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Abstract 

Gene name identification is a fundamental 
step to solve more complicated text mining 
problems such as gene normalization and pro-
tein-protein interactions. However, state-of-
the-art name identification methods are not 
yet sufficient for use in a fully automated sys-
tem. In this regard, a relaxed task, 
gene/protein sentence identification, may 
serve more effectively for manually searching 
and browsing biomedical literature. In this pa-
per, we set up a new task, gene/protein sen-
tence classification and propose an ensemble 
approach for addressing this problem. Well-
known named entity tools use similar gold-
standard sets for training and testing, which 
results in relatively poor performance for un-
known sets. We here explore how to combine 
diverse high-precision gene identifiers for 
more robust performance. The experimental 
results show that the proposed approach out-
performs BANNER as a stand-alone classifier 
for newly annotated sets as well as previous 
gold-standard sets. 

1 Introduction 

With the rapidly increasing biomedical literature, 
text mining has become popular for finding bio-
medical information in text. Among others, named 
entity recognition (NER) for bio-entities such as 
genes and proteins is a fundamental task because 

extracting biological relationships begins with enti-
ty identification. However, NER in biomedical 
literature is challenging due to the irregularities 
and ambiguities in bio-entities nomenclature (Yang 
et al., 2008). In particular, compound entity names 
make this problem difficult because it also requires 
deciding word boundaries. 

Recent bio-text competitions such as JNLPBA 
(Kim et al., 2004) and BioCreative (Lu et al., 2011; 
Smith et al., 2008) have evaluated NER systems 
for gene mentions. Even though progress has been 
made in several areas, gene identification methods 
are not yet sufficient for real-world use without 
human interaction (Arighi et al., 2011). Thus, at 
the present, a realistic suggestion is to use these 
algorithms as an aid to human curation and infor-
mation retrieval (Altman et al., 2008). 

In this paper, we define a new task, gene/protein 
sentence classification. A gene or protein sentence 
means a sentence including at least one specific 
gene or protein name. This new task has ad-
vantages over gene mention identification. First, 
gene name boundaries are not important at the sen-
tence level and human judges will agree more in 
their judgments. Second, highlighting gene sen-
tences may be more useful in manual search and 
browsing environments since this can be done 
more accurately and with less distraction from in-
correct annotations. 

To classify gene/protein sentences, we here pro-
pose an ensemble approach to combine different 
NER identifiers. Previous NER approaches are 
mostly developed on a small number of gold-
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standard sets including GENIA (Kim et al., 2003) 
and BioCreative (Smith et al., 2008) corpora. The-
se sets help to find regular name patterns in a lim-
ited set of articles, but also limit the NER 
performance for real-world use. In the proposed 
approach, we use a Semantic Model and a Priority 
Model along with BANNER (Leaman and 
Gonzalez, 2008). The Semantic and Priority Mod-
els are used to provide more robust performance on 
gene/protein sentence classification because they 
utilize larger resources such as SemCat and Pub-
Med○R  to detect gene names. 

For experiments, we created three new gold-
standard sets to include cases appearing in the most 
recent publications. The experimental results show 
that our approach outperforms machine learning 
classifiers using unigrams and substring features as 
well as stand-alone BANNER classification on five 
gold-standard datasets. 

The paper is organized as follows. In Section 2, 
the ensemble approach for gene/protein sentence 
classification is described. Section 3 explains the 
gold-standard sets used for our experiments. Sec-
tion 4 presents and discusses the experimental re-
sults. Conclusions are drawn in Section 5. 

2 Methods 

 
Figure 1. Method Overview. 

 
Figure 1 shows the overall framework for our pro-
posed approach. We basically assume that a main 
NER module works as a strong predictor, i.e., the 
majority of outputs obtained from this module are 
correct. We here use BANNER (Leaman and 
Gonzalez, 2008) as the main NER method because 
it adopts features and methods which are generally 
known to be effective for gene name recognition. 
While BANNER shows good performance on 

well-known gold-standard sets, it suffers from rela-
tively poor performance on unknown examples. To 
overcome this problem, we combine BANNER 
with two other predictors, a Sematic Model and a 
Priority Model. First, the Semantic Model and the 
Priority Model do not use previous gold-standard 
sets for training. Second, these two models learn 
name patterns in different ways, i.e., semantic rela-
tionships for the Semantic Model and positional 
and lexical information for the Priority Model. 
This combination of a strong predictor and two 
weaker but more general predictors can respond 
better to unknown name patterns. 

