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Abstract 

This paper presents the Bacteria Biotope 
task of the BioNLP Shared Task 2013, 
which follows BioNLP-ST-11. The 
Bacteria Biotope task aims to extract the 
location of bacteria from scientific web 
pages and to characterize these locations 
with respect to the OntoBiotope 
ontology. Bacteria locations are crucial 
knowledge in biology for phenotype 
studies. The paper details the corpus 
specifications, the evaluation metrics, 
and it summarizes and discusses the 
participant results.  

1 Introduction 

The Bacteria Biotope (BB) task extends the 
BioNLP 2013 Shared Task molecular biology 
scope. It consists of extracting bacteria and their 
locations from web pages, and categorizing the 
locations with respect to the OntoBiotope1 
ontology of microbe habitats. The locations 
denote the places where given species live. The 
bacteria habitat information is critical for the 
study of the interaction between the species and 
their environment, and for a better understanding 
of the underlying biological mechanisms at a 
molecular level. The information on bacteria 
biotopes and their properties is very abundant in 
scientific literature and in genomic databases and 
BRC (Biology Resource Center) catalogues. 
However, the information is highly diverse and 
expressed in natural language (Bossy et al., 
2012). The two critical missing steps for 
population of biology databases and biotope 
knowledge modeling are (1) the automatic 
extraction of organism/location pairs and (2) the 
normalization of the habitat names with respect 
to biotope ontologies.  

                                                        
1http://bibliome.jouy.inra.fr/MEM-
OntoBiotope/OntoBiotope_BioNLP-ST13.obo 

The aim of the previous edition of the BB task 
(BioNLP-ST’11) was to solve the first 
information extraction step. The results obtained 
by the participant systems reached 45 percent F-
measure. These results showed both the 
feasibility of the task, as well as a large room for 
improvement (Bossy et al., 2012).  
The 2013 edition of the BB task maintains the 
primary objective of event extraction, and 
introduces the second issue of biotope 
normalization. It is handled through the 
categorization of the locations into a large set of 
types defined in the OntoBiotope ontology. 
Bacteria locations range from hosts, plant and 
animals, to natural environments (e.g. water, 
soil), including industrial environments.  BB’11 
set of categories contained 7 types. This year, 
entity categorization has been enriched to better 
answer the biological needs, as well as to 
contribute to the general problem of automatic 
semantic annotation by ontologies. 
BB task is divided into three sub-tasks. Entity 
detection and event extraction are tackled by two 
distinct sub-tasks, so that the contribution of 
each method could be assessed. A third sub-task 
conjugates the two in order to measure the 
impact of the method interactions. 

2 Context 

Biological motivation. 
Today, new sequencing methods allow biologists 
to study complex environments such as 
microbial ecosystems. Therefore, the sequence 
annotation process is facing radical changes with 
respect to the volume of data and the nature of 
the annotations to be considered. Not only do 
biochemical functions still need to be assigned to 
newly identified genes, but biologists have to 
take into account the conditions and the 
properties of the ecosystems in which 
microorganisms are living and are identified, as 
well as the interactions and relationships 
developed with their environment and other 
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living organisms (Korbel et al., 2005). 
Metagenomic studies of ecosystems yield 
important information on the phylogenetic 
composition of the microbiota. The availability 
of bacteria biotope information represented in a 
formal language would then pave the way for 
many new environment-aware bioinformatic 
services. The development of methods that are 
able to extract and normalize natural language 
information at a large scale would allow us to 
rapidly obtain and summarize information that 
the bacterial species or genera are associated 
with in the literature. In turn, this will allow for 
the formulation of hypotheses regarding 
properties of the bacteria, the ecosystem, and the 
links between them.  
The pioneering work on EnvDB (Pignatelli et al., 
2009) aimed to link GenBank sequences of 
microbes to biotope mentions in scientific 
papers. However, EnvDB was affected by the 
incompleteness of the GenBank isolation source 
field, the low number of related bibliographic 
references, the bag-of-words extraction method 
and the small size of its habitat classification. 

