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Abstract
We consider the task of generating transliter-
ated word forms. To allow for a wide range of
interacting features, we use a conditional ran-
dom field (CRF) sequence labeling model. We
then present two innovations: a training objec-
tive that optimizes toward any of a set of possi-
ble correct labels (since more than one translit-
eration is often possible for a particular in-
put), and a k-best reranking stage to incorpo-
rate nonlocal features. This paper presents re-
sults on the Arabic-English transliteration task
of the NEWS 2012 workshop.

1 Introduction

Transliteration is the transformation of a piece of
text from one language’s writing system into an-
other. Since the transformation is mostly explained
as local substitutions, deletions, and insertions, we
treat word transliteration as a sequence labeling
problem (Ganesh et al., 2008; Reddy and Waxmon-
sky, 2009), using linear-chain conditional random
fields as our model (Lafferty et al., 2001; Sha and
Pereira, 2003). We tailor this model to the transliter-
ation task in several ways.

First, for the Arabic-English task, each Arabic in-
put is paired with multiple valid English transliter-
ation outputs, any of which is judged to be correct.
To effectively exploit these multiple references dur-
ing learning, we use a training objective in which
the model may favor some correct transliterations
over the others. Computationally efficient inference
is achieved by encoding the references in a lattice.

Second, inference for our first-order sequence la-
beling model requires a runtime that is quadratic in
the number of labels. Since our labels are character
n-grams in the target language, we must cope with
thousands of labels. To make the most of each in-
ference call during training, we apply a mini-batch
training algorithm which converges quickly.

Finally, we wish to consider some global features
that would render exact inference intractable. We
therefore use a reranking model (Collins, 2000).

We demonstrate the performance benefits of these
modifications on the Arabic-English transliteration
task, using the open-source library cdec (Dyer et
al., 2010)1 for learning and prediction.

2 Problem Description

In the NEWS 2012 workshop, the task is to gener-
ate a list of ten transliterations in a specified target
language for each named entity (in a known source
language) in the test set. A training set is provided
for each language pair. An entry in the training set
comprises a named entity in the source language and
one or more transliterations in the target language.
Zhang et al. (2012) provides a detailed description
of the shared task.

3 Approach

3.1 Character Alignment

In order to extract source-target character map-
pings, we use m2m-aligner (Jiampojamarn et al.,
2007),2 which implements a forward-backward al-
gorithm to sum over probabilities of possible charac-
ter sequence mappings, and uses Expectation Max-
imization to learn mapping probabilities. We allow
source characters to be deleted, but not target char-
acters. Parameters -maxX and -maxY are tuned on
a devevelopment set.

Our running example is the Arabic name EAdl
(in Buckwalter’s ASCII-based encoding of Arabic)
with two English transliterations: ADEL and ’ADIL.
The character alignment for the two pairs is shown
in Fig. 1.

1http://www.cdec-decoder.org
2http://code.google.com/p/m2m-aligner
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Figure 1: Character alignment for transliterating EAdl to
ADEL and ’ADIL.

3.2 Sequence Labeling Scheme and Notation

We frame transliteration as a sequence labeling
problem. However, transliteration is not a one-to-
one process, meaning that a naı̈ve application of
one-label-per-token sequence models would be un-
likely to perform well. Previous work has taken
two different approaches. Reddy and Waxmonsky
(2009) first segment the input character sequence,
then use the segments to construct a transliteration
in the target language. Since segmentation errors
will compound to produce transliteration errors, we
avoid this. Ganesh et al. (2008) do not require a seg-
mentation step, but their model does not allow for
many-to-one and many-to-many character mappings
which are often necessary.

Our approach overcomes both these shortcom-
ings: we have neither an explicit segmentation step,
nor do we forbid many-to-many mappings. In our
model, each character xi in the source-language in-
put x = 〈x1, x2, . . . , xn〉 is assigned a label yi.
However, a label yi is a sequence of one or more
target-language characters, a special marker indi-
cating a deletion (ε), or a special marker indicat-
ing involvement in a many-to-one mapping (δ), that
is, yi ∈ Σ+ ∪ {ε, δ}, where Σ is the target lan-
guage alphabet.3 When an input x has multiple al-
ternative reference transliterations, we denote the set
Y∗(x) = {y1,y2, . . . ,yK}.

We map the many-to-many alignments produced
by m2m-aligner to one label for each input char-
acter, using the scheme in Table 1. Note that zero-
to-one alignments are not allowed.

