
Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), pages 64–71,
Sofia, Bulgaria, August 9, 2013. c©2013 Association for Computational Linguistics

Learning Subregular Classes of Languages with Factored Deterministic
Automata

Jeffrey Heinz

Dept. of Linguistics and Cognitive Science

University of Delaware

heinz@udel.edu

James Rogers

Dept. of Computer Science

Earlham College

jrogers@cs.earlham.edu

Abstract

This paper shows how factored finite-

state representations of subregular lan-

guage classes are identifiable in the limit

from positive data by learners which are

polytime iterative and optimal. These rep-

resentations are motivated in two ways.

First, the size of this representation for

a given regular language can be expo-

nentially smaller than the size of the

minimal deterministic acceptor recogniz-

ing the language. Second, these rep-

resentations (including the exponentially

smaller ones) describe actual formal lan-

guages which successfully model natural

language phenomenon, notably in the sub-

field of phonology.

1 Introduction

In this paper we show how to define certain sub-

regular classes of languages which are identifiable

in the limit from positive data (ILPD) by efficient,

well-behaved learners with a lattice-structured hy-

pothesis space (Heinz et al., 2012). It is shown

that every finite set of DFAs defines such an ILPD

class. In this case, each DFA can be viewed as

one factor in the description of every language in

the class. This factoring of language classes into

multiple DFA can provide a compact, canonical

representation of the grammars for every language

in the class. Additionally, many subregular classes

of languages can be learned by the above methods

including the Locally k-Testable, Strictly k-Local,

Piecewise k-Testable, and Strictly k-Piecewise

languages (McNaughton and Papert, 1971; Rogers

and Pullum, 2011; Rogers et al., 2010). From a

linguistic (and cognitive) perspective, these sub-

regular classes are interesting because they appear

to be sufficient for modeling phonotactic patterns

in human language (Heinz, 2010; Heinz et al.,

2011; Rogers et al., to appear).

2 Preliminaries

For any function f and element a in the domain of

f , we write f(a)↓ if f(a) is defined, f(a)↓= x if

it is defined for a and its value is x, and f(a) ↑
otherwise. The range of f , the set of values f

takes at elements for which it is defined, is denoted

range(f).

Σ∗ and Σk denote all sequences of any finite

length, and of length k, over a finite alphabet Σ.

The empty string is denoted λ. A language L is a

subset of Σ∗.

For all x, y belonging to a partially-ordered set

(S,≤), if x ≤ z and y ≤ z then z is an upper

bound of x and y. For all x, y ∈ S, the least upper

bound (lub) x⊔ y = z iff x ≤ z, y ≤ z, and for all

z′ which upper bound x and y, it is the case that

z ≤ z′. An upper semi-lattice is a partially ordered

set (S,≤) such that every subset of S has a lub. If

S is finite, this is equivalent to the existence of

x ⊔ y for all x, y ∈ S.

A deterministic finite-state automaton (DFA) is

a tuple (Q,Σ, Q0, F, δ). The states of the DFA are

Q; the input alphabet is Σ; the set of initial states

is Q0; the final states are F ; and δ : Q× Σ → Q

is the transition function.

We admit a set of initial states solely to accom-

modate the empty DFA, which has none. Deter-

ministic automata never have more than one ini-

tial state. We will assume that, if the automaton is

non-empty, then Q0 = {q0};

The transition function’s domain is extended to

Q× Σ∗ in the usual way.

The language of a DFA A is

L(A)
def
= {w ∈ Σ∗ | δ(q0, w)↓∈ F}.

A DFA is trim iff it has no useless states:

(∀q ∈ Q)[∃w, v ∈ Σ∗ |
δ(q0, w)↓= q and δ(q, v)↓∈ F].

64

Every DFA can be trimmed by eliminating useless

states from Q and restricting the remaining com-

ponents accordingly.

The empty DFA isA∅ = (∅,Σ,∅,∅,∅). This

is the minimal trim DFA such that L(A∅) = ∅.

