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Abstract
We describe work aimed at building commonsense knowledge by reading word definitions using deep 
understanding techniques. The end result is a knowledge base allowing complex concepts to be rea-
soned about using OWL-DL reasoners. We show that we can use this system to automatically create a 
mid-level ontology for WordNet verbs that has good agreement with human intuition with respect to 
both the hypernym and causality relations. We present a detailed error analysis that reveals areas of 
future work needed to enable high-performance learning of conceptual knowledge by reading.

1. Introduction

Most researchers agree that attaining deep language understanding will require systems that have 
large amounts of commonsense knowledge. Such knowledge will need to be expressed in terms that 
support semantic lexicons as used by parsing systems, with concept hierarchies and semantic roles, 
and provide knowledge required for disambiguation as well as deriving key entailments. While there 
have been many attempts to hand-build such knowledge, most notably within the Cyc project (Lenat, 
1995), as well as ontology-building efforts such as SUMO (Niles & Pease, 2001), GUM (Bateman et 
al., 1995), DOLCE (Gangemi et al., 2002) and EuroWordNet (Vossen, 1998), these fall short of en-
coding the range and depth of needed knowledge. This motivates work in building a commonsense 
knowledge base automatically from reading online sources. Learning by reading offers the opportu-
nity not only to amass a significant knowledge base for processing online sources, but also allows for 
learning on demand - i.e., looking up something in a dictionary or Wikipedia when needed.

Recently, there has been significant interest in acquiring knowledge using information extraction 
techniques (e.g., Etzioni et al, 2011; Carlson et al, 2010). Such work, however, remains close to the 
surface level of language - involving mostly uninterpreted words and phrases and surface relations 
between them (e.g., is-a-subject-of, is-an-object-of), or a limited  number of pre-specified relations. In 
addition, information extraction tends to focus more on learning facts (e.g., Rome is the capital of It-
aly) than conceptual knowledge (e.g., kill means cause to die). 

We have been exploring the feasibility of building extensive knowledge bases by reading definitional 
sources such as online dictionaries and encyclopedias such as Wikipedia. So far, we have focussed on 
what knowledge can be derived by reading the glosses in WordNet (Fellbaum, 1998). This is a good 
start for the project for several reasons. First, WordNet is the most used lexical resource in computa-
tional linguistics, and so a knowledge base indexed to WordNet would be most readily accessible for 
use in other projects. Second, a significant portion (i.e., about 50%) of the content words in WordNet 
glosses have been sense tagged by hand, thus giving us considerable help on tackling the word sense 
disambiguation problem. And third, WordNet has hand-built semantic structures, such as the hy-
pernym and troponym hierarchies, as well as tagged relations such as cause, and part-of, which give 
us a hand-coded standard to compare against. While most previous work on extracting knowledge 
from WordNet has focused on exploiting these hand-built relations, we focus solely on what can be 
extracted by understanding the glosses, which consist of short definitions (e.g., kill: cause to die) and 
a few examples (e.g., This man killed several people when he tried to rob a bank), and use the hand-
built relations for evaluation. The goal is a system that is not WordNet specific, but could be used on 
any source of definitional knowledge. This projects shares some of the same goals with the work of 
Nichols et al. (2005), who convert definitions from a machine readable dictionary of Japanese into 



underspecified semantic representations using Robust Minimal Recursion Semantics (Frank, 2004) 
and construct an ontology based on extracted hypernyms and synonyms.

While many complain about WordNet, it is an unparalleled lexical resource. Attempts to use WordNet 
as an ontology to support reasoning have mainly focussed on nouns, because the noun hypernym hier-
archy provides a relatively good subclass hierarchy (e.g., Gangemi et al. 2003). The situation is not 
the same for verbs however. Verbs in WordNet have no organization into an ontology of event types in 
terms of major conceptual categories such as states, processes, accomplishments and achievements 
(cf. Vendler 1957).  Instead, WordNet has a set of 15 semantic domains that serve as unique beginners 
for verbs, such as verbs of motion and verbs of communication. The verbs are then organized around 
a troponym hierarchy - capturing manner modifications (e.g., destroy is a killing done in a particular 
way).  Fellbaum (1998) argues against a top-level verb distinction between events and states, or be 
and do as suggested in Pulman (1983), for several reasons. A goal of WordNet was to reflect human 
lexical organization, and there is a lack of psycholinguistic evidence that humans have strong associa-
tions between abstract concepts such as do and more specific verbs. This lack of a hierarchical mid-
level1 ontology for events creates a significant obstacle to unifying WordNet with ontologies that are 
built to encode commonsense knowledge and support reasoning. 