Habitat categories. 
The most developed classifications of habitats 
are EnvO, the Metagenome classification 
supported by the Genomics Standards 
Consortium (GSC), and the OntoBiotope 
ontology developed by our group. EnvO 
(Environment Ontology project) targets a 
Minimum Information about a Genome 
Sequence (MIGS) specification (Field et al., 
2008) of mainly Eukaryotes. This ambitious 
detailed environment ontology aims to support 
standard manual annotations  of all types of 
organism environments and biological samples. 
However, it suffers from some limitations for 
bacterial biotope descriptions. A large part of 
EnvO is devoted to environmental biotopes and 
extreme habitats, whilst it fails to finely account 
for the main trends in bacteria studies, such as 
their technological use for food transformation 
and bioremediation, and their pathogenic or 
symbiotic properties. Moreover, EnvO terms are 
often poorly suited for bacteria literature analysis 
(Ratkovic et al., 2012). 
The Metagenome Classification  from JGI of 
DOE (Joint Genome Institute, US Department Of 
Energy) is intended to classify metagenome 
projects and samples according to a mixed 
typology of habitats (e.g. environmental, host) 
and their physico-chemical properties (e.g. pH, 
salinity) (Ivanova et al., 2010). It is a valuable 

source of vocabulary for the analysis of bacteria 
literature, but its structure and scope are strongly 
biased by the indexing of metagenome projects. 
The OntoBiotope ontology is appropriate for the 
categorization of bacteria biotopes in the BB task 
because its scope and its organization reflect the 
scientific subject division and the microbial 
diversity. Its size (1,756 concepts) and its deep 
hierarchical structure are suitable for a fine-
grained normalization of the habitats. Its 
vocabulary has been selected after a thorough 
terminological analysis of relevant scientific 
documents, papers, GOLD (Chen et al., 2010) 
and GenBank, which was partly automated by 
term extraction. Related terms are attached to the 
OntoBiotope concept labels (i.e. 383 synonyms), 
improving OntoBiotope coverage of natural 
language documents.  
Its structure and a part of its vocabulary have 
been inspired by EnvO, the Metagenome 
classification and the small ATCC (American 
Type Collection Culture) classification for 
microbial collections (Floyd et al., 2005). 
Explicit references to 34 EnvO terms are given in 
the OntoBiotope file. Its main topics are: 
- « Artificial » environments (industrial and 

domestic), Agricultural habitats, Aquaculture 
habitats, Processed food; 

- Medical environments, Living organisms, 
Parts of living organisms, Bacteria-
associated habitats; 

- « Natural » environment habitats, Habitats 
wrt physico-chemical property (including 
extreme ones); 

- Experimental medium (i.e. experimental 
biotopes designed for studying bacteria). 

The structure, the comprehensiveness and the 
detail of the habitat classification are critical 
factors for research in biology. Biological 
investigations involving the habitats of bacteria 
are very diverse and still unanticipated. Thus, 
shallow and light classifications are insufficient 
to tackle the full extent of the biological 
questions. Indexing genomic data with a 
hierarchical fine-grained ontology such as 
OntoBiotope allows us to obtain aggregated and 
adjusted information by selecting the right level 
or axis of abstraction. 

Bacteria Biotope Task.  
The corpus is the same as BB’11. The documents 
are scientific web pages intended for a general 
audience in the form of encyclopedia notices. 
They focus on a single organism or a family. The 
habitat mentions are dense and more diverse than 
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in PubMed abstracts. These features make the 
task both useful and feasible with a reduced 
investment in biology. Its linguistic 
characteristics, high frequency of anaphora, 
entities denoted by complex nominal expressions 
raised interesting question for BioNLP that have 
been treated for a long time in the general and 
the biomedical domains. 

3 Task description 

The BB Task is split into two secondary goals: 
1. The detection of entities and their 

categorization(s) (Sub-task 1). 
2. The extraction of Localization relations 

given the entities (sub-task 2) 

Sub-task 1 involves the prediction of habitat 
entities and their position in the text. The 
participant also has to assign each entity to one 
or more concepts of the OntoBiotope ontology: 
the categorization task. For instance, in the 
excerpt Isolated from the water of abalone farm, 
the entity abalone farm should be assigned the 
OntoBiotope category fish farm. 

