regarding enrollments in computer
science programs (Zweben, 2013). Between
2003 and 2007 enrollments in computer science
dropped dramatically. This was attributed in part
to the dip in the IT sector, but it also stemmed in

18



part from a perception problem in which teenagers
view computer science careers as mundane and
boring: “I don’t want to be Dilbert,1 sitting in a
cubicle programming payroll software my whole
life.” This is an unrealistically narrow percep-
tion of the kinds of problems computer scientists
tackle, and NACLO began in part as a way to pub-
licize to teenagers that many interesting problems
can be approached using computational methods.

Although enrollments are not yet back to the
2003 levels, there has been a sharp increase since
2007 (Zweben, 2013). The resurgence can be at-
tributed in part to the strength of the IT sector, but
also to the realization that computer science is rel-
evant to almost every area of science and technol-
ogy (Thibodeau, 2013). NACLO aims to be part
of this trend by showing students that computer
science is used in studying fascinating problems
related to human language.

Even “traditional” LO puzzles are inherently
computational in that they require pattern recog-
nition, abstraction, generalization, and establish-
ing and pruning a solution space. However, we
also want to teach computational linguistics more
explicitly. NACLO puzzles have featured a wide
variety of topics in computational linguistics and
computer science; they may focus on the applica-
tion itself, or on concepts, tools, and algorithms
that underlie the applications. Broadly, computa-
tional LO topics fall into three types, summarized
below.

2.1 Technological applications
NACLO has included puzzles on technologies that
most people are familiar with, including spell
checking, information retrieval, machine transla-
tion, document summarization, and dialogue sys-
tems. In a typical applications puzzle, the contes-
tants would discover how the application works,
how it handles difficult cases, or what its limita-
tions are. In “Summer Eyes” (Radev and Hester-
berg, 2009), the contestant discovers the features
that are used for selecting sentences in a sum-
marization program, including the position of a
sentence in the article, the number of words the
sentence shares with the title, etc. In “Spring-
ing Up Baby” (Srivastava and Bender, 2008) and
“Running on MT” (Somers, 2011), contestants ex-
plore word sense disambiguation in the context of

1An engineer in the eponymous American comic strip,
Dilbert has a famously dysfunctional workplace and unre-
warding job.

machine translation, while “Tiger Tale” (Radev,
2011) highlights some realistic sources of knowl-
edge for machine translation such as cognates
and cross-language syntactic similarities. “Thorny
Stems” (Breck, 2008) and “A fox among the h”
(Littell, 2012b) introduce stemming.

2.2 Formal grammars and algorithms
Some puzzles introduce the formal tools of com-
putational linguistics and linguistic concepts that
are important in computational linguistics, of-
ten in a whimsical way. For example, “Sk8
Parsr” (Littell, 2009) introduces shift-reduce pars-
ing by means of a hypothetical skateboarding
video game. “Aw-TOM-uh-tuh” (Littell, 2008)
introduces a finite-state machine that determines
which strings form legal words in the Rotokas
language. “Orwellspeak” (Eisner, 2009) asks
solvers to modify a simple context-free grammar,
and then to discover that a 4-gram model can-
not model this language without precision or re-
call errors. “Twodee” (Eisner, 2012) invents a
two-dimensional writing system, shown below, as
a vehicle for helping students discover parsing
ambiguity—and production ambiguity—without
the full formal apparatus of grammars, nontermi-
nals, or tree notation.

“The Little Engine That Could. . . Read” (Littell
and Pustejovsky, 2012) explores quantifier mono-
tonicity, while “Grice’s Grifter Gadgets” (Boyd-
Graber, 2013) covers Grice’s maxims as part of the
specification of a computerized game assistant.

2.3 Computational concepts
NACLO puzzles have also introduced computa-
tional concepts that go beyond computational lin-
guistics. “Texting, Texting, One Two Three” (Lit-
tell, 2010b) and “The Heads and Tails of Huff-
man” (DeNero, 2013) introduce data compression.
“One, Two, Tree” (Smith et al., 2012) introduces
the Catalan numbers and other recurrences via bi-
nary bracketing of ambiguous compound nouns.

19



“Nok-nok” (Fink, 2009) introduces Levenshtein
distance by describing a hypothetical typing tutor
for very bad spellers.