In this paper, we report on work that attempts to address this problem and bring formal ontologies and 
lexical resources together in a way that captures the detailed knowledge implicit in the lexical re-
sources. Specifically, we focus on building an ontology by reading word definitions -- and use Word-
Net glosses as our test case for evaluating the feasibility of doing so. It is important to remember here 
that our goal is to develop new techniques for building knowledge bases by reading definitions in 
general, and our work is not specific to WordNet, though we use WordNet for evaluation.

It is always difficult to evaluate the usefulness and correctness of ontologies.  We resort to using sev-
eral focussed evaluations of particular types of knowledge using human judgement. In some of these 
cases, we find that WordNet itself provides some information related to these aspects, so we can com-
pare the coverage and accuracy of our automatically constructed ontology with the explicitly coded 
information in WordNet. For example, we can evaluate the coverage of our event hierarchy by com-
paring to the WordNet troponym hierachy, and we can compare the causal relationships we derive 
between events with the explicitly annotated cause relations in WordNet. 

2. Encoding Knowledge in WordNet Glosses

There have been several prior attempts to process glosses in WordNet to produce axioms that capture 
entailments. For the most part, these representations are fairly shallow, and look more like an encod-
ing of the syntactic information in a logical notation, with each word represented as a predicate. Fur-
thermore, some of the encodings resist a formal interpretation. For instance, the representations in 
eXtended WordNet (Harabagiu et al. 2003) contain variables that are free, predicates that have vari-
able arity, and lack a principled representation of logical operators, particularly disjunction. As such, it 
cannot support sound inference procedures. Furthermore the predicates are just words, not disambigu-
ated senses. Clark et al. (2008) produce a representation where the predicates are senses, but share 
many of the other weaknesses of eXtended WordNet. Agerri & Peñas (2010) resolve a number of 
these issues and generate intermediate logical forms that have no free variables nor unconnected 
predicates in the definitions, but the formalism still resembles an encoding of syntax as opposed to a 
semantic representation. As an example, Figure 1 shows the representation generated for the definition 
of the adjective bigheaded as overly conceited or arrogant.  It is not clear what the semantics of the 
encoding of disjunction (i.e., conj_or(x3,x5)) plays in the definition, as it appears that both modifiers 
conceited  and arrogant appear in parallel amod relations to the variable x1. It is hard to imagine an 
inference mechanism that would handle the disjunction correctly given this representation.

1 we distinguish between the upper ontology (identifying the fundamental conceptual distinctions underlying 
knowledge), the mid-level ontology (capturing general knowledge of events), and the domain ontology, captur-
ing specific knowledge about particular domains.



something(x1) ^ amod(x1,x3) ^ amod(x1,x5) ^ overly(x2) ^ conceited(x3)

^ advmod(x3,x2) ^ conj_or(x3,x5) ^ arrogant(x5)

Figure 1: Agerri & Peñas (2010) representation of the gloss “overly conceited or arrogant”

Building a good ontology requires more than natural language processing--it requires sophisticated 
reasoning to identify subsumption relations implicit in the definitions. We pick our target formalism 
for the ontology to be description logic, specifically OWL, and use its associated reasoners to com-
pute the subsumption relations. As an example, we encode the definition of bigheaded as

bigheaded ⊑ ∀_of.(person) ⊓ ((conceited ⊓ ∀_of -1.(degree-modifier and overly)) ⊔ arrogant)

i.e., bigheaded is a predicate that applies to people, and which is a subclass of the union of things that 
are conceited (with degree modifier overly) with things that are arrogant. Note that OWL allows types 
defined by relations and their inverses: ∀_of.(person) is the class of all objects that are in the domain of 
an of relation with only people (i.e., person) in the range, whereas ∀_of -1.(person) would be the class of 
all objects that are in the range of a relation with only person in the domain.  While description logic 
is less expressive than first order logic, our experience has shown that it provides a good formalism 
for capturing much of the content in definitions and produces a representation that supports provably 
tractable inference about hierarchical relationships over complex types, making it suitable for encod-
ing ontologies.

3. Parsing Glosses

We parse WordNet glosses with a slightly modified TRIPS parser (Allen et al., 2008). The TRIPS se-
mantic lexicon provides information on semantic roles and selectional restrictions for about 5000 
verbs, and the parser constructs a semantic representation of the language that is rich enough for rea-
soning. TRIPS has already shown promise in parsing WordNet glosses in order to build commonsense 
knowledge bases (Allen et al., 2011). The logical form is a graphical formalism that captures an 
unscoped modal logic (Manshadi et al. 2008).  Figure 2 shows the logical form graph for the defini-
tion of kill as to cause to die. The graph consists of nodes that specify the word senses for each word 
(both its sense in the TRIPS ontology and the WordNet Sense) and quantification information, and 
relations between the nodes are labelled with semantic roles. The IMPRO nodes are derived from the 
gaps in the definition and become the arguments for the new concept, namely kill%2:35:002.