The DFA product of A1 = (Q1,Σ, Q01, F1, δ1)
and A2 = (Q2,Σ, Q02, F2, δ2) is

⊗(A1,A2) = (Q,Σ, Q0, F, δ)

where Q = Q1 × Q2, Q0 = Q01 × Q02,

F = F1 × F2 and

(∀q ∈ Q)(∀σ ∈ Σ)
[

δ
(

(q1, q2), σ
) def

= (δ1(q1, σ), δ2(q2, σ))
]

The DFA product of two DFA is also a DFA. It

is not necessarily trim, but we will generally as-

sume that in taking the product the result has been

trimmed, as well.

The product operation is associative and com-

mutative (up to isomorphism), and so it can be ap-

plied to a finite set S of DFA, in which case we

write
⊗

S =
⊗

A∈S A (letting
⊗

{A} = A). In

this paper, grammars are finite sequences of DFAs
~A = 〈A1 · · · An〉 and we also use the

⊗

nota-

tion for the product of a finite sequence of DFAs:
⊗

~A
def
=

⊗

A∈ ~A
A and L(~A)

def
= L

(
⊗

~A
)

. Se-

quences are used instead of sets in order to match

factors in two grammars. Let DFA denote the

collection of finite sequences of DFAs.

Theorem 1 is well-known.

Theorem 1 Consider a finite set S of DFA. Then

L
(
⊗

A∈S A
)

=
⋂

A∈S L(A).

An important consequence of Theorem 1 is that

some languages are exponentially more com-

pactly represented by their factors. The grammar
~A = 〈A1 · · · An〉 has

∑

1≤i≤n card(Qi) states,

whereas the trimmed
⊗

~A can have as many as
∏

1≤i≤n card(Qi) ∈ Θ(max1≤i≤n(card(Qi))
n)

states. An example of such a language is given

in Section 4, Figures 1 and 2.

2.1 Identification in the limit

A positive text T for a language L is a total

function T : N → L ∪ {#} (# is a ‘pause’)

such that range(T) = L (i.e., for every w ∈ L

there is at least one n ∈ N for which w =
T (n)). Let T [i] denote the initial finite sequence

T (0), T (1) . . . T (i − 1). Let SEQ denote the set

of all finite initial portions of all positive texts for

all possible languages. The content of an element

T [i] of SEQ is

content(T [i])
def
=

{w ∈ Σ∗ | (∃j ≤ i− 1)[T (j) = w]}.

In this paper, learning algorithms are programs:

φ : SEQ → DFA. A learner φ identifies in the

limit from positive texts a collection of languages

L if and only if for all L ∈ L, for all positive texts

T for L, there exists an n ∈ N such that

(∀m ≥ n)[φ(T [m]) = φ(T [n])] and L(T [n]) = L

(see Gold (1967) and Jain et al. (1999)). A class of

languages is ILPD iff it is identifiable in the limit

by such a learner.

3 Classes of factorable-DFA languages

In this section, classes of factorable-DFA lan-

guages are introduced. The notion of sub-DFA is

central to this concept. Pictorially, a sub-DFA is

obtained from a DFA by removing zero or more

states, transitions, and/or revoking the final status

of zero or more final states.

Definition 1 For any DFA A = (Q,Σ, Q0, F, δ),
a DFA A′ = (Q′,Σ′, Q′

0, F
′, δ′) is sub-DFA of A,

written A′ ⊑ A, if and only if Q′ ⊆ Q, Σ ⊆ Σ′,

Q′
0 ⊆ Q0, F ′ ⊆ F , δ′ ⊆ δ.

The sub-DFA relation is extended to grammars

(sequences of DFA). Let ~A = 〈A1 · · · An〉 and
~A′ = 〈A′

1 · · · A
′
n〉.

Then ~A′ ⊑ ~A ⇔ (∀0 ≤ i ≤ n)[A′
i ⊑ Ai].

Clearly, if A′ ⊑ A then L(A′) ⊆ L(A).
Every grammar ~A determines a class of lan-

guages: those recognized by a sub-grammar of ~A.

Our interest is not in L(~A), itself. Indeed, this will

generally be Σ∗. Rather, our interest is in identi-

fying languages relative to the class of languages

recognizable by sub-grammars of ~A.

Definition 2 Let G(~A)
def
= {~B | ~B ⊑ ~A}, the class

of grammars that are sub-grammars of ~A.

Let L(~A)
def
= {L(~B) | ~B ⊑ ~A}, the class of lan-

guages recognized by sub-grammars of ~A.