The two reference label sequences for our running
example, which are constructed from the alignments
in Fig. 1 are:

3For an input type x, we only consider labels that were ac-
tually observed in the training data, which means the label set
is finite.

Type Alignment Labels
1:0 xi : ε yi = ε
1:1 xi : tj yi = tj

1:many xi : tj . . . tk yi = tj . . . tk
many:1 xi . . . xp : tj yp = tj

yi = · · · = yp−1 = δ
many:many xi . . . xp : tj . . . tk yp = tj . . . tk

yi = · · · = yp−1 = δ

Table 1: Transforming alignments to sequence labels.

x y1 y2

E δ ’

A A A

d DE DI

l L L

Of key importance in our model is defining, for
each source character, the set of labels that can be
considered for it. For each source character, we add
all labels consistent with character alignments to the
lexicon.

3.3 Model
Our model for mapping from inputs to outputs is
a conditional random field (Lafferty et al., 2001),
which defines the conditional probability of every
possible sequence labeling y of a sequence x with
the parametric form:

pλ(y | x) ∝ exp
∑|x|

i=1 λ · f(x, yi, yi−1) (1)

where f is a vector of real-valued feature functions.

3.4 Features
The feature functions used are instantiated by apply-
ing templates shown in Table 2 to each position i in
the input string x.

3.5 Parameter Learning
Given a training dataset of pairs {〈xj ,yj〉}`

j=1 (note
that each y is derived from the max-scoring char-
acter alignment), a CRF is trained to maximize the
regularized conditional log-likelihood:

max
λ

L{1,...,`}(λ) ,
∑`

j=1 log pλ(yj | xj) − C||λ||22
(2)

The regularization strength hyperparameter is tuned
on development data. On account of the large data
sizes and large label sets in several language pairs
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Feature Template Description
U1:yi-xi,
U2:yi-xi−1-xi,
U3:yi-xi-xi+1, moving window of unigram,
U4:yi-xi−2-xi−1-xi, bigram and trigram context
U5:yi-xi−1-xi-xi+1,
U6:yi-xi-xi+1-xi+2

U7:yi, B1:yi-yi−1 label unigrams and bigrams
U8:|yi| label size (in characters)

Table 2: Feature templates for features extracted from
transliteration hypotheses. The SMALLCAPS prefixes
prevent accidental feature collisions.

(Table 3), batch optimization with L-BFGS is in-
feasible. Therefore, we use a variant of the mini-
batch L-BFGS learning approach proposed by Le
et al. (2011). This algorithm uses a series of ran-
domly chosen mini-batches B(1),B(2), . . ., each a
subset of {1, . . . , `}, to produce a series of weights
λ(1),λ(2), . . . by running N iterations of L-BFGS
on each mini-batch to compute the following:

maxλ(i) LB(i)(λ(i)) − T‖λ(i) − λ(i−1)‖2
2 (3)

The T parameter controls how far from the previ-
ous weights the optimizer can move in any particu-
lar mini-batch4. We use mini-batch sizes of 5, and
start training with a small value of T and increase it
as we process more iterations. This is equivalent to
reducing the step-size with the number of iterations
in conventional stochastic learning algorithms.

Language Pair Unique Labels
Arabic-English 1,240
Chinese-English 2,985
Thai-English 1,771
English-Chinese 1,321
English-Japanese Kanji 4,572

Table 3: Size of the label set in some language pairs.

3.6 Using Multiple Reference Transliterations
In some language pairs, NEWS-2012 provides mul-
tiple reference transliterations in the training set. In
this section, we discuss two possibilities for using
these multiple references to train our transliteration

4When T = 0, our learning algorithm is identical to the L-
BFGS mini-batch algorithm of Le et al. (2011); however, we
find that more rapid convergence is possible when T > 0.
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Figure 2: Lattice encoding two transliterations of EAdl:
ADEL and ’ADIL.

model. The first possibility is to create multiple in-
dependent training inputs for each input x, one for
each correct transliteration in Y∗(x). Using this ap-
proach, with K different transliterations, the CRF
training objective will attempt to assign probability
1
K to each correct transliteration, and 0 to all others
(modulo regularization).