WordFinder

To attain broad lexical coverage beyond its hand-defined lexicon, the TRIPS parser uses input from a 
variety of external resources. WordFinder is a subsystem that accesses WordNet when an unknown 
word is encountered. The WordNet senses have hand-built mappings to semantic types in the TRIPS 
ontology, although sometimes at a fairly abstract level. WordFinder uses the combined information 
from WordNet and the TRIPS lexicon and ontology to dynamically build lexical entries with ap-
proximate semantic and syntactic 
structures for words not in the core 
lexicon.

WordFinder offers a powerful tool for 
increased lexical coverage. However, 
the information in entries constructed 
by WordFinder is frequently under-
specified, so the parser must deal with 
significantly increased levels of ambi-
guity when dealing with dynamically 
constructed words. There are several 

2 We use the WordNet sense key notation throughout, which uses three values to identify a sense: kill%2:35:00 
is a verb (2),  is a verb of contact (35), and has a unique identifier (00) within this group.

(SPEECHACT DEFINITION)

(F (:* CAUSE-EFFECT cause%2:36:00))

(IMPRO (:* REFERENTIAL-SEM entity%1:03:00))

(IMPRO (:* REFERENTIAL-SEM entity%1:03:00))

cause
patient (F (:* DIE die%2:39:00))

effect

experiencer

Figure 2: TRIPS parser output for definition “to cause to die”



settings that can be used to control how WordFinder is used during parsing. First, users can specify 
the number of senses returned from WordNet. WordNet may have multiple fine-grained senses for a 
given word, but depending on the application, selecting the most frequent senses listed in WordNet 
will suffice (cf. McCarthy et al. 2004).

Word Sense Disambiguation

As we mentioned earlier, one thing that makes WordNet glosses a good experimental dataset for our 
initial experiments is that many of the words in the glosses have been hand-tagged with their word 
senses (though see section 6 for an analysis of errors in the tagging). The remainder of the words, 
however, need to be tagged. We use a set of heuristic strategies to identify the WordNet senses for 
these words. First, for words that appear in the hand-built TRIPS lexicon, we simply use these TRIPS-
WordNet mappings to identify the possible WordNet senses for each TRIPS sense, and then have the 
parser select the best interpretation in its usual manner, based on syntactic templates possible for each 
word, the selectional preferences, and finally frequency-based preferences among the senses. For 
words not in the TRIPS lexicon, we generate lexical entries for a small number of WordNet senses 
using WordFinder, drawing first from the Core WordNet senses (Boyd-Graber et al, 2006), and/or the 
most frequent senses (i.e., the first senses listed in WordNet). 

4. Building Event Classes from Definitions

Because many glosses are complex, often highly elliptical and hard to parse, we depend on the ability 
of the TRIPS parser to produce semantically meaningful fragments when a full spanning parse cannot 
be found. In addition, we apply several strategies to create simplified definitions that are used as 
backup in case the full definition doesn’t parse: These simplifications are

• if the definition starts with “verb or verb ....”, truncate the first two words
• If the definition contains “or”, “and”, or comma, truncate the definition starting at that token

We parse the full definition and any simplifications produced, and then find the fragment or full inter-
pretation that covers the greatest amount of the gloss while producing a definition that is semantically 
compatible with the target word (e.g., verbs must map to events, adjectives must map to predicates). 
Note that natural definitions, including those in WordNet, sometimes indicate necessary conditions 
while at other times indicate necessary and sufficient conditions, and do not reliably signal such cases. 
For the present, we treat all definitions as specifying only necessary conditions. Because of this, when 
we define a sense based on only part of its definition, it typically still produces useful knowledge.

We identify the likely arguments (i.e., semantic roles) of the concept using signals in the logical form 
such as the presence of gaps and the use of a few indefinite pro-forms such as someone, somewhere, 
etc.  Note that most roles are not explicit in the definition. For example, the definition of kill,  cause to 
die, does not explicitly express the subject or the object of the cause and the LF recovers this missing 
information, producing something like <something> causes <something> to die. We identify the se-
mantic roles for these arguments by checking the TRIPS lexicon for the roles involved in the verb 
cause, or if there is no explicit entry in the lexicon, we use WordFinder to derive the likely roles by 
employing the WordNet to TRIPS ontology mapping. In this case, the roles for kill%2:35:00 would be 
identified as AGENT  and PATIENT. 