3 The Challenge of Writing
Computational Problems

To achieve our goals, it becomes necessary to
write computational linguistics puzzles in such a
way that they are self-contained, requiring no prior
experience in linguistics, computer science, or ad-
vanced math. This has proven very difficult, but
not impossible, and in the past seven years we have
managed to learn a lot about how to (and how not
to) write them.

Perhaps the hardest part of writing any LO puz-
zle is that authors have to remove themselves from
their knowledge and experience: to forget techni-
cal definitions of “phrase” or “noun” or “string” or
“function,” and to forget the facts and insights and
history that formed our modern understanding of
these. This is doubly hard when it comes to puz-
zles involving computational methods. The ability
to write an algorithm that a computer could actu-
ally interpret is a specialized skill that we learned
through education, and it is very, very hard to back
up and imagine what it would be like to not be
able to think like this. (It is almost like trying to
remember what it was like to not be able to read—
not simply not knowing a particular alphabet or
language, but not even understanding how reading
would work.)

Here is an illustration of an interesting but
nonetheless inappropriate LO puzzle:

Here are fourteen English compound
words:

birdhouse housework
blackbird tablespoon
blackboard teacup
boardroom teaspoon
boathouse workhouse
cupboard workroom
houseboat worktable

Even if you didn’t know any English, you
could probably determine by looking at
this list which English words were used
to make up the compounds: “black”,
“bird”, “board”, etc...

How would you do this if you were a
computer?

This task, although potentially appropriate for a
programming competition, is inappropriate for an
LO: the intended task requires some prior knowl-
edge about what computers can and cannot do.
Note that nowhere in the puzzle itself are the prop-
erties of this imaginary computer specified. It is
assumed that the solver knows roughly the state of
modern computing machinery and what kinds of
instructions it can execute.

Imagine for a moment what a right answer to
this puzzle would look like, and then picture what
a wrong answer might look like. Your right answer
was probably an algorithm that could run on an ab-
stract computer with capabilities very much like
real computers. The wrong answer probably made
incorrect assumptions about what sorts of opera-
tions computers are capable of, or treated enor-
mously complex operations as if they were primi-
tive.2

The problem with the above puzzle is that it is
very open-ended, and in the absence of a large
body of shared knowledge between the author and
the solver, the solver cannot know what it is the
author wants or when they have solved it to the
author’s satisfaction.

In order to avoid this, it is best to set up the puz-
zle so that the “search space” for possible answers
is relatively constrained, and the “win” conditions
are clear. Ideally, if a contestant has solved a puz-
zle, they should know they have solved it, and thus
be able to move on confidently to the next puz-
zle.3 In this respect, LO puzzles are akin to cross-
word puzzles, problems from other Olympiads, or
online puzzle games. This feeling of accomplish-
ment is key to the kind of rewarding learning ex-
perience that have made LOs so successful.

4 Design Patterns for CL Puzzles

Over the years, we have found several reliable
strategies for turning ideas and topics from com-
putational linguistics into solvable, rewarding puz-

2Keep in mind that today’s contestants were born in the
late 1990s. They are unlikely to even remember a world with-
out ubiquitous Internet and powerful natural language search.
Their conception of “what computers basically do” is not nec-
essarily going to be the same as those of us who encountered
computers when they were still recognizable as a kind of so-
phisticated calculator.

3This is not to say, however, that only those who solve a
puzzle in its entirety should feel accomplished or rewarded.
The best puzzles often contain layers of mysteries: it may be
that only a few will solve every mystery in the puzzle, but
most contestants come away with the satisfaction of having
discovered something.

20



zles.
Not every computational puzzle makes use of

these—some are entirely unique—but many do.
In addition, these strategies are not mutually ex-
clusive; many computational puzzles utilize sev-
eral of these at once. For example, a “Broken Ma-
chine” puzzle may then present the solver with a
“Troublemaker” task, or an “Assembly Required”
machine may, upon assembly, turn out to be a
“Broken” one.

4.1 Assembly Required

The solver is presented with a task to complete,
and also a partially specified algorithm for doing
so. The partial specification illustrates the de-
sired formal notation and the model of computa-
tion. But it may be missing elements, or the or-
dering or relationship between the elements is un-
clear, or some other aspect of the system remains
unfinished. The solver is asked to complete the
system so that it performs the appropriate task or
produces the appropriate outputs.