A class of languages is a factorable-DFA class

iff it is L(~A) for some ~A.

The set G(~A) is necessarily finite, since ~A is, so

every class L(~A) is trivially ILPD by a learning

algorithm that systematically rules out grammars

that are incompatible with the text, but this naı̈ve

algorithm is prohibitively inefficient. Our goal is

65

to establish that the efficient general learning algo-

rithm given by Heinz et al. (2012) can be applied

to every class of factorable-DFA languages, and

that this class includes many of the well-known

sub-regular language classes as well as classes that

are, in a particular sense, mixtures of these.

4 A motivating example

This section describes the Strictly 2-Piecewise lan-

guages, which motivate the factorization that is

at the heart of this analysis. Strictly Piecewise

(SP) languages are characterized in Rogers et al.

(2010) and are a special subclass of the Piecewise

Testable languages (Simon, 1975).

Every SP language is the intersection of a finite

set of complements of principal shuffle ideals:

L ∈ SP
def
⇐⇒ L =

⋂

w∈S

[SI(w)], S finite

where

SI(w)
def
= {v ∈ Σ∗ | w = σ1 · · · σk and

(∃v0, . . . , vk ∈ Σ∗)[v = v0 · σ1 · v1 · · · σk · vk]}

So v ∈ SI(w) iff w occurs as a subsequence of v

and L ∈ SP iff there is a finite set of strings for

which L includes all and only those strings that

do not include those strings as subsequences. We

say that L is generated by S. It turns out that SP is

exactly the class of languages that are closed under

subsequence.

A language is SPk iff it is generated by a set of

strings each of which is of length less than or equal

to k. Clearly, every SP language is SPk for some

k and SP =
⋃

1≤k∈N[SPk].

If w ∈ Σ∗ and |w| = k, then SI(w) = L(Aw)
for a DFA Aw with no more than k states. For

example, if k = 2 and Σ = {a, b, c} and, hence,

w ∈ {a, b, c}2
, then the minimal trim DFA recog-

nizing SI(w) will be a sub-DFA (in which one of

the transitions from the σ1 state has been removed)

of one of the three DFA of Figure 1.

Figure 1 shows ~A = 〈Aa, Ab, Ac〉, where Σ =
{a, b, c} and each Aσ is a DFA accepting Σ∗

whose states distinguish whether σ has yet oc-

curred. Figure 2 shows
⊗

~A.

Note that every SP2 language over {a, b, c} is

L(~B) for some ~B ⊑ ~A. The class of grammars

of G(~A) recognize a slight extension of SP2 over

{a, b, c} (which includes 1-Reverse Definite lan-

guages as well).

Observe that 6 states are required to describe ~A
but 8 states are required to describe

⊗

~A. Let ~AΣ

be the sequence of DFA with one DFA for each

letter in Σ, as in Figure 1. As card(Σ) increases

the number of states of ~AΣ is 2 × card(Σ) but

the number of states in
⊗

~AΣ is 2card(Σ). The

number of states in the product, in this case, is ex-

ponential in the number of its factors.

The Strictly 2-Piecewise languages are cur-

rently the strongest computational characteriza-

tion1 of long-distance phonotactic patterns in hu-

man languages (Heinz, 2010). The size of the

phonemic inventories2 in the world’s languages

ranges from 11 to 140 (Maddieson, 1984). English

has about 40, depending on the dialect. With an al-

phabet of that size ~AΣ would have 80 states, while
⊗

~AΣ would have 240 ≈ 1 × 1012 states. The

fact that there are about 1011 neurons in human

brains (Williams and Herrup, 1988) helps moti-

vate interest in the more compact, parallel repre-

sentation given by ~AΣ as opposed to the singular

representation of the DFA
⊗

~AΣ.

5 Learning factorable classes of

languages

In this section, classes of factorable-DFA lan-

guages are shown to be analyzable as finite lattice

spaces. By Theorem 6 of Heinz et al. (2012), ev-

ery such class of languages can be identified in the

limit from positive texts.

Definition 3 (Joins) Let

A = (Q,Σ, Q0, F, δ),
A1 = (Q1,Σ, Q01, F1, δ1) ⊑ A

and

A2 = (Q2,Σ, Q02, F2, δ2) ⊑ A.