To refine the roleset and compute selectional restrictions, we then try to parse the examples provided 
in WordNet, plus additional examples involving the current word sense being defined from the SEM-
COR corpus3. These examples provide some evidence as to the range of syntactic templates and se-
mantic roles that can occur with the verb, as well 
as providing examples of possible fillers. We 
compute a selectional preference for each role by 
attempting to find the most common subsumer of 
all the examples in either the WordNet hypernym 

3 http://www.cse.unt.edu/~rada/downloads.html#semcor

New Concept Name: kill%2:35:00
Roles:	
 AGENT  person%1:03:00
	
 PATIENT organism%1:03:00  
Definition: LF graph in Figure 2

Figure 3: The information derived for the concept 
corresponding to kill%2:35:00



hierarchy, or in the TRIPS ontology (and then mapping from this value back to the equivalent Word-
Net senses). At the end of this first phase of processing the definition, we have derived the information 
shown in Figure 3 for kill%2:35:00.

The next phase is to convert this information into OWL DL. In most cases we are performing a one-
to-one mapping from the LF to OWL where concepts in the LF become OWL classes and roles are 
mapped to corresponding OWL object role restrictions. For example, we begin converting 
kill%2:35:00 with the selectional preferences by asserting that it is a subclass of the expression: 
∀_agent.person%1:03:00 ⊓ ∀_patient.organism%1:03:00 (i.e., all things that have agents that are 
person%1:03:00 and have patients that are organism%1:03:00). Note that the we can use the more in-
formative universal restriction instead of an existential because we assume that verbs have at most 
one of each core role. 

Next, we handle the conversion of the LF graph of the gloss shown in Figure 2. We begin at the head 
of the definition, the CAUSE-EFFECT node, by creating a new OWL class that uniquely represents 
that node, we will call C1, and assert, kill%2:35:00 ⊑  C1. Next we define C1 simply as the subclass of 
the conjunction of its WordNet class, cause%2:36:00, and its semantic restrictions. To translate the 
:EFFECT role we first create a new class, D1, and then create the object role restriction ∀_effect.D1. 
Doing this for each of C1's roles produces the axiom 

	
 C1 ⊑ cause%2:36:00 ⊓ ∀_effect.D1 ⊓ ∀_patient.R1 ⊓ ∀_cause.R2. 

We then recursively define any new classes; in this example, D1 ⊑ die%2:39:00 ⊓ ∀_experiencer.R1 , R1 
⊑ entity%1:03:00, R2 ⊑ entity%1:03:00.

We next must handle the multiple references to R1. The LF treats each object as a unique instance so 
when it is referred to more than once in an LF we know that each reference indicates the same in-
stance. When we convert the LF to OWL the objects are no longer instances but are instead classes. In 
the above example, we no longer have the meaning that the patient and experiencer are the same indi-
vidual - only that they belong to the same class, R1. In order to capture the intended meaning we in-
troduce an OWL data property called varID which uniquely names the reference. varID acts as an in-
dicator that when the classes are grounded those with the same varID are the same OWL instance. 
Using this methodology, we have the final set of assertions for the definition:
! kill%2:35:00 ⊑ ∀_agent.person%1:03:00 ⊓ ∀_patient.organism%1:03:00 ⊓ C1
! C1 ⊑ cause%2:36:00 ⊓ ∀_effect.D1 ⊓ ∀patient.(R1 ⊓ varID=”r1”) ⊓ ∀_cause.R2 
! D1 ⊑ die% 2:39:00 ⊓ ∀_experiencer.(R1 ⊓ varID=”r1”)
! R1 ⊑ entity%1:03:00 
! R2 ⊑ entity%1:03:00
Note that we are using a hierarchical roleset similar to the combining of VerbNet and LIRICS roles as 
described in Bonial et al (2011), with slight variations in the role names. Specifically, the Agent role is 
a specialization of the Cause role (i.e., the axiom agent ⊑ cause is in the OWL KB), thus we know that 
the the agent of kill%2:35:00 is the same as the cause role in the definition of C1.

Modifiers are indicated with a relation :MOD (see  Figure 
4) that indicates the presence of a backlink with semantic 
meaning but do not add any semantics itself. We remove 
these cycles and replace them with inverse object roles 
meant to represent the backlink.  For the example, the 
concept defined in Figure 4 would be a subclass of 
die%2:39:00 ⊓ ∃_OF-1.quickly%4:02:00. Notice that modifi-
ers use the less restrictive existential rather than the uni-
versal since we do not restrict objects to have only one 
modifier. This is a very simple example. The same tech-
nique works for more complex cases like dealing with 
relative clauses.