For example, NACLO 2008 included a puzzle
on stemming, “Thorny Stems” (Breck, 2008), in
which contestants help develop an algorithm to
isolate the stems of various words. In this puzzle,
the solver is not required to invent an algorithm
ex nihilo; this would merely have rewarded those
who already understand algorithms, not introduce
algorithmic thinking to neophytes. Instead, the
overall structure of the intended algorithm (an or-
dered sequence of if-thens) is made explicit, and
the solver’s task is to fill in the details:

Rule 1: If a word ends in , then
replace with to form the
stem.

Rule 2: If a word ends in , then
replace with to form the
stem.

In another puzzle from the same contest, “Aw-
TOM-uh-tuh” (Littell, 2008), the solver must
complete an unfinished finite-state automaton so
that it performs a language recognition task. The
solver is given a brief introduction to FSAs and a
simple sample FSA, and then given an incomplete
FSA whose labels lack edges. The solver’s task is
to place the labels on the correct edges so that the
FSA accepts certain inputs and rejects others.

Other examples of the “Assembly Required”
pattern can be found in the puzzles “Sk8 Parsr”
(Littell, 2009), “The Heads and Tails of Huff-
man” (DeNero, 2013), and “BrokEnglish!” (Lit-
tell, 2011).

4.2 Black Box

The solver is presented with the inputs to a system
and the outputs, and must work out how the system
generated the outputs. Unlike in the “Assembly
Required” pattern, little or no information about
the algorithm is provided to the solver; the solver’s
fundamental task is to characterize this unknown
algorithm as thoroughly as possible.

For example, NACLO 2010 featured a puzzle
on Huffman text compression, “Texting, Texting,
One Two Three” (Littell, 2010b), in which an un-
specified algorithm converts strings of letters to
strings of numbers:

Testing testing = 33222143224142341-
1222143224142341331

Does anyone copy = 33233322143131-
42343324221124232342343331

Working out the basic number-letter correspon-
dences is relatively straightforward, but the real
puzzle is working out the rationale behind these
correspondences. Some of the answers require let-
ters (like “r” and “x”) that do not occur anywhere
in the data, but can be deduced once the system as
a whole is fully understood.

NACLO 2009 featured a puzzle on Levenshtein
distance, “Nok-nok!” (Fink, 2009), that also
used this pattern. In it, a spell-checker is rat-
ing how well (or poorly) a user has spelled a word.

21



User Input Correct word Output
owll owl “almost right”
ples please “quite close”
reqird required “quite close”
plez please “a bit confusing”
mispeln misspelling “very confusing”

The solver’s task is to work out the algorithm suf-
ficiently to predict how the system would respond
to novel inputs.

Other examples of the “Black Box” pattern can
be found in “The Deschamps Codice” (Piperski,
2012) and “The Little Engine that Could. . . Read”
(Littell and Pustejovsky, 2012).

Depending on the intended algorithm, the
“Black Box” pattern may or may not be appro-
priate. This pattern works best when the nature
of the transformation between input and output is
relatively straightforward and the purpose of the
transformation is relatively clear. In the Huff-
man coding puzzle, for example, the nature of
the transformation is entirely obvious (replace let-
ters with number sequences) and thus the solution
space of the puzzle is relatively constrained (figure
out which letters correspond to which number se-
quences and then try to figure out why). In the
spell-checking puzzle, the purpose of the trans-
formation is easily understood, giving the solver
a head start on figuring out which features of the
input the algorithm might be considering.

When the nature of the transformation is less
obvious—for example, the generation of numbers
of unclear significance, rating some unknown as-
pect of a text passage—“Black Box” is not as ap-
propriate as the other patterns. The potential prob-
lem is that not only must the solver come up with
an algorithm on their own, they must come up with
the same algorithm the author did. Given a com-
plicated algorithm, even small implementation de-
tails may lead to very different outputs, so a solver
can even have found a basically correct solution
but nevertheless not managed to produce the in-
tended outputs.

In such cases, the “Assembly Required” or
“Broken Machine” patterns are potentially more
appropriate.

4.3 Broken Machine

The solver is presented with a system that purports
to perform a particular task, but actually fails on
particular inputs. The solver is tasked with fig-

uring out what went wrong and, potentially, fixing
the system so that it works. In some cases, the sys-
tem simply has an error in it; in others, the system
is correct but cannot handle certain difficult cases.