As described above, the proposed method main-
ly relies on outputs from different NER methods, 
whereas word features can still provide useful evi-
dence for discriminating gene and non-gene sen-
tences. Hence, we alternatively utilize word 
features such as unigrams and substrings along 
with NER features. For NER features only, the 
output is the sum of binary decisions from three 
NER modules. For word and NER features, the 
Huber classifier (Kim and Wilbur, 2011) is trained 
to combine the features. The parameter set in the 
Huber classifier is optimized to show the best clas-
sification performance on test sets. The following 
subsections describe each feature type used for 
gene sentence classification. 

2.1 Word Features 

Unigrams are a set of words obtained from to-
kenizing sentences on white space. All letters in 
unigrams are converted to lower case.  

Substrings are all contiguous substrings of a sen-
tence, sized three to six characters. This substring 
feature may help reduce the difference between 
distributions on training and test sets (Huang et al., 
2008). Substrings encode the roots and morpholo-
gy of words without identifying syllables or stems. 
They also capture neighboring patterns between 
words. 

2.2 BANNER 

BANNER is a freely available tool for identifying 
gene mentions. Due to its open-source policy and 
Java implementation, it has become a popular tool. 

BANNER uses conditional random fields (CRF) 
as a discriminative method and utilizes a set of fea-
ture types that are known to be good for identify-
ing gene names. The feature sets used are 
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orthographic, morphological and shallow syntax 
features (Leaman and Gonzalez, 2008): 
 
(1) The part of speech (POS) of a token in a sen-
tence. 
(2) The lemma of a word. 
(3) 2, 3 and 4-character prefixes and suffixes. 
(4) 2 and 3 character n-grams including start-of-
token and end-of-token indicators. 
(5) Word patterns by converting upper-case letters, 
lower-case letters and digits to their corresponding 
representative characters (A, a, 0). 
(6) Numeric normalization by converting digits to 
“0”s. 
(7) Roman numerals. 
(8) Names of Greek letters. 
 

Even though BANNER covers most popular 
feature types, it does not apply semantic features or 
other post-processing procedures such as abbrevia-
tion processing. However, these features may not 
have much impact for reducing performance since 
our goal is to classify gene sentences, not gene 
mentions. 

2.3 Semantic Model  

The distributional approach to semantics (Harris, 
1954) has become more useful as computational 
power has increased, and we have found this ap-
proach helpful in the attempt to categorize entities 
found in text. We use a vector space approach to 
modeling semantics (Turney and Pantel, 2010) and 
compute our vectors as described in (Pantel and 
Lin, 2002) except we ignore the actual mutual in-
formation and just include a component of 1 if the 
dependency relation occurs at all for a word, else 
the component is set to 0. We constructed our vec-
tor space from all single tokens (a token must have 
an alphabetic character) throughout the titles and 
abstracts of the records in the whole of the Pub-
Med database based on a snapshot of the database 
taken in January 2012. We included only tokens 
that occurred in the data sufficient to accumulate 
10 or more dependency relations. There were just 
over 750 thousand token types that satisfied this 
condition and are represented in the space. We de-
note this space by h. We then took all the single 
tokens and all head words from multi-token strings 
in the categories “chemical”, “disease”, and 
“gene/protein” from an updated version of the  

SemCat database (Tanabe et al., 2006) and placed 
all the other SemCat categories similarly processed 
into a category we called “other”. We consider on-
ly the tokens in these categories that also occur in 
our semantic vector space h and refer to these sets 
as 

Chemicalh , 
Diseaseh , 

inGene/Proteh , 
Otherh . Table 1 shows 

the size of overlaps between sets. 
 