(F (:* DIE die%2:39:00))

(F (:* SPEEDY quickly%4:02:00))

mod
of

(SPEECHACT DEFINITION)

Figure 4: An LF graph with a modifier



Logical operators such as conjunction, disjunction and negation are converted directly into the corre-
sponding OWL operators, allowing the conversion of arbitrarily complex logical forms.

The translation process described above captures enough of the meaning in the LF to support the sys-
tem described in the rest of the paper but it does not capture all the possible entailments one might be 
able to derive. In the future, we would like to encode core semantic roles in the gloss (not the ones 
found in selectional preferences) as the more appropriate exactly-one cardinality constraint coupled 
with an existential constraint. For instance, ∀_effect.D1 (if there is an effect then it is of type D1) be-
comes =1_effect.⊤  ⊓ ∃_effect.D1 (there is only one effect and it is of type D1). We are also exploring 
how to better handle negation in glosses. Consider the gloss for acquitted, “declared not guilty of a 
specific offense or crime; legally blameless”. What “not guilty”  actually indicates is the opposite of 
guilty, i.e., innocent. While it would be correct to say that the _effect of the declare action is of the 
class ¬guilty, it isn't very useful. A lot of unrelated things could be ¬guilty: dog, blue, running, etc.

5. Building a Mid-Level Ontology for WordNet Verbs

As mentioned earlier, defining a mid-level ontology was not one of the goals of the WordNet design-
ers. The hierarchical organization of verbs is the troponym hierarchy, which captures manner speciali-
zation (e.g., beating is a type of striking which is a type of touching). The sense touch%2:35:00 is a 
top-level sense and has no more abstract characterization. There are 559 such synsets in WordNet that 
have no hypernyms, and these concepts range from concepts that would serve as useful primitives 
(like touch, breathe) to more specific senses such as three senses of the verb keep up (prevent from 
going to bed, keep informed, and maintain a required pace or level). The sense of kill we have used as 
an example is also one of the top-level verbs. In addition, over 200 of these verbs have no troponyms 
either, leaving these sense essentially unrelated hierarchically to any other verbs in WordNet.

The idea underlying this experiment is that we can build a mid-level ontology by reading the glosses 
of these words. The consequence of this is that each of the previous top-level verb synsets will now 
have a superclass concept, e.g., kill%2:35:00 will now have a superclass of cause%2:36:00 ⊓ 
∃_effect.die%2:30:00  (i.e., “cause to die”) which of course is a specialization of the general class 
cause%2:36:00. Note that while many linguistic ontologies capture only subclass links between 
atomic types, we are generating much richer information that captures the definition in terms of a 
complex type. In this example, we not only have derived a hierarchical relation between kill%2:35:00 
and cause%2:36:00, but also the causal relationship between kill%2:35:00 and die%2:30:00. 

After this first iteration, we will have introduced a new set of word senses, both verbs and non verbs, 
that have not yet been defined. So we then iterate using the same procedure on this new set of words 
to define them. In principle, we continue this iteration as long as new undefined senses are introduced. 
In the evaluation described below, we stopped after twelve iterations and completed the remaining 
undefined terms by adding the hypernym chain for the concept.  Table 1 shows the number of new 
senses that were introduced with each iteration. It takes another dozen iterations, each one adding just 
a few verbs in order to exhaust the generation of new undefined senses.  One might think that this 
continual defining of verb senses would produce a full event hierarchy rooted at some “mother”  verb-
sense! This does not happen however, because of the presence of cycles in the definitions. Circular 
definitions “short-circuit”  the identification of more abstract classes and tend to collapse sets of syn-
sets together. We examined these circular classes by hand and found that most result from errors in the 
sense tagging provided in the Princeton WordNet Gloss Corpus. By correcting these tagging errors, 
we can avoid the unwanted circularities. Other cycles appear to cluster around core definitional primi-
tives that simply are hard to define in any formal decompositional way, and we leave them as they are. 

0 1 2 3 4 5 6 7 8 9 10 11 12
# new verb 

senses 559 255 169 150 99 75 66 41 34 29 15 15 10

# new senses 559 853 988 970 748 543 437 318 230 163 106 64 46

Table 1: The number of new senses introduced with each iteration



We discuss our analysis of the cycles generated from processing the top-level WordNet verb classes in 
a later section. The evaluation examines systems with and without these word sense corrections.