NACLO has featured a wide variety of broken
machines, often with humorous outputs. “Help my
Camera!” (Bender, 2009) features a dialogue sys-
tem that could not correctly resolve pronoun refer-
ences:

Human: “There’s this restaurant on
Bancroft that’s supposed to be really
good that I heard about from my mother.
Can you help me find it?”
Computer: “Where did you last see your
mother?”

“BrokEnglish!” (Littell, 2011) features a run-
away script that replaced certain ISO 639-1 codes
with language names:

Hebrewy, ChamorRomanianrICHebre-
wcHebrewnlandic! whEnglish you
get a FrEnglishcHebrewe momEnglisht,
cHebrewck out thICHebrewcHebrewn-
landic niCHebrewcHebrewn little pRo-
maniangram i wRomaniante.

Solvers are then tasked with determining why
this script produced such a bizarre output, and ad-
ditionally tasked with determining in what order
the replacements had to have occurred in order to
get this exact output.

“Orwellspeak” (Eisner, 2009) involves a
context-free grammar that produces sentences
that were grammatically correct but counter to the
ideals of a fictional totalitarian Party. The solver
must rewrite the grammar so that only “correct”
thoughts can be uttered. In the second part of the
puzzle, the solver must show that Markov models
would be inherently broken.

Other examples of “Broken Machines” are “The
Lost Tram” (Iomdin, 2007), “Sk8 Parsr” (Lit-
tell, 2009), “A fox among the h” (Littell, 2012b),
“The Little Engine that Could. . . Read” (Littell and
Pustejovsky, 2012), and “Grice’s Grifter Gadgets”
(Boyd-Graber, 2013).

4.4 Troublemaker
The solver is presented with a system and some
sample inputs and outputs, and must discover an
input that causes the system to fail, or produce out-
puts that are strange, suboptimal, or have some un-
usual property.

22



Few puzzles make use of only the “Trouble-
maker” pattern. Many are basically “Assembly
Required” or “Broken Machine” puzzles that use a
“Troublemaker” task to get the contestant thinking
about the ways in which the system is limited or
imperfect. They are also often creative—the con-
testant usually invents their own inputs—and thus
can serve as a refreshing change of pace.4

NACLO 2009 featured a “Broken Machine”
puzzle about shift-reduce parsing (“Sk8 Parsr”)
(Littell, 2009), couched in terms of a fictional
skateboarding videogame. The solver is given an
algorithm by which button presses are transformed
into skateboard trick “combos” like those shown
below, but many well-formed “combos” cannot
correctly be parsed due to a shift-reduce conflict.

The solver is given an example of one such class
of inputs, and then asked to discover other classes
of inputs that likewise fail.

“Troublemaker” puzzles are not always
couched in terms of bugs. “This problem is pretty
// easy” (Radev, 2007a) asks solvers to construct
eye-catching garden path sentences. In the
Huffman text compression puzzle detailed above
(“Texting, Texting, One Two Three”) (Littell,
2010b), a “Troublemaker” task is introduced to
get contestants thinking about the limits of com-
pression. Although the compression algorithm
is not “broken” in any way, any compression
algorithm will “fail” on some possible input and
return an output longer than the input, and the
solver is tasked to discover such an input.

“Troublemaker” tasks can also be found in
“Grammar Rules” (Schalley and Littell, 2013) and
“Yesbot” (Mitkov and Littell, 2013).

4If the “Troublemaker” task asks for an input with a par-
ticular formal property (i.e., a sentence generated or not gen-
erated from a particular grammar), automated grading scripts
can determine the correctness of the answer without human
intervention. This means that contestants can get a chance
to enter “creative” answers even in large contests (like the
NACLO Open Round) that utilize automatic grading.

4.5 Jabberwock

Not all puzzle types revolve around abstract ma-
chines. Another recurring puzzle type, the “Jab-
berwock”, involves asking the solver to puzzle out
the syntactic or semantic properties of unknown
words. Often these words are nonsense words, but
this puzzle type can also work on natural language
data. To perform this task, solvers often have to
use the same methods that a computer would.

“We are all molistic in a way” (Radev, 2007b)
asks solvers to infer the polarity of various non-
sense adjectives based on a series of sentences.5

The teacher is danty and cloovy.
Mary is blitty but cloovy.
Strungy and struffy, Diane was a plea-
sure to watch.
Even though weasy, John is strungy.
Carla is blitty but struffy.