Sub-task 2 is a relation extraction task. The 
schema of this task contains three types of 
entities: 
- The Habitat type is the same as in sub-

task 1. 
- Geographical entities represent location and 

organization named entities. 
- Bacteria entities are bacterial taxa. 

Additionally, there are two types of relations 
illustrated by Figure 1. 
- Localization relations link Bacteria to the 

place where they live (either a Habitat or a 
Geographical). 

- PartOf relations relate couples of Habitat 
entities, a living organism, which is a host 
(e.g. adult human), and a part of this living 
organism (e.g. gut). 

 
Bifidobacterium longum. This organism is 

found in adult humans and formula fed infants 

as a normal component of gut flora. 

Figure 1. Example of a localization event in the 
BB Task. 

Sub-task 2 participants are provided with 
document texts and entities, and should predict 
the relations between the candidate entities. 

Sub-task 3 is the combination of these two sub-
tasks. It consists of predicting both the entity 
positions and the relations between entities. 
Compared to sub-task 1, the systems have to 
predict Habitat entities, but also Geographical 
and Bacteria entities. It is similar to the BB task 
of BioNLP-ST’11, except that no categorization 
of the entities is required. 

4 Corpus description 

The BB corpus document sources are web pages 
from bacteria sequencing projects, (EBI, NCBI, 
JGI, Genoscope) and encyclopedia pages from 
MicrobeWiki. The documents are publicly 
available. Table 1 gives the distribution of the 
entities and relations in the corpora per sub-task. 
 

 Training 
+ Dev 

Test 
1 & 3 Test 2 

Document 78 27 26 
Word 25,828 7,670 10,353 
    

Bacteria 1,347 332 541 
Geographical 168 38 82 
Habitat 1,545 507 623 
OntoBiotope cat. 1,575 522 NA 
Total entities 3,060 877 1,246 
    
Localization 1,030 269 538 
Part of Host 235 111 129 
Total relations 1,265 328 667 

Table 1. BB’13 corpus figures. 

The categorization of entities by a large ontology 
(sub-task 1) offers a novel task to the BioNLP-
ST community; a close examination of the 
annotated corpus allowed us to anticipate the 
challenges for participating teams. A total of 
2,052 entities have been manually annotated for 
sub-task 1 (training, development and test sets 
together). These entities have 1,036 distinct 
surface forms, which means that an entity surface 
form is repeated a little less than twice, on 
average. However, only a quarter of the surface 
forms are actually repeated; three quarters are 
unique in the corpus. Moreover, 60% of habitat 
entities have a surface form that does not match 
one of the synonyms of their ontology concept. 
This configuration suggests that methods that 
simply propagate surface forms and concept 
attributions from ontology synonyms and from 
training entities would be inefficient. We have 
developed a baseline prediction that projects the 
ontology synonyms and the training corpus 

Localization Localization 

Part of Part of 
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habitat surface forms onto the test. This 
prediction scores a high Slot Error Rate of 0.74. 
We also note there are a few ambiguous forms 
(i.e. 112 forms) that are synonyms in several 
different concepts or that do not always denote a 
habitat, and a few entities are assigned more than 
one concept (i.e. 42 of them). These are difficult 
cases that require prediction methods capable of 
word sense disambiguation. The low number of 
ambiguous occurrences has a low impact on the 
participant scores, although their presence may 
motivate more sophisticated methods. 

5 Annotation methodology 

The methodology of entity position and relations 
annotation is similar to BB Task’11. It involved 
seven scientists who participated in a double-
blind annotation (each document was annotated 
twice), followed by a conflict resolution phase. 
They used the AlvisAE annotation editor 
(Papazian et al., 2012). The guidelines included 
some improvements that are detailed below. 