The join of A1 and A2 is

A1⊔A2
def
= (Q1∪Q2,Σ, Q01∪Q02, F1∪F2, δ1∪δ2).

Similarly, for all ~A = 〈A1 · · · An〉 and ~B =
〈B1 · · · Bn〉 ⊑ ~A, ~C2 = 〈C1 · · · Cn〉 ⊑ ~A, the join

of and ~B and ~C is ~B ⊔ ~C
def
= 〈B1 ⊔ C1 · · · Bn ⊔ Cn〉.

Note that the join of two sub-DFA of A is also a

sub-DFA of A. Since G(~A) is finite, binary join

suffices to define join of any set of sub-DFA of a

given DFA (as iterated binary joins). Let
⊔

[S] be

the join of S, a set of sub-DFAs of some A (or ~A).

1See Heinz et al. (2011) for competing characterizations.
2The mental representations of speech sounds are called

phonemes, and the phonemic inventory is the set of these rep-
resentations (Hayes, 2009).

66

a0 a1 b0 b1 c0 c1

b, c

a

a, b, c a, c

b

a, b, c a, b

c

a, b, c

Figure 1: The sequence of DFA ~A = 〈Aa, Ab, Ac〉, where Σ = {a, b, c} and each Aσ accepts Σ∗ and

whose states distinguish whether σ has yet occurred.

a0b0c0

a1b0c0

a0b1c0

a0b0c1

a1b1c0

a0b1c1

a1b0c1

a1b1c1

a

b

c

b

c

a

a

c

b

a

b

c

c

a, b

ab, c

b

a, c

a, b, c

Figure 2: The product
⊗

〈Aa, Ab, Ac〉.

67

Lemma 1 The set of sub-DFA of a DFA A, or-

dered by ⊑, ({B | B ⊑ A},⊑), is an upper semi-

lattice with the least upper bound of a set of S sub-

DFA of A being their join.

Similarly the set of sub-grammars of a grammar
~A, ordered again by⊑, ({~B ⊑ ~A},⊑), is an upper

semi-lattice with the least upper bound of a set of

sub-grammars of ~A being their join.3

This follows from the fact that Q1 ∪Q2 (similarly

F1 ∪F2 and δ1 ∪ δ2) is the lub of Q1 and Q2 (etc.)

in the lattice of sets ordered by subset.

5.1 Paths and Chisels

Definition 4 LetA = (Q,Σ, {q0}, F, δ) be a non-

empty DFA and w = σ0σ1 · · · σn ∈ Σ∗.

If δ(q0, w)↓, the path of w in A is the sequence

π(A, w)
def
=

〈

(q0, σ0), . . . , (qn, σn), (qn+1, λ)
〉

where (∀0 ≤ i ≤ n)[qi+1 = δ(qi, σi)].

If δ(q0, w)↑ then π(A, w)↑.

If π(A, w)↓, let Qπ(A,w) denote set of states it

traverses, δπ(A,w) denote the the transitions it tra-

verses, and let Fπ(A,w) = {qn+1}.

Next, for any DFA A, and any w ∈ L(A), we

define the chisel of w given A to be the sub-DFA

of A that exactly encompasses the path etched out

in A by w.

Definition 5 For any non-empty DFA A =
(Q,Σ, {q0}, F, δ) and all w ∈ Σ∗, if w ∈ L(A),
then the chisel of w given A is the sub-DFA

CA(w) = (Qπ(A,w),Σ, {q0}, Fπ(A,w), δπ(A,w)).

If w 6∈ L(A), then CA(w) = A∅.

Consider any ~A = 〈A1 · · · An〉 and any word

w ∈ Σ∗. The chisel of w given ~A is C ~A
(w) =

〈CA1
(w) · · ·CAn

(w)〉.

Observe that CA(w) ⊑ A for all words w and all

A, and that CA(w) is trim.

Using the join, the domain of the chisel is ex-

tended to sets of words: C ~A
(S) =

⊔

w∈S C ~A
(w).

Note that {C ~A
(w) | w ∈ Σ∗} is finite, since

{~B | ~B ⊑ ~A} is.

Theorem 2 For any grammar ~A, let C(~A) =
{C ~A

(S) | S ⊆ Σ∗}. Then (C(~A),⊑) is an up-

per semi-lattice with the lub of two elements given

by the join ⊔.