The solver must work out from sentences such
as these whether words like “danty” and “weasy”
have positive or negative associations. In doing so,
the solver has essentially constructed and solved a
semi-supervised learning problem.

In “Gelda’s House of Gelbelgarg” (Littell,
2010a), solvers are presented with a page of fab-
ricated restaurant reviews for an entirely fictional
cuisine:

“A hidden gem in Lower Uptown! Get
the färsel-försel with gorse-weebel and
you’ll have a happy stomach for a week.
And top it off with a flebba of sweet-
bolger while you’re at it!”

5The list given here includes a subset of the examples used
in the real puzzle in 2007.

23



“I found the food confusing and disori-
enting. Where is this from? I randomly
ordered the färsel-försel and had to send
them back!”

Using various grammatical cues (article and pro-
noun choice, “less” vs. “fewer”, etc.), solvers have
to sort the items into things most likely to be dis-
crete, countable objects, things most likely to be
liquids or masses, and things most likely to be con-
tainers or measures.

This type of puzzle often violates the common
LO restriction on using nonsense words and made-
up languages, but it is not always possible to base
this sort of puzzle on a completely unfamiliar lan-
guage. Many “Jabberwock” puzzles involve infer-
ring syntactic or semantic information about un-
known words in an otherwise known language.
The two puzzles above therefore require contes-
tants to consult their own intuitions about English.
These puzzles would have been entirely different
(and prohibitively difficult) if the language had
been completely unfamiliar.

Other Jabberwock puzzles include “Tiger Tale”
(Radev, 2011) and “Cat and Mouse Story” (Littell,
2012a).

4.6 Combinatorial Problems

Some puzzles effectively force the solver to design
and run an algorithm, to get an answer that would
be too difficult to compute by brute force. Such
puzzles involve computational thinking. But since
the solver only has to give the output of the algo-
rithm, there is no need to agree on a type of com-
puting device or a notation for writing algorithms
down.

Such puzzles include combinatorial tasks that
involve the counting, maximization, or existence
of linguistic objects. They require mathematical
and algorithmic skills (just as in math or program-
ming competitions), and demonstrate how these
skills apply to linguistics or NLP.

Portions of “One, Two, Tree” (Smith et
al., 2012) and “Twodee” (Eisner, 2012) require
solvers to count all ways to parse a sentence, or
to count all sentences of a certain type. Because
the counts are large, the solver must find the pat-
tern, which involves writing down a closed-form
formula such as 2n or a more complex dynamic
programming recurrence.

5 Conclusions

Researchers and teachers from the ACL commu-
nity are invited to contact the NACLO organizing
committee at naclo14org@umich.edu6 with
their ideas for new puzzles or new types of puz-
zles. All of the past puzzles and solutions can
be browsed at http://www.naclo.cs.cmu.
edu/practice.html. In general, puzzles in
Round 1 each year should be easier and automat-
ically gradable. Puzzles in Round 2 permit more
involved questions and answers; this is a smaller
contest in which the top Round 1 scorers (usu-
ally, the top 10 percent) can qualify for the Inter-
national Linguistic Olympiad.

Thus far, NACLO’s computational puzzles have
reached at least 6,000 students at more than 150
testing sites7 in the U.S. and Canada, as well as at
least 10,000 students in the three other English-
language countries that share LO puzzles with
NACLO.

We observe that most computational puzzles do
not need obscure languages, staying on the contes-
tant’s home turf of English and technology. This
does not mean, however, that the computational
puzzles are purely formal and lack linguistic con-
tent. Some of them in fact probe subtle facts about
English (the introspective method in linguistics),
and some of them cover areas of linguistics that
are underserved by traditional LO puzzles. Tra-
ditional LO puzzles instead ask the solver to sort
out vocabulary and basic morphophonological or
orthographic patterns in a mystery language (the
fieldwork method in linguistics). Students who en-
joy “top-down” thinking or who are deeply inter-
ested in “how to do things with words” may prefer
the former kind of puzzle.