Boundaries. 
Habitat entities may be either names or adjective. 
In the case of adjectives, the head is included in 
the entity span if it denotes a location (e.g. 
intestinal sample) and is excluded otherwise (e.g. 
hospital epidemic). The entity spans may be 
discontinuous, which is relevant for overlapping 
entities like ground water and surface water in 
ground and surface water. The major change is 
the inclusion of all modifiers that describe the 
location in the habitat entity span. This makes 
the entity more informative and the entity 
boundaries easier to predict, and less subject to 
debate. For instance, in the example,  

isolated from the water of an abalone farm,  
the water entity extends from water to farm. 
Note that in sub-task 1, all entities have to be 
predicted, even when not involved in a relation. 
This led to the annotation of embedded entities 
as potential habitats for bacteria, such as abalone 
farm and abalone in the above example. 
 
Equivalent sets of entities.  
As in BB’11, there are many equivalent 
mentions of the same bacteria in the documents 
that play a similar role with respect to the 
Localization relation. Selecting only one of them 
as the gold reference would have been arbitrary. 
When this is the case, the reference annotation 
includes equivalent sets of entities that convey 
the same information (e.g. Borrelia garinii vs. B. 
garinii, but not Borrelia).  

Category assignment. 
The assignment of categories to habitat entities 
has been done in two steps: (i) an automatic pre-
annotation by the method of Ratkovic et al., 
(2012) and (ii) a manual double-blind revision 
followed by a conflict resolution phase. 

In the manual annotation phase, the most 
frequent conflicts between annotators were the 
same as in the previous edition. They involved 
the assignment of entities to either the living 
organism category, organic matter or food. An 
example is the cane entity in cane cuttings. To 
handle these cases, the guidelines assert that a 
dead organism cannot be assigned to a living 
organism category. 

The high quality of the pre-annotation and its 
visualization and revision using the AlvisAE 
annotation editor notably sped-up the annotation 
process. Table 2 summarizes the figures of the 
pre-annotation. For sub-task 1, the pre-
annotation consisted of assigning OntoBiotope 
categories to entities for the whole corpus 
(train+dev+test). The pre-annotation yielded very 
high results with an F-measure of almost 90%. 
The pre-annotation was also useful to assess the 
relevance of the OntoBiotope ontology for the 
BB task. For sub-task 2, the pre-annotation 
consisted of the detection of entities in the test 
set, where no categorization is needed. The 
second line in Table 2 shows that the recall of 
entity detection affects the F-score, but that it 
still made the prediction helpful for the 
annotators. Further data analysis revealed that 
the terminology-based approach of the pre-
annotation poorly detected the correct boundaries 
of embedded entities, thereby decreasing the 
recall of the entity recognition. 
 

 Recall Precision F1 
Corpus sub-task1 89.7% 90.1% 89.9% 
Test sub-task 2 47.3% 95.7% 63.3% 

Table 2. Pre-annotation scores. 

6 Evaluation procedure 

The evaluation procedure was similar to the 
previous edition in terms of resources, schedule 
and metrics except that an original relevant 
metric was developed for the new problem of 
entity categorization in a hierarchy.  

6.1 Campaign organization 

The training and development corpora with the 
reference annotations were made available to the 
participants eleven weeks before the release of 
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the test sets. Participating teams then had ten 
days to submit their predictions. As with all 
BioNLP-ST tasks, each participant submitted a 
single final prediction for each BB sub-task. The 
detailed evaluation results were computed, 
provided to the participants and published on the 
BioNLP website two days after the submission 
deadline.  

6.2 Evaluation metrics 

Sub-task 1. 
In this sub-task participants were given only the 
document texts. They had to predict habitat 
entities along with their categorization with the 
OntoBiotope ontology. The evaluation of sub-
task 1 takes into account the accuracy of the 
boundaries of the predicted entities as well as of 
the ontology category. 

