
Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages (MTPIL-2012), pages 149–154,
COLING 2012, Mumbai, December 2012.

Parsing Hindi with MDParser

Alexander Volokh and Günter Neumann
DFKI, Stuhlsatzenhausweg 3, Campus D3_2, 66123 Saarbrücken

alexander.volokh@dfki.de, neumann@dfki.de
ABSTRACT

We describe our participation in the MTPIL Hindi Parsing Shared Task-2012. Our system
achieved the following results: 82.44% LAS/90.91% UAS (auto) and 85.31% LAS/92.88% UAS
(gold). Our parser is based on the linear classification, which is suboptimal as far as the accuracy
is concerned. The strong point of our approach is its speed. For parsing development the system
requires 0.935 seconds, which corresponds to a parsing speed of 1318 sentences per second. The
Hindi Treebank contains much less different part of speech tags than many other treebanks and
therefore it was absolutely necessary to use the additional morphosyntactic features available in
the treebank. We were able to build classifiers predicting those, using only the standard word
form and part of speech features, with a high accuracy.

KEYWORDS : Dependency Parsing, Hindi Dependency Treebank, Linear Classification

1 Introduction

In this paper we describe our participation in the MTPIL Hindi Parsing Shared Task-2012. We
have participated in both auto and gold tracks and achieved the following results: 82.44%
LAS/90.91% UAS (auto) and 85.31% LAS/92.88% UAS (gold). In the gold track, the input
contains tokens with gold standard morphological analysis, part-of-speech tags, chunks and some
additional features. In the auto track, the input contains tokens only with the part-of-speech tags
from an automatic tagger. For both track the requirement was that the same approach/system is
used.

The Hindi dependency treebank, which was provided to the participants, was of an average size:
the training data contained 12041 sentences (268,093 words) and the development data had 1233
sentences (26416 words). However, the training data contained 91 different dependency edge
labels, which is much more than many other treebanks, e.g. English has 56 or German has 46. At
the same time Hindi has 34 different parts of speech, whereas as other treebanks usually have
more: e.g. English – 48 and German – 56. Therefore, the additional features (morphological,
chunk and sentence-level features) available in the treebank are of a very significant importance,
since the dependency edges are harder to predict, because there are so many types and the
information available, i.e. parts of speech, are not so diverse and thus less discriminative.

In this paper we will describe the system MDParser used for the participation. We will therefore
provide details on the parsing and learning approaches used in the system, as well as discuss the
features, especially the additional ones, that we have integrated into our models. We think it is
also important to point out that we have no knowledge of Hindi, we were not able to read the
script or analyse the quality of our output. Therefore that was more or less a blind unmodified
application of our parser, which was primarily designed for English and German, to Hindi.

149

2 Parsing Approach

Almost all dependency parsers can be roughly split into two groups: graph-based and transition-
based. The graph-based parsers assign scores to all possible dependency edges and then search
for the highest-scoring dependency graph. Transition-based systems start at some initial
configuration and perform a sequence of transitions to some final configuration, such that the
desired dependency graph is derived in the process. For languages like English and German both
approaches seem to be quite similar as far as accuracies are concerned, however, the speed of
transition-based systems is higher (Volokh and Neumann, 2012). Therefore we have developed a
transition-based parser.

There are a lot of different transition-based algorithms, which are able to perform the task, and
they differ in many properties. Some of the most important properties are the efficiency,
complexity, projectivity, determinism and incrementality. We use an algorithm based on the
Covington's parsing strategy (Covington, 2000), which to our mind has particularly appealing
properties. It is deterministic, i.e. its decisions during the processing are always final and are
never revised. It is incremental, i.e. there is no need for the whole input to be read in prior to the
computation and only a small look-ahead is necessary for computations, on the contrary to some
other approaches, which consider the whole sentence, when computing the solution. The
projectivity can be allowed or disallowed by changing a single parameter and no additional
solutions are necessary, as it is the case with some other algorithms, which are able to process
projective structures only (e.g. pseudo-projective parsing (Nivre et al., 2005). In case of the Hindi
treebank, which contained a significant amount of non-projective edges, we have allowed non-
projectivity. The complexity of Covington's parsing strategy is O(n2), which is worse than of
some other algorithms in the field, which have linear complexity, e.g. Nivre's arc-standard and
arc-eager algorithms (Nivre, 2006). However, the efficiency of the Covington's algorithm is still
higher, because the worst-case complexity occurs rarely and Covington's parsing strategy allows
an extremely efficient feature extraction (Volokh and Neumann, 2012).