Empirical Evaluation
While we have built a knowledge base containing significant amounts of conceptual information by 
reading the glosses, here we focus on evaluating just two aspects of this knowledge base. First is the 
hierarchical relations between the bare WordNet classes, which is a mid-level ontology for WordNet 
verbs. The second involves causal relationships that can be derived from the knowledge. Some of 
these are trivial (e.g., kill%2:35:00 causes die%2:39:00), while others are revealed from inference. 
For instance, the subsumption algorithm will compute that the verb class air%2:32:03 causes the 
event of something becoming known%3:00:00. There is much more information in this knowledge 
base than we are going to evaluate here. For instance, it contains knowledge about the changes of 
state and transitions that serve to define many verbs, and in Allen et al (2011) we demonstrate an abil-
ity to perform temporal inference using the knowledge base. But in this paper we focus solely on 
evaluating just the hierarchical and causal relations between bare WordNet classes in order to enable a 
direct comparison with WordNet.

We randomly selected 6N (N=8) pairs of verb concepts (A, B) from those that our system successfully 
processed (columns 0-11 in Table 1), such that at least N of them fell into each of the four categories 
“{WordNet, our OWL-DL knowledge base} says that A {is a kind of, causes} B”, and such that 2N 
pairs were unrelated in either source. We then presented the pairs in different randomized orders to a 
set of human judges and asked them to identify whether there was a causal or hierarchical relation 
between the events, or whether they were unrelated. As judges, we used six researchers who had been 
involved with the project as well as five people who have no relation to the work. We computed the 
inter-rater agreement (IRA) using Cohen’s kappa score (Cohen, 1960). Kappa was computed for each 
pair of judges, then averaged to provide a single index of IRA (Light, 1971). The resulting kappa indi-
cated substantial agreement, κ = 0.63 (Landis & Koch, 1977). In order to eliminate the cases where 
their was no consensus among the judges, we only consider the cases in which eight or more judges 
agreed, which was 83% of the samples, and used the majority decision as the gold standard. We can 
then evaluate the accuracy of the hand-coded relations in WordNet against two versions of our sys-
tem: one processing the raw glosses in WordNet and the other with 79 corrected word sense tags out 
of over 5000 glosses processed. 

The precision and recall results are shown in Table 3. The most important property we desire is that 
the knowledge produced is accurate, i.e., the precision score. This reflects the ability of the systems to 
produce accurate knowledge from processing glosses. If precision is high, we could always improve 
recall by processing more definitional sources. We see that the precision scores for the system gener-
ated relations are quite good, over 80% for the hypernym relations and a perfect 100% for the causal 
relations.

Regarding WordNet, we see that the hand-coded relations had a 100% precision, indicating that the 
structural information in WordNet is highly accurate. The recall numbers, however, show that a sig-
nificant number of possible relations are missed, especially for causal relations. This suggests that it is 
worth exploring whether the information implicit in the glosses is redundant given the hand-coding, 
or whether they serve as an important additional source of knowledge. We can explore this by com-
paring the sets of relations produced by the system with the relations in WordNet. If they overlap sig-
nificantly, then the hand-built WordNet relations are fairly complete. If they are disjoint, then the 
glosses contain an important additional source of these structural relations. The analysis is summa-
rized in Table 4. We look at each relation proposed by WordNet or the system, and look at the overlap 

Class Definition
Air%2:32:03 be broadcast%2:32:01

broadcast%2:32:01 broadcast%2:32:00 over the airwave%1:10:00, as in radio or television%1:06:01
broadcast%2:32:00 cause to become widely known%3:00:00

Table 2: The definitions used to infer that ‘airing something’ causes it ‘to become known’



and disjoint cases. The data show a surprising disjointness between what is explicitly coded in Word-
Net and the information derived from the glosses.  Out of 11 cases of causal relations, there is only 
one overlap between WordNet and the system, and the remaining relations are equally divided, with 
five causal relations in WordNet that were not derivable by the system, and five causal relations the 
system derived that are not coded in WordNet. Thus there is significant causal knowledge derivable 
from the glosses that is not currently encoded in WordNet. With hypernyms, results are similarly dis-
joint, with only three out of thirteen cases both encoded in WordNet and derived by the system. 