Competitions are popular in many North Amer-
ican high schools, perhaps in part as a way to im-
press college admissions officers. We have ex-
ploited this to give students a taste of our inter-
disciplinary field before they choose a college ma-
jor. Some students may be specifically attracted to
NACLO by the word “computational” or the word
“linguistics,” or may be intrigued by their juxta-
position. Many NACLO participants reveal that
they had started to study linguistics on their own
before encountering NACLO, and have welcomed

6Or nacloXXorg@umich.edu, where XX is the last
two digits of the calendar year of the upcoming February.

7NACLO tests have been given at more than 100 high
schools and more than 50 university sites; the latter are open
to students from all local high schools.

24



NACLO as an outlet for their enthusiasm and a
place where they can interact with other students
who have the same interests.

NACLO’s past puzzles remain freely available
on the web for anyone who is interested. Two
volumes of NACLO-style puzzles (most of them
from real competitions), edited by program chair
Dragomir Radev, have recently been published by
Springer (Radev, 2013a; Radev, 2013b). Adult
hobbyists and home-schooled students may dis-
cover computational linguistics through encoun-
tering these puzzles. Avid LO contestants use
them to prepare for upcoming contests. Finally,
high school and college teachers can use them
as the basis of whole-class or small-group class-
room activities that expose students to computa-
tional thinking.

Acknowledgments

We would like to thank the National Science Foun-
dation for supporting NACLO through the fol-
lowing grants: IIS0633871, BCS1137828, and
IIS0838848. We also express our gratitude to NSF
program managers Tatiana Korelsky, Terry Lan-
gendoen, and Joan Maling for their effort in ini-
tiating and maintaining NACLO. The Linguistic
Society of America and the North American Chap-
ter of the Association for Computational Linguis-
tics provide ongoing support. Other sponsors, vol-
unteers, and problem writers are too numerous to
name. They are listed on the contest booklets each
year, which can be found on the NACLO web site:
http://www.naclo.cs.cmu.edu.

References
Emily Bender. 2009. Help my camera! In

North American Computational Linguistics
Olympiad 2009. http://www.naclo.cs.cmu.edu/
assets/problems/naclo09F.pdf.

Jordan Boyd-Graber. 2013. Grice’s grifter gad-
gets. In North American Computational Linguis-
tics Olympiad 2013. http://www.naclo.cs.cmu.edu/
2013/NACLO2013ROUND2.pdf.

Eric Breck. 2008. Thorny stems. In North Amer-
ican Computational Linguistics Olympiad 2008.
http://www.naclo.cs.cmu.edu/assets/problems/
NACLO08h.pdf.

John DeNero. 2013. The heads and tails of Huff-
man. In North American Computational Linguis-
tics Olympiad 2013. http://www.naclo.cs.cmu.edu/
2013/NACLO2013ROUND1.pdf.

Jason Eisner. 2009. Orwellspeak. In North Amer-
ican Computational Linguistics Olympiad 2009.
http://www.naclo.cs.cmu.edu/assets/problems/
naclo09M.pdf.

Jason Eisner. 2012. Twodee. In North
American Computational Linguistics Olympiad
2013. http://www.naclo.cs.cmu.edu/problems2012/
NACLO2012ROUND2.pdf.

Eugene Fink. 2009. Nok-nok! In North Ameri-
can Computational Linguistics Olympiad 2009.
http://www.naclo.cs.cmu.edu/assets/problems/
naclo09B.pdf.

Boris Iomdin. 2007. The lost tram. In North Amer-
ican Computational Linguistics Olympiad 2007.
http://www.naclo.cs.cmu.edu/assets/problems/
naclo07 f.pdf.

Patrick Littell and James Pustejovsky. 2012.
The little engine that could. . . read. In North
American Computational Linguistics Olympiad
2012. http://www.naclo.cs.cmu.edu/problems2012/
NACLO2012ROUND2.pdf.

Patrick Littell. 2008. Aw-TOM-uh-tuh. In North
American Computational Linguistics Olympiad
2008. http://www.naclo.cs.cmu.edu/assets/
problems/NACLO08i.pdf.

Patrick Littell. 2009. Sk8 parsr. In North Ameri-
can Computational Linguistics Olympiad 2009.
http://www.naclo.cs.cmu.edu/assets/problems/
naclo09G.pdf.

Patrick Littell. 2010a. Gelda’s house of gelbel-
garg. In North American Computational Linguis-
tics Olympiad 2010. http://www.naclo.cs.cmu.edu/
problems2010/A.pdf.