Since transition-based systems deliver their result after a series of transitions, it is important to
know what the inventory of possible transition types is. According to this approach in every
transition the system has to decide whether for a pair of words under consideration there is a
dependency relation or not. This usually corresponds to two possible transitions in case there is a
dependency relation, namely one when the left word is the head of the right word (we will this
transition right-arc) and another one when the right word is the head of the left word (we will call
this transition left-arc). In case there is no dependency relation there are usually also two possible
transitions: one changes the left word to some next word and the other one changes the right
word to the next word. Thus, overall there are four basic transition types.

However, since every dependency relation has to be subsequently labelled with a dependency
type, there are a lot of additional transition types, which are responsible for the labelling process.
There are two fundamental ways how the labelling is done in transition-based systems. The first
one is to treat the tasks of finding dependency edges and labelling them as separate tasks.
Therefore several models are trained in this case. The second one is to combine the tasks and use
one model for both predicting the basic transitions and labelling the edges. Usually, many labels
can be assigned only for left-arc or right-arc transitions, but not for both (e.g. suffixes are always
to the right of their head or the conjunction is always to the right of the first conjunct, whereas
the title is always to the left etc.). When labelling edges is an independent process, this kind of

150

information is lost, unless there are two models, one for labelling edges of each direction.
However, this means that there are overall three models and three classifiers, which makes the
system much slower than when the second option is used and everything is done in one step. We
have used the latter option in our system. This resulted in overall 99 possible transitions for our
parsing algorithm.

3 Learning Approach

During the training phase a transition-based system uses the available gold standard in order to
construct the correct dependency tree and at the same time it learns in which state which
transition is taken. In the application phase, when the gold standard is not available, the system
uses this learned model in order to guide the algorithm during the computation of the result.

There are countless classification approaches, which can be applied to this task. The most
important properties of classifiers used for dependency parsing are: a) whether they are binary or
support real multi-class classification, i.e. do not simply apply a series of binary classifiers for
solving a multi-class task and b) whether they are linear or non-linear.

Most classification approaches support only binary classification and multi-class classification is
solved by constructing a complex classifier with one-vs-all or one-vs-one strategies. As already
mentioned, dependency parsing not only is a multi-class classification task, but also has a very
big number of classes, e.g. 99 in case of this shared task. Constructing a multi-class classifier out
of binary classifiers is tedious and the application is slow. Therefore, it is better to use a real
multi-class classification approach.

A linear classifier identifies the class by a linear combination of all features in a feature vector,
which does not require a lot of computation. One can visualise its operation as dividing one class
from another by drawing a line between them. Of course this assumes that such line can be
drawn, i.e. that the data is linearly separable. Usually this is not the case. A non-linear classifier
often makes use of the method called kernel trick (Aizerman et al., 1964). According to this
method a linear classifier solves a non-linear problem by mapping the original observations into a
higher-dimensional space, where the linear classifier is subsequently used. The mapping is
achieved by applying a kernel function to the feature space. Wherever a dot product is used, it is
replaced with the kernel function. This is much more expensive, but guarantees better
separability.

Considering these properties we have chosen a classification approach, which satisfies our needs
most. The learning strategy MCSVM_SC (linear multi-class support vector machines (Keerthi et
al., 2008) from the package LibLinear (Lin et al., 2008) is to our mind particularly suitable for
dependency parsing. It is particularly fast because it is a linear classifier, which supports real
multi-class classification.

4 Features

Feature models are a major factor for both accuracy and efficiency of a parser. The more features
are present in the training data the better the chance that the learner will find good discriminative
features necessary for accurate predictions. However, the bigger the number of features the more
intensive is the training and the slower the processing. The ideal scenario is thus that the training
data should contain only a relatively small amount of very good features.

151

For many treebanks, e.g. English or German, word form and POS features are usually sufficient
in order to achieve high accuracies. Hindi is different in this respect. The amount of different
POS tags is much smaller and therefore a good system also has to make use of morphological
and other features in order to compensate for that. The different auto and gold tracks visualise the
gap very well: the performance of systems which have the additional features available is
significantly higher.

Therefore it was obvious that we want to use these features. In the gold track it was
straightforward, since the corresponding features are available. For the auto track we have
constructed classifiers, which are able to predict the following features: pers, cat, num, case, gen,
tam, vib, stype and voicetype. The classifiers used the word form and POS information about the
token, for which the features were predicted, as well as the same information for three words
before and after this token. The features usually could be predicted with an accuracy of 97-98%
for all of the above-mentioned functions.