Entity pairing. 
The evaluation algorithm performs an optimal 
pairwise matching between the habitat entities in 
the reference and the predicted entities. We 
defined a similarity between two entities that 
takes into account the boundaries and the 
categorization. Each reference entity is paired 
with the predicted entity for which the similarity 
is the highest among non-zero similarities.  
If the boundaries of a reference entity do not 
overlap with any predicted entity, then it is a 
false negative, or a deletion. Conversely, if the 
boundaries of a predicted entity do not overlap 
with any reference entity, then it is a false 
positive, or an insertion. 
If the similarity between the entities is 1, then it 
is a perfect match. But if the similarity is lower 
than 1, then it is a substitution.  

Entity similarity. 
The similarity M between two entities is defined 
as: 

M = J . W 

J measures the accuracy of the boundaries 
between the reference and the predicted entities. 
It is defined as a Jaccard Index adapted to 
segments (Bossy et al., 2012). For a pair of 
entities with the exact same boundaries, J equals 
to 1. 
W measures the accuracy between the ontology 
concept assignment of the reference entity and 
the predicted concept assignment of the predicted 
entity. We used the semantic similarity proposed 
by Wang, et al. (2007). This similarity compares 
the set of all ancestors of the concept assigned to 
the reference entity and the set of all ancestors of 

the concept assigned to the predicted entity. The 
similarity is the Jaccard Index between the two 
sets of ancestors; however, each ancestor is 
weighted with a factor equal to: 

dw 

where d is the number of steps between the 
attributed concept and the ancestor. w is a 
constant greater than zero and lower than or 
equal to 1. If both the reference and predicted 
entities are assigned the same concept, then the 
sets of ancestors are equal and W is equal to 1. If 
the pair of entities has different concept 
attributions, W is lower than 1 and depends on 
the relative depth of the lowest common 
ancestor. The lower the common ancestor is, the 
higher the value of W. The exponentiation by the 
w constant ensures that the weight of the 
ancestors decreases non-linearly. This similarity 
thus favors predictions in the vicinity of the 
reference concept. Note that since the ontology 
root is the ancestor of all concepts, W is always 
strictly greater than zero. 
(Wang et al., 2007) showed experimentally that a 
value of 0.8 for the w constant is optimal for 
clustering purposes. However we noticed that w 
high values tend to favor sibling predictions over 
ancestor/descendant predictions that are 
preferable here, whilst low w values do not 
penalize enough ontology root predictions. We 
settled w with a value of 0.65, which ensures that 
ancestor/descendant predictions always have a 
greater value than sibling predictions, while root 
predictions never yield a similarity greater than 
0.5. 
As specified above, if the similarity M < 1, then 
the entity pair is a substitution. We define the 
importance of the substitution S as: 

S = 1 - M 

Prediction score. 
Most IE tasks measure the quality of a prediction 
with Precision and Recall, eventually merged 
into an F1. However the pairing detects false 
positives and false negatives, but also 
substitutions. In such cases, the Recall and 
Precision factor the substitutions twice, and thus 
underestimate false negatives and false positives. 
We therefore used the Slot Error Rate (SER) that 
has been devised to undertake this shortcoming 
(Makhoul et al., 1999): 

SER = (S + I + D) / N 
where: 
- S represents the number of substitutions. 
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- I represents the total number of insertions. 
- D represents the total number of deletions. 
- N is the number of entities in the reference. 

The SER is a measure of errors, so the lower it is 
the better. A SER equal to zero means that the 
prediction is perfect. The SER is unbound, 
though a value greater than one means that there 
are more mistakes in the prediction than entities 
in the reference. 
We also computed the Recall, the Precision and 
F1 measures in order to facilitate the 
interpretation of results: 

Recall =M / N 
Precision = M / P 

where M is the sum of the similarity M for all 
pairs in the optimal pairing, N is the number of 
entities in the reference, and P the number of 
entities in the prediction. 

Sub-task 2. 
In sub-task 2, the participants had to predict 
relations between candidate arguments, which 
are Bacteria, Habitat and Geographical entities. 
This task can be viewed as a categorization task 
of all pairs of entities. Thus, we evaluate 
submissions with Recall, Precision and F1. 