3These are actually complete finite lattices, but we are in-
terested primarily in the joins.

Proof This follows immediately from the finite-

ness of {C ~A
(w) | w ∈ Σ∗} and Lemma 1. ���

Lemma 2 For all A = (Q,Σ, Q0, F, δ), there is

a finite set S ⊂ Σ∗ such that
⊔

w∈S CA(w) = A.

Similarly, for all ~A = 〈A1 · · · An〉, there is a finite

set S ⊂ Σ∗ such that C ~A
(S) = ~A.

Proof If A is empty, then clearly S = ∅ suffices.

Henceforth consider only nonempty A.

For the first statement, let S be the set of uσv

where, for each q ∈ Q and for each σ ∈ Σ,

δ(q0, u) ↓= q and δ(δ(q, σ), v) ↓∈ F such that

uσv has minimal length. By construction, S is fi-

nite. Furthermore, for every state and every transi-

tion in A, there is a word in S whose path touches

that state and transition. By definition of ⊔ it fol-

lows that CA(S) = A.

For proof of the second statement, for each Ai

in ~A, construct Si as stated and take their union. ���

Heinz et al. (2012) define lattice spaces. For an

upper semi-lattice V and a function f : Σ∗ → V

such that f and ⊔ are (total) computable, (V, f) is

called a Lattice Space (LS) iff, for each v ∈ V ,

there exists a finite D ⊆ range(f) with
⊔

D = v.

Theorem 3 For all grammars ~A = 〈A1 · · · An〉,
(C(~A), C ~A

) is a lattice space.

Proof For all ~A′ ∈ C(~A), by Lemma 2, there is a

finite S ⊆ Σ∗ such that
⊔

w∈S C ~A
(w) = ~A′. ���

For Heinz et al. (2012), elements of the lat-

tice are grammars. Likewise, here, each grammar
~A = 〈A1 · · · An〉 defines a lattice whose elements

are its sub-grammars. Heinz et al. (2012) associate

the languages of a grammar v in a lattice space

(V, f) with {w ∈ Σ∗ | f(w) ⊑ v}. This definition

coincides with ours: for any element ~A′ of C(~A)
(note ~A′ ⊑ ~A), a word w belongs to L(~A′) if and

only if C ~A
(w) is a sub-DFA of ~A′. The class of

languages of a LS is the collection of languages

obtained by every element in the lattice. For ev-

ery LS (C(~A), C ~A
), we now define a learner φ ac-

cording to the construction in Heinz et al. (2012):

∀T ∈ SEQ, φ(T) =
⊔

w∈content(T) C ~A
(w).

Let L(C(~A),C ~A
) denote the class of languages

associated with the LS in Theorem 3. Accord-

ing to Heinz et al. (2012, Theorem 6), the learner

φ identifies L(C(~A),CvA) in the limit from posi-

tive data. Furthermore, φ is polytime iterative,

68

i.e can compute the next hypothesis in polytime

from the previous hypothesis alone, and opti-

mal in the sense that no other learner converges

more quickly on languages in L
(C(~A),CG)

. In ad-

dition, this learner is globally-consistent (every

hypothesis covers the data seen so far), locally-

conservative (the hypothesis never changes unless

the current datum is not consistent with the cur-

rent hypothesis), strongly-monotone (the current

hypothesis is a superset of all prior hypotheses),

and prudent (it never hypothesizes a language that

is not in the target class). Formal definitions of

these terms are given in Heinz et al. (2012) and can

also be found elsewhere, e.g. Jain et al. (1999).

6 Complexity considerations

The space of sub-grammars of a given sequence of

DFAs is necessarily finite and, thus, identifiable in

the limit from positive data by a naı̈ve learner that

simply enumerates the space of grammars. The

lattice learning algorithm has better efficiency be-

cause it works bottom-up, extending the grammar

minimally, at each step, with the chisel of the cur-

rent string of the text. The lattice learner never

explores any part of the space of grammars that

is not a sub-grammar of the correct one and, as it

never moves down in the lattice, it will skip much

of the space of grammars that are sub-grammars of

the correct one. The space it explores will be mini-

mal, given the text it is running on. Generalization

is a result of the fact that in extending the gram-

mar for a string the learner adds its entire Nerode

equivalence class to the language.