As far as the model for parser is concerned here is the complete list of features we have used
(except for the already mentioned pers, cat, num, case, gen, tam,vib, stype and voicetype
features):

1. wfj → returns the word form of the token j; 2. pj → returns the part of speech of the token j; 3.
wfjp1 → returns the word form of the token j+1; 4. pjp1 → returns the part of speech of the
token j+1; 5. wfjp2 → returns the word form of the token j+2; 6. pjp2 → returns the part of
speech of the token j+2; 7. wfjp3 → returns the word form of the token j+3; 8. pjp3 → returns
the part of speech of the token j+3; 9. wfi → returns the word form of the token i; 10. pi →
returns the part of speech of the token i; 11. pip1 → returns the part of speech of the token i+1;
12. wfhi → returns the word form of the head of the token i; 13. phi → returns the part of speech
of the head of the token i; 14. depi → returns the dependency label of the head of the token i;
15. depldi → returns the dependency label of the left-most dependent of the token i; 16. deprdi
→ returns the dependency label of the right-most dependent of the token i; 17. depldj → eturns
the dependency label of the left-most dependent of the token j; 18. dist → returns the distance
between the tokens j and i. For i=0 the feature returns 0, for the distance 1 the feature returns 1,
for distances 2 or 3 the feature returns 2, for distances 4 or 5 the value 3 is returned, for distances
6, 7, 8 or 9 the value 4 and for all other distances the value 5 is returned; 19. merge2(pi,pip1) →
returns the concatenation of pi and pip1 features. 20. merge2(wfi,pi) → returns the concatenation
of wfi and pi features; 21. merge3(pjp1,pjp2,pjp3) → returns the concatenation of pjp1, pjp2 and
pjp3 features; 22. merge2(depldj,pj) → returns the concatenation of depldj and pj features; 23.
merge3(pi,deprdi,depldi) → returns the concatenation of pi, deprdi and depldi features; 24.
merge2(depi,wfhi) → returns the concatenation of depi and wfhi features; 25.
merge3(phi,pjp1,pip1) → returns the concatenation of phi, pjp1 and pip1 features; 26.
merge3(wfj,wfi,pjp3) → returns the concatenation of wfj, wfi and pjp3 features, 27.
merge3(dist,pj,wfjp1) → returns the concatenation of dist, pj and pjp1 features.

Indexes j and i refer to the right and left words, respectively, examined in each state of the
Covington's algorithm.

5 Performance

As we have already mentioned our system has achieved the following results in the tracks:
82.44% LAS/90.91% UAS (auto) and 85.31% LAS/92.88% UAS (gold).

152

These results are quite worse than what the top systems were able to achieve (up to 93.99%
UAS/87.84% LAS gold; 90.83% LAS/96.37% UAS auto). However, one should keep in mind
that our parser is based on the linear classification, which is suboptimal as far as the accuracy is
concerned. The strong point of our approach is its speed. For parsing development the system
requires 0.935 seconds, which corresponds to a parsing speed of 1318 sentences per second. We
have a used a machine with a dual-core 2.4 GHz processor for computing. The system supports
multithreading and therefore both cores could be used. The speed with one thread only is 1.648
seconds.

Furthermore, probably the lack of knowledge of the language also negatively affected the result,
because we did not understand the meaning of many morphosyntactic features and labels, and
thus a better performance probably could have been achieved with our approach if applied
properly.

6 Conclusion

We have applied our very fast parser MDParser to the Hindi Treebank. We were able to achieve
a competitive result and a very good parsing speed. The MTPIL Hindi Parsing Shared Task-2012
was a great opportunity for us test our system in a completely new scenario and demonstrate that
it is truly multilingual, since we have had absolutely no knowledge of Hindi. Furthermore, it was
the first time when we had to run the system in the non-projective mode, because the languages
with which we worked before, did not contain enough non-projective edges and it has never been
worth it to increase the search space in order to capture them so far. It was also the first time we
have worked with a language where, beyond the usual word form and POS features, the
morphosyntactic information was necessary in order to achieve good results. We were able to
automatically predict those additional features using the standard word form and POS features
with a very good accuracy.

Acknowledgments
The work presented here was partially supported by a research grant from the German

Federal Ministry of Education and Research (BMBF) to the DFKI project Deependance
(FKZ. 01IW11003).
References

A. Aizerman, E. M. Braverma and L. I. Rozoner, 1964. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control vol. 25, pp.
821—837.

Michael A. Covington, 2000. A Fundamental Algorithm for Dependency Parsing. In
Proceedings of the 39th Annual ACM Southeast Conference.

C.-J. Lin, R.-E. Fan, K.-W. Chang, C.-J. Hsieh and X.-R. Wang. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research 9(2008), pp. 1871-1874.

Joakim Nivre and Jens Nilsson, 2005. Pseudo-projective dependency parsing. Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics 2005. pp. 99—106.

Nivre, J, 2006. Inductive Dependency Parsing (Text, Speech and Language Technology).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

153

S. Sathiya Keerthi,S. Sundararajan, Kai-Wei, Chang, Hsieh, Cho-Jui, Lin and Chih-Jen, 2008.
A sequential dual method for large scale multi-class linear SVMs. Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 408—
416.

Alexander Volokh and Günter Neumann, 2012. Dependency Parsing with Efficient Feature
Extraction. KI 2012. pp. 253-256.

154