Sub-task 3. 
Sub-task 3 is similar to sub-task 2, but it includes 
entity prediction. This is the same setting as the 
BB task in BioNLP-ST 2011, except for entity 
categorization. We used the same evaluation 
metrics based on Recall, Precision and F1 (Bossy 
et al., 2012). 
The highlights of this measure are: 
− it is based on the pairing between reference 

and predicted relations that maximizes a 
similarity; 

− the similarity of the boundaries of Habitat 
and Geographical entities is relaxed and 
defined as the Jaccard Index (in the same 
way as in sub-task 1); 

− the boundaries of Bacteria is strict: the 
evaluation rejects all relations where the 
Bacteria has incorrect boundaries. 

7 Results  

7.1 Participating systems 

Five teams submitted ten predictions to the three 
BB sub-tasks. LIMSI (CNRS, France), see 
(Grouin, 2013) is the only team that submitted to 
the three sub-tasks. LIPN (U. Paris-Nord, 
France), (Bannour et al., 2013) only submitted to 

sub-task 1. TEES (TUCS, Finland), (Björne and 
Salakoski, 2013) only submitted to sub-task 2. 
Finally, IRISA (INRIA, France), (Claveau, 
2013))) and Boun (U. Boğaziçi, Turkey), 
(Karadeniz and Özgür), submitted to sub-tasks 1 
and 2. The scores of the submissions according 
to the official metrics are shown in decreasing 
rank order in Tables 3 to 6. 
 

Participant Rank  SER  F1 
 IRISA 1  0.46 0.57 
 Boun 2  0.48 0.59 
 LIPN 3  0.49 0.61 
 LIMSI 4  0.66 0.44 

Table 3. Scores for Sub-task 1 of the BB Task. 
 

 Participant Entity  
detection 

Category  
assignment 

 SER F1 SER  F1 

 IRISA  0.43 0.60  0.35 0.67 
 Boun  0.42 0.65  0.36 0.71 
 LIPN  0.46 0.64  0.38 0.72 
 LIMSI  0.45 0.71  0.66 0.50 

Table 4. Detailed scores for Sub-task 1 of the 
BB Task. 

Participant systems to sub-task 1 obtained high 
scores despite the novelty of the task (0.46 SER 
for the 1st, IRISA). The results of the first three 
systems are very close despite the diversity of 
the methods. The decomposition of the scores of 
the predictions of entities with correct 
boundaries and their assignment to the right 
category are shown in Table 4. They are quite 
balanced with a slightly better rate for category 
assignment, with the exception of the LIMSI 
system, which is notably better in entity 
detection. This table also shows the dependency 
of the two entity detection and categorization 
steps. Errors in the entity boundaries affect the 
quality of categorization. 
Table 5 details the scores for sub-task 2. The 
prediction of location relations remains a 
difficult problem even with the entities being 
given. There are two reasons for this. First, there 
is high diversity of bacteria and locations. The 
many mentions of different bacteria and 
locations in the same paragraph make it a 
challenge to select the right pairing among 
candidate arguments. This is particularly true for 
the PartOf relation compared to the Localization 
relation (columns 5 and 6). All systems obtained 
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a recall much lower than the precision, which 
may be interpreted training data overfitting. 
 

Participant Rec. Prec.  F1  
F1 

PartOf 
F1 

Loc. 
 TEES 2.1  0.28 0.82  0.42  0.22 0.49 
 IRISA  0.36 0.46  0.40  0.2 0.45 
 Boun  0.21 0.38  0.27  0.2 0.29 
 LIMSI  0.4 0.19  0.6  0.0 0.7 

Table 5. Scores of Sub-task 2 for the BB Task. 

The second challenge is the high frequency of 
anaphora, especially with a bacteria antecedent. 
For BioNLP-ST 2011, we already pointed out 
that coreference resolution is critical in order to 
capture all relations that are not expressed inside 
a sentence. 

Participant Rec.  Prec.  F1  

 TEES 2.1 0.12 
(0.41) 

0.18 
(0.61) 

0.14  
(0.49) 

 LIMSI 0.4 
(0.9) 

0.12 
(0.82) 

  0.6  
(0.15) 

Table 6. Scores of Sub-task 3 for the BB Task. 
(the relaxed scores are given in parentheses.) 