Patrick Littell. 2010b. Texting, texting, one two
three. In North American Computational Linguis-
tics Olympiad 2010. http://www.naclo.cs.cmu.edu/
problems2010/E.pdf.

Patrick Littell. 2011. BrokEnglish! In North Amer-
ican Computational Linguistics Olympiad 2011.
http://www.naclo.cs.cmu.edu/problems2011/E.pdf.

Patrick Littell. 2012a. Cat and mouse story. In North
American Computational Linguistics Olympiad
2012. http://www.naclo.cs.cmu.edu/problems2012/
NACLO2012ROUND1.pdf.

Patrick Littell. 2012b. A fox among the
h. In North American Computational Linguis-
tics Olympiad 2012. http://www.naclo.cs.cmu.edu/
problems2012/NACLO2012ROUND2.pdf.

Ruslan Mitkov and Patrick Littell. 2013. Grammar
rules. In North American Computational Linguis-
tics Olympiad 2013. http://www.naclo.cs.cmu.edu/
2013/NACLO2013ROUND2.pdf.

25



Thomas E. Payne and Ivan Derzhanski. 2010. The lin-
guistics olympiads: Academic competitions in lin-
guistics for secondary school students. In Kristin
Denham and Anne Lobeck, editors, Linguistics at
school. Cambridge University Press.

Alexander Piperski. 2012. The Deschamps
codice. In North American Computational Linguis-
tics Olympiad 2012. http://www.naclo.cs.cmu.edu/
problems2012/NACLO2012ROUND2.pdf.

Dragomir Radev and Adam Hesterberg. 2009. Sum-
mer eyes. In North American Computational Lin-
guistics Olympiad 2009. http://www.naclo.cs.cmu.
edu/assets/problems/naclo09E.pdf.

Dragomir R. Radev, Lori Levin, and Thomas E.
Payne. 2008. The North American Computa-
tional Linguistics Olympiad (NACLO). In Proceed-
ings of the Third Workshop on Issues in Teaching
Computational Linguistics, pages 87–96, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics. http://www.aclweb.org/anthology/W/W08/
W08-0211.

Dragomir Radev. 2007a. This problem is pretty //
easy. In North American Computational Linguis-
tics Olympiad 2007. http://www.naclo.cs.cmu.edu/
assets/problems/naclo07 h.pdf.

Dragomir Radev. 2007b. We are all molistic in a
way. In North American Computational Linguis-
tics Olympiad 2007. http://www.naclo.cs.cmu.edu/
assets/problems/naclo07 a.pdf.

Dragomir Radev. 2011. Tiger tale. In North American
Computational Linguistics Olympiad 2011. http://
www.naclo.cs.cmu.edu/problems2011/F.pdf.

Dragomir Radev, editor. 2013a. Puzzles in Logic,
Languages, and Computation: The Green Book.
Springer: Berlin.

Dragomir Radev, editor. 2013b. Puzzles in Logic, Lan-
guages, and Computation: The Red Book. Springer:
Berlin.

Andrea Schalley and Patrick Littell. 2013. Grammar
rules! In North American Computational Linguis-
tics Olympiad 2013. http://www.naclo.cs.cmu.edu/
2013/NACLO2013ROUND1.pdf.

Noah Smith, Kevin Gimpel, and Jason Eisner.
2012. One, two, tree. In North American
Computational Linguistics Olympiad 2012.
http://www.naclo.cs.cmu.edu/problems2012/
NACLO2012ROUND2.pdf.

Harold Somers. 2011. Running on MT. In North
American Computational Linguistics Olympiad
2011. http://www.naclo.cs.cmu.edu/problems2011/
A.pdf.

Ankit Srivastava and Emily Bender. 2008. Springing
up baby. In North American Computational Lin-
guistics Olympiad 2008. http://www.naclo.cs.cmu.
edu/assets/problems/prob08b.pdf.

Patrick Thibodeau. 2013. Computer science en-
rollments soared last year, rising 30%, March.
http://www.computerworld.com/s/article/9237459/
Computer science enrollments soared last year
rising 30 .

Stuart Zweben. 2013. Computing degree and enroll-
ment trends, March. http://cra.org/govaffairs/blog/
wp-content/uploads/2013/03/CRA Taulbee CS
Degrees and Enrollment 2011-12.pdf.

26