6. Error Analysis

Consider the cases where a hand-coded hypernym relation was not derived from the definitions.  In 
general, the most common reasons for this include problems in parsing and an inability to reason from 
the provided definitions to the desired entailments.  Interestingly, virtually all the errors in the evalua-
tion set are problems the reasoning side. Some of these are because the definitions simply don’t pro-
vide enough information, and in other cases the system lacked of an ability to resolve vagueness in the 
definitions. For instance, by failing to make a connection between “deprive of life”  and “cause to die”,  
the system misses that annihilate%2:30:00 is a subclass of kill%2:35:00. In another case, it fails to 
note the relationship between compose and create due to the definition creating a disjunction that can-
not be reasoned through. Specifically,  compose%2:36:01 is found to be a subclass of the class (OR 
create%2:36:00 construct%2:36:01). In other cases, the conclusion is not found because of sense tagging 
errors. For instance, the system cannot conclude that corrupt%2:41:00  is a subclass of alter%2:30:01 
in either version of the system. The system running on uncorrected tags ended in a circular definition 
of corrupt%2:41:00. The system running with corrected tags infers that corrupting is making a mess 
of someone morally, and cannot relate this to causing a change in someone.  As a final example, defi-
nitions sometimes involve phrasal verbs that are not defined in WordNet. For instance, posit%2:32:02 
is defined as “put%2:35:00 before”  where the system knows nothing about a sense of put before as a 
verb of communication, and this phrasal verb is not defined in WordNet.

The one false positive in the evaluation was when the system derived that excogitate%2:36:00, de-
fined by “come up with (an idea, plan, explanation, theory, or principle) after a mental effort”, is a 
subclass of execute%2:36:00, defined as “put into effect”. This conclusion results from a long chain 
of reasoning through definitions of come up with, to bring forth, to bring, to take and finally to 
accomplish%2:36:00, which is in the same synset as execute%2:36:00. It is hard to identify a specific 
flaw in this chain, but the human judges resoundingly judged this pair as being unrelated.

In general, exploring the results beyond this specific evaluation, the most common problem found was 
word sense tagging errors, mostly by the system on words that were not tagged in the glosses (and one 

Relation WordNet System count
Human JudgementHuman Judgement

Relation WordNet System count
yes no

Causation

Yes Yes 1 1 0

Causation
Yes No 5 5 0

Causation No Yes 5 5 0Causation

No No 29 0 29

Hypernym

Yes Yes 3 3 0

Hypernym
Yes No 7 7 0

Hypernym No Yes 3 2 1Hypernym

No No 27 0 27

Table 4: Comparing the Redundancy between WordNet & System-generated relations

Source Hypernym        Hypernym        Hypernym        Causal               Causal               Causal               
P R F1 P R F1

Processing Raw Glosses 80% 33% 47% 100% 36% 53%
Processing Corrected Glosses 83% 42% 56% 100% 55% 71%
Explicit WordNet relations 100% 83% 91% 100% 55% 71%

Table 3: Precision and Recall Scores Against Human Judgement



hand-tagged in the WordNet files).  Most of these were light verbs, specifically have, give and put, and 
generally the system tagged a more common concrete sense (e.g., have as possession) rather than the 
abstract causal sense (e.g., have as causing something). We believe such errors can be reduced by spe-
cializing the WSD algorithm to more specifically bias the senses useful in definitions. Other cases 
arose because the system identified the incorrect semantic roles in the definition, thereby losing the 
required entailments, and the system has significant problems in getting the right scoping for defini-
tions containing disjunctions. We explore the sense tagging issues in more detail below.

Word Sense Corrections

As mentioned before, the initial, automatically generated ontology contained a number of senses with 
circular definitions that prevented deriving desired entailments.  For example, we have in WordNet 
the following definition (showing only the relevant sense keys) for the synset  stick%2:35:00: 
(stick%2:35:00 to firmly).

In general, cycles indicate equivalence of the senses involved and logically collapse the synsets into 
one single class. We manually examined these cycles and determined that many of their definitions 
had been mis-tagged, and used the follow strategies to break many of the cycles.  
• Selecting an Alternative Sense: We re-tagged the offending  lemma with a different sense of the 

lemma.  In the example of stick%2:35:00:: above,  its definition should refer to a more basic sense 
stick%2:35:01:: (come or be in close contact with; stick or hold together and resist separation) 

•  Replacing with a Hypernym: There may not always be an alternative sense that seems appropriate.  
We replaced some of these circular senses with their hypernyms.  For the circular definition 
cast_away%2:40:00: (throw_away%2:40:00 or cast_away%2:40:00), we replaced both words in 
the definition with their (common) hypernym: cast_away%2:40:00: (get_rid_of%2:40:01::)

• Unpacking Phrases: In WordNet phrasal verbs are often defined in entries separate from those of 
their head verbs.  For example, go_into%2:42:00 has its own definition (be used or required for). 
However, WordNet also includes an entry for the non-phrasal-verb sense of “go into” 
go_into%2:38:00:  (to come or go_into%2:38:00). In this second example, “go into” literally 
means “go” + “into”.  We broke the phrase into these two components in the definition: 
go_into%2:38:00: (to come or go%2:38:00 into)

• Simplifying Definitions: Some definitions contain elaborate, detailed and slightly redundant infor-
mation.  For example: pronounce%2:32:01: (speak, pronounce%2:32:01, or utter in a certain way)  
Logically, with one of the disjuncts being identical to the sense being defined, the definition is 
vacuous.  However, here “speak”, “pronounce” and “utter” are closely related.  We could break the 
cycle by deleting “pronounce” in the definition.  Arguably this strategy could lose some informa-
tion, but we only apply this simplification when the disjunct is nearly synonymous with some of the 
other elements in the definition.