The results of sub-task 3 (Table 6) may appear 
disappointing compared to the first two sub-tasks 
and BB’11. Further analysis shows that the 
system scores were affected by their poor entity 
boundary detection and the PartOf relation 
predictions. In order to demonstrate this we 
computed a relaxed score that differs from the 
primary score by: 
- removing PartOf relations from the reference 

and the prediction; 
- accepting Localization relations even if the 

Bacteria entity boundaries  do not match; 
- removing the penalty for the incorrect 

boundaries of Habitat entities. 
This relaxed score is equivalent to ignoring 
PartOf relations and considering the boundaries 
of predicted entities as perfect. The result is 
exhibited in Table 6 between parentheses. 
The most determinant factor is the relaxation of 
Bacteria entity boundaries because errors are 
severely penalized. An error analysis of the 
submitted predictions revealed that more than 
half of the rejected Localization predictions had 
a Bacteria argument with incorrect boundaries.  

7.2 Systems description and result analysis 

The participants deployed various assortments of 
methods ranging from linguistics and machine 
learning to hand-coded pattern-matching. Sub-

task 1 was handled in two successive steps, 
candidate entity detection and category 
assignment. 

Entity detection. 
The approaches combine  
(1) the use of lexicons (IRISA and LIMSI), 
(2) then text analysis by chunking (IRISA), 

noun phrase analysis (Boun), term analysis 
by BioYaTeA (LIPN) and Cocoa entity 
detection (LIMSI),  

(3) with additional rules (TextMarker by LIPN) 
or machine learning (CRF by LIMSI) for the 
adaptation to the corpus.  

The LIMSI system combining Cocoa entity 
detection (BioNLP supporting resource) with 
CRF obtained the best result, 11 points over the 
less linguistics-based approach of IRISA as 
shown in Table 4.  

Assignment of categories to entities. 
It was mainly realized using hand-coded rules 
(LIMSI, Boun), machine learning with Whisk 
(LIPN) or a similarity between ontology labels 
and the text entities (IRISA). It is interesting to 
note that although the approaches are very 
different, the three types of methods obtained 
close results ranging from 0.35 to 0.38 SER, 
apart one outlier. 

Prediction of relations. 
Sub-task 2 was completed by applying hand-
coded rules (LIMSI, Boun), that were much less 
successful than the two machine-learning-based 
approaches, i.e. kNN by IRISA and multi-step 
SVM by TEES-2.1. In the case of TEES-2.1 
attributes were generated by McCCJ parses, 
which may explain its success in the prediction 
of PartOf relations that is 20 point over the 
second method that did not use any parsing. 

Prediction of entities and relations. 
Sub-task 3 was completed by LIMSI using the 
successive application of its methods from sub-
tasks 1 and 2. TEES-2.1 applied its multi-step 
SVM classification of sub-task 2 for relation 
prediction completed by additional SVM steps 
for candidate entity detection. 
These experiments allow for the comparison of 
very different state-of-the-art methods, resources 
and integration strategies. However the tight gap 
between the scores of the different systems 
prevents us from drawing a definitive 
conclusion. Additional criteria other than scores 
may also be taken into account: the simplicity of 
deployment, the ease of adaptation to new 
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domains, the availability of relevant resources 
and the potential for improvement. 

8 Conclusion 

After BioNLP-ST’11, the second edition of the 
Bacteria Biotope Task provides a wealth of new 
information on the generalization of the entity 
categorization methods to a large set of 
categories. The final submissions of the 5 teams 
show very promising results with a broad variety 
of methods. The introduction of new metrics 
appeared appropriate to reveal the quality of the 
results and to highlight relevant contrasts. The 
prediction of events still remains challenging in 
documents where the candidate arguments are 
very dense, and where most relations involve 
several sentences. A thorough analysis of the 
results indicates clear directions for 
improvement.  
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