Alternatively, we can train the model to maximize
the marginal probability assigned by the model to
the set of correct labels Y∗ = {y1, . . . ,yK}. That
is, we assume a set of training data {(xj ,Y∗

j )}`
j=1

and replace the standard CRF objective with the fol-
lowing (Dyer, 2009):5

maxλ
∑`

j=1 log
∑

y∈Y∗
j

pλ(y | xj) − C||λ||22 (4)

This learning objective has more flexibility. It can
maximize the likelihood of the training data by giv-
ing uniform probability to each reference transliter-
ation for a given x, but it does not have to. In effect,
we do not care how probability mass is distributed
among the correct labels. Our hope is that if some
transliterations are difficult to model—perhaps be-
cause they are incorrect—the model will be able to
disregard them.

To calculate the marginal probability for each xj ,
we represent Y∗(x) as a label lattice, which is sup-
ported as label reference format in cdec. A fur-
ther computational advantage is that each x in the
training data is now only a single training instance
meaning that fewer forward-backward evaluations
are necessary. The lattice encoding of both translit-
erations of our running example is shown in Fig. 2.

3.7 Reranking
CRFs require feature functions to be “local” to
cliques in the underlying graphical model. One way
to incorporate global features is to first decode the

5Unlike the standard CRF objective in eq. 2, the marginal
probability objective is non-convex, meaning that we are only
guaranteed to converge to a local optimum in training.

68



k-best transliterations using the CRF, then rerank
based on global features combined with the CRF’s
conditional probability of each candidate. We ex-
periment with three non-local features:
Character language model: an estimate of
pcharLM (y) according to a trigram character lan-
guage model (LM). While a bigram LM can be fac-
tored into local features in a first order CRF, higher
n-gram orders require a higher-order CRF.
Class language model: an estimate of pclassLM (y),
similar to the character LM, but collapses characters
which have a similar phonetic function into one class
(vowels, consonants, and hyphens/spaces). Due to
the reduced number of types in this model, we can
train a 5-gram LM.
Transliteration length: an estimate of plen(|y| |
|x|) assuming a multinomial distribution with pa-
rameters estimated using transliteration pairs of the
training set.

The probabilistic model for each of the global
features is trained using training data provided for
the shared task. The reranking score is a linear
combination of log pcrf (y | x), log pcharLM (y),
log pclassLM (y) and log plen(|y| | |x|). Linear co-
efficients are optimized using simulated annealing,
optimizing accuracy of the 1-best transliteration in a
development set. k-best lists are extracted from the
CRF trellis using the lazy enumeration algorithm of
Huang and Chiang (2005).

4 Experiments

We tested on the NEWS 2012 Arabic-English
dataset. The train, development, and test sets con-
sist of 27,177, 1,292, and 1,296 source named enti-
ties, respectively, with an average 9.6 references per
name in each case.

Table 4 summarizes our results using the ACC
score (Zhang et al., 2012) (i.e., word accuracy in
top-1). “Basic CRF” is the model with mini-batch
learning and represents multiple reference translit-
erations as independent training examples. We man-
ually tuned the number of training examples and
LBFGS iterations per mini-batch to five and eight,
respectively. “CRF w/lattice” compactly represents
the multiple references in a lattice, as detailed in
§3.6. We consider reranking using each of the three
global features along with the CRF, as well as the

Model Ar-En
Basic CRF 23.5
CRF w/lattice 37.0
CRF w/lattice; rerank pcrf , pcharLM 40.7
CRF w/lattice; rerank pcrf , pclassLM 38.4
CRF w/lattice; rerank pcrf , plen 37.3
CRF w/lattice, rerank all four 42.8

Table 4: Model performance, measured in word accuracy
in top-1 (ACC, %).

full set of four features.
Maximizing the marginal conditional likelihood

of the set of alternative transliterations (rather than
maximizing each alternative independently) shows
a dramatic improvement in transliteration accuracy
for Arabic-English. Moreover, in Arabic-English
the basic CRF model converges in 120K mini-batch
iterations, which is, approximately, seven times the
number of iterations needed for convergence with
lattice-encoded labels. A model converges when its
ACC score on the development set ceases to improve
in 800 mini-batch iterations. Results also show that
reranking a k-best list of only five transliterations
with any of the global features improves accuracy.
Using all the features together to rerank the k-best
list gives further improvements.

5 Conclusion

We built a CRF transliteration model that allows
for many-to-many character mappings. We address
limitations of CRFs using mini-batch learning and
reranking techniques. We also show how to relax
the learning objective when the training set contains
multiple references, resulting in faster convergence
and improved transliteration accuracy.

We suspect that including features of higher-order
n-gram labels would help improve transliteration ac-
curacy further, but it makes inference intractable due
to the large set of labels. In future work, coarse
transformations of label n-grams might address this
problem.
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