The time complexity of either learning or recog-

nition with the factored automata may actually be

somewhat worse than the complexity of doing so

with its product. Computing the chisel of a string

w in the product machine of Figure 2 is Θ(|w|),
while in the factored machine of Figure 1 one must

compute the chisel in each factor and its complex-

ity is, thus, Θ(|w| card(Σ)k−1). But Σ and k are

fixed for a given factorization, so this works out to

be a constant factor.

Where the factorization makes a substantial dif-

ference is in the number of features that must

be learned. In the factored grammar of the

example, the total number of states plus edges

is Θ(kcard(Σ)k−1), while in its product it is

Θ(2(card(Σ)k−1)). This represents an exponential

improvement in the space complexity of the fac-

tored grammar.

Every DFA can be factored in many ways, but

the factorizations do not necessarily provide an

asymptotically significant improvement in space

complexity. The canonical contrast is between

sequences of automata 〈A1, . . . ,An〉 that count

modulo some sequence of mi ∈ N. If the

mi are pairwise prime, the product will require
∏

1≤i≤n[mi] = Θ((maxi[mi])
n) states. If on the

other hand, they are all multiples of each other it

will require just Θ(maxi[mi]).

7 Examples

The fact that the class of SP2 languages is effi-

ciently identifiable in the limit from positive data

is neither surprising or new. The obvious ap-

proach to learning these languages simply accu-

mulates the set of pairs of symbols that occur as

subsequences of the strings in the text and builds a

machine that accepts all and only those strings in

which no other such pairs occur. This, in fact, is

essentially what the lattice learner is doing.

What is significant is that the lattice learner pro-

vides a general approach to learning any language

class that can be captured by a factored grammar

and, more importantly, any class of languages that

are intersections of languages that are in classes

that can be captured this way.

Factored grammars in which each factor recog-

nizes Σ∗, as in the case of Figure 1, are of par-

ticular interest. Every sub-Star-Free class of lan-

guages in which the parameters of the class (k, for

example) are fixed can be factored in this way.4 If

the parameters are not fixed and the class of lan-

guages is not finite, none of these classes can be

identified in the limit from positive data at all.5 So

this approach is potentially useful at least for all

sub-Star-Free classes. The learners for non-strict

classes are practical, however, only for small val-

ues of the parameters. So that leaves the Strictly

Local SLk and Strictly Piecewise SPk languages

as the obvious targets.

The SLk languages are those that are deter-

mined by the substrings of length no greater than

k that occur within the string (including endmark-

4We conjecture that there is a parameterized class of lan-
guages that is equivalent to the Star-Free languages, which
would make that class learnable in this way as well.

5For most of these classes, including the Definite,
Reverse-Definite and Strictly Local classes and their super
classes, this is immediate from the fact that they are super-
finite. SP, on the other hand, is not super-finite (since it
does not include all finite languages) but nevertheless, it is
not IPLD.

69

ers). These can be factored on the basis of those

substrings, just as the SPk languages can, although

the construction is somewhat more complex. (See

the Knuth-Morris-Pratt algorithm (Knuth et al.,

1977) for a way of doing this.) But SLk is a case in

which there is no complexity advantage in factor-

ing the DFA. This is because every SLk language

is recognized by a DFA that is a Myhill graph:

with a state for each string of Σ<k (i.e., of length

less than k). Such a graph has Θ(card(Σ)k−1)
states, asymptotically the same as the number of

states in the factored grammar, which is actually

marginally worse.

Therefore, factored SLk grammars are not, in

themselves, interesting. But they are interesting as

factors of other grammars. Let (SL + SP)k,l (resp.

(LT + SP)k,l, (SL + PT)k,l) be the class of lan-

guages that are intersections of SLk and SPl (resp.

LTk and SPl, SLk and PTl) languages. Where

LT (PT) languages are determined by the set of

substrings (subsequences) that occur in the string

(see Rogers and Pullum (2011) and Rogers et al.

(2010)).