There remain, however, some cycles that represent core concepts not easily reducible to other even 
more basic concepts.  For example, the four-synset cycle containing

	
 change%2:30:00 < undergo%2:39:04 < pass%2:38:00 < go%2:38:00 < change%2:30:00

are all related to the concept of change.  We elected not to contrive a re-definition but rather leave 
these cycles in place.  Such cycles are prime candidates for core concepts that would benefit from be-
ing hand axiomatized in an upper ontology.

7.  Discussion

We have described initial steps in constructing common-sense knowledge bases by reading word defi-
nitions. The focus of this work is to derive conceptual knowledge, i.e., definitions of concepts associ-
ated with word senses, to facilitate deeper language understanding. This stands in contrast to much 
current work on learning by reading, which is focused on building surface level word/phrase relation-
ships. For instance, Etzioni et al (2011) have an impressive system that scans the web and extracts 
surface patterns such as (Starbucks, has, a new logo). NELL (Carlson et al, 2010) derives similar 
knowledge by learning extraction patterns for a predefined set of relations. Neither of these systems 
attempt to disambiguate word senses or construct definitional knowledge. The evaluation is performed 



by human judges who, of course, used their ability to understand natural language in order to validate 
the data (e.g.., picking word senses that make sense).

As a demonstration of the promise of our techniques, we have shown that we can construct a mid-
level ontology for WordNet verbs from the WordNet glosses, starting from the 559 verb senses in 
WordNet that have no hypernym. We evaluate the results using human judges comparing relations 
between word senses in WordNet, where each sense is carefully defined in the evaluation. We have 
shown that the knowledge we derive is not only quite accurate, but is substantially different from the 
information already in the explicitly defined WordNet relations (e.g., hypernym and cause relations). 
As such, our techniques have the potential to produce an expanded set of WordNet style relations that 
could be very useful for improving current techniques that use WordNet as a source of entailments. 

Most prior work linking WordNet to ontologies has involved producing mappings from the synsets 
into an upper ontology, without developing the intermediate detail. For instance, SUMO has a com-
prehensive mapping from WordNet to its upper ontology, but 670 WordNet verb synsets are mapped 
to the single SUMO class IntentionalProcess (3 equivalences and 667 subsumptions), including 
senses as diverse as postdate (establish something as being later relative to something else), average 
(achieve or reach on average), plug (persist in working hard), diet (follow a regimen or a diet, as for 
health reasons), curtain off (separate by means of a curtain) and capture (succeed in representing or 
expressing something intangible). While these links connect WordNet into SUMO, they don’t provide 
significant extra knowledge to enable entailments. Our work can provide links to an upper ontology 
with significant additional structure providing an opportunity for entailment. As an example, Figure 5 
shows a small part of the derived ontology. This encodes such information like forbidding is a form of 
commanding, which involves making someone do something, which itself is a form of causation. With 
each of the concepts along this chain having a detailed definition in the style described in Section 4, 
we can use reasoning systems developed for OWL-DL to draw a rich set of entailments about the con-
sequences of performing a forbidding act.

Much remains to be done to realize our dream of building rich knowledge bases by reading. There are 
short term issues and longer term issues. On the short term, the biggest improvement would result 
from improving word sense disambiguation, especially for the light verbs such as have and go. It is 
not a coincidence that these verbs generally are not tagged in the Princeton Gloss corpus. They are 
difficult to tag, and it is not clear that the senses offered in WordNet always provide the right set of 
choices. We are considering special processing of these abstract senses, possibly encoding them di-
rectly in a hand-built upper ontology. In the longer term, we need to expand our evaluation methods to 
verify that the knowledge derived beyond hypernym and causal relations is accurate and useful. This 
will presumably involve more complex entailment tests. Finally, in the long run, we do not believe 
that effective knowledge bases can be derived entirely from processing individual definitions without 
some inferentially-based “knowledge cleaning”  where raw knowledge is combined from several 
sources, abstracted and revised in order to create more consistent and coherent knowledge.
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Figure 5: A fragment of the event hierarchy derived from the glosses
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