These classes capture co-occurrence of lo-

cal constraints (based on adjacency) and long-

distance constraints (based on precedence). These

are of particular interest in phonotactics, as they

are linguistically well-motivated approaches to

modeling phonotactics and they are sufficiently

powerful to model most phonotactic patterns. The

results of Heinz (2007) and Heinz (2010) strongly

suggest that nearly all segmental patterns are

(SL + SP)k,l for small k and l. Moreover, roughly

72% of the stress patterns that are included in

Heinz’s database (Heinz, 2009; Phonology Lab,

2012) of patterns that have been attested in nat-

ural language can be modeled with SLk grammars

with k ≤ 6. Of the rest, all but four are LT1 + SP4

and all but two are LT2 + SP4. Both of these last

two are properly regular (Wibel et al., in prep).

8 Conclusion

We have shown how subregular classes of lan-

guages can be learned over factored representa-

tions, which can be exponentially more compact

than representations with a single DFA. Essen-

tially, words in the data presentation are passed

through each factor, “activating” the parts touched.

This approach immediately allows one to natu-

rally “mix” well-characterized learnable subreg-

ular classes in such a way that the resulting lan-

guage class is also learnable. While this mixing is

partly motivated by the different kinds of phono-

tactic patterns in natural language, it also suggests

a very interesting theoretical possibility. Specifi-

cally, we anticipate that the right parameterization

of these well-studied subregular classes will cover

the class of star-free languages. Future work could

also include extending the current analysis to fac-

toring stochastic languages, perhaps in a way that

connects with earlier research on factored HMMs

(Ghahramani and Jordan, 1997).

Acknowledgments

This paper has benefited from the insightful com-

ments of three anonymous reviewers, for which

the authors are grateful. The authors also thank

Jie Fu and Herbert G. Tanner for useful discus-

sion. This research was supported by NSF grant

1035577 to the first author, and the work was com-

pleted while the second author was on sabbatical at

the Department of Linguistics and Cognitive Sci-

ence at the University of Delaware.

References

Zoubin Ghahramani and Michael I. Jordan. 1997. Fac-
torial hidden markov models. Machine Learning,
29(2):245–273.

E.M. Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

Bruce Hayes. 2009. Introductory Phonology. Wiley-
Blackwell.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 58–64, Portland, Oregon, USA, June. As-
sociation for Computational Linguistics.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning with lattice-structured hypothesis
spaces. Theoretical Computer Science, 457:111–
127, October.

Jeffrey Heinz. 2007. The Inductive Learning of
Phonotactic Patterns. Ph.D. thesis, University of
California, Los Angeles.

Jeffrey Heinz. 2009. On the role of locality in learning
stress patterns. Phonology, 26(2):303–351.

Jeffrey Heinz. 2010. Learning long-distance phono-
tactics. Linguistic Inquiry, 41(4):623–661.

70

Sanjay Jain, Daniel Osherson, James S. Royer, and
Arun Sharma. 1999. Systems That Learn: An In-
troduction to Learning Theory (Learning, Develop-
ment and Conceptual Change). The MIT Press, 2nd
edition.

Donald Knuth, James H Morris, and Vaughn Pratt.
1977. Fast pattern matching in strings. SIAM Jour-
nal on Computing, 6(2):323–350.

Ian Maddieson. 1984. Patterns of Sounds. Cambridge
University Press, Cambridge, UK.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

UD Phonology Lab. 2012. UD phonology lab
stress pattern database. http://phonology.

cogsci.udel.edu/dbs/stress. Accessed
December 2012.

James Rogers and Geoffrey Pullum. 2011. Aural pat-
tern recognition experiments and the subregular hi-
erarchy. Journal of Logic, Language and Informa-
tion, 20:329–342.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christian Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Lan-
guage, volume 6149 of Lecture Notes in Artifical In-
telligence, pages 255–265. Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. to appear.
Cognitive and sub-regular complexity. In Proceed-
ings of the 17th Conference on Formal Grammar.

Imre Simon. 1975. Piecewise testable events. In
Automata Theory and Formal Languages: 2nd
Grammatical Inference conference, pages 214–222,
Berlin. Springer-Verlag.

Sean Wibel, James Rogers, and Jeffery Heinz. Factor-
ing of stress patterns. In preparation.

R.W. Williams and K. Herrup. 1988. The control of
neuron number. Annual Review of Neuroscience,
11:423–453.

71