 Chemicalh Diseaseh  inGene/Proteh  Otherh

Chemicalh 54478 209 4605 5495 

Diseaseh  8801 1139 169 

inGene/Proteh   76440 9466 

Otherh    127337 
Table 1. Pairwise overlap between sets representing the 
different categories. 

 
Class '

Chemicalh '
Diseaseh  

'
inGene/Proteh  

'
Otherh

Strings 49800 7589 70832 113815 
Ave. Prec. 0.8680 0.7060 0.9140 0.9120 
Table 2. Row two contains the number of unique strings 
in the four different semantic classes studied. The last 
row shows the mean average precisions from a 10-fold 
cross validation to learn how to distinguish each class 
from the union of the other three. 
 

In order to remove noise or ambiguity in the 
training set, we removed the tokens that appeared 
in more than one semantic class as follows. 
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We then applied Support Vector Machine learn-
ing to the four resulting disjoint semantic classes in 
a one-against-all strategy to learn how to classify 
into the different classes. We used 31064.1 C  
based upon the size of the training set. As a test of 
this process we applied this same learning with 10-
fold cross validation on the training data and the 
results are given in the last row of Table 2. 

This Semantic Model is an efficient and general 
way to identify words indicating gene names. Un-
like other NER approaches, this model decides a 
target class solely based on a single word. Howev-
er, evaluating all tokens from sentences may in-
crease incorrect predictions. A dependency parser 
analyzes a sentence as a set of head- and depend-
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ent-word combinations. Since gene names likely 
appear in describing a relationship with other enti-
ties, a name indicating a gene mention will be 
mostly placed in a dependent position. Thus, we 
first apply the C&C CCG parser (Curran et al., 
2007), and evaluate words in dependent positions 
only. 
 

2.4 Priority Model 

The Semantic Model detects four different catego-
ries for a single word. However, the Priority Model 
captures gene name patterns by analyzing the order 
of words and the character strings making up 
words. Since gene names are noun phrases in gen-
eral, we parse sentences and identify noun phrases 
first. These phrases are then evaluated using the 
Priority Model. 

The Priority Model is a statistical language 
model for named entity recognition (Tanabe and 
Wilbur, 2006). For named entities, a word to the 
right is more likely to be the word determining the 
nature of the entity than a word to the left in gen-
eral.  

Let T1 be the set of training data for class C1 and 
T2 for class C2. Let   At   denote the set of all to-

kens used in names contained in 
21 TT  . For each 

token tα, A , it is assumed that there are associ-
ated two probabilities pα and qα, where pα is the 
probability that the appearance of the token tα  in a 
name indicates that name belongs to class C1 and 
qα is the probability that tα is a more reliable indi-
cator of the class of a name than any token to its 
left. Let )()2()1( ktttn    be composed of the 

tokens on the right in the given order. Then the 
probability of n belonging to class C1 can be com-
puted as follows. 
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A limited memory BFGS method (Nash and 

Nocedal, 1991) and a variable order Markov model 
(Tanabe and Wilbur, 2006) are used to obtain pα   
and qα. An updated version of SemCat (Tanabe and 
Wilbur, 2006) was used to learn gene names. 

2.5 Semantic and Priority Models for High-
Precision Scores 

The Semantic and Priority Models learn gene 
names and other necessary information from the 
SemCat database, where names are semantically 
categorized based on UMLS○R  (Unified Medical 
Language System) Semantic Network. Even 
though the Semantic and Priority Models show 
good performance on names in SemCat, they can-
not avoid noise obtained from incorrect pre-
processing, e.g., parsing errors. The use of a gen-
eral category for training may also limit perfor-
mance. To obtain high-precision scores for our 
ensemble approach, it is important to reduce the 
number of false positives from predictions. Hence, 
we apply the Semantic and Priority Models on 
training sets, and mark false positive cases. These 
false positives are automatically removed from 
predictions on test sets. These false positive cases 
tend to be terms for entities too general to warrant 
annotation. 

Table 3 shows the classification performance 
with and without false positive corrections on 
training data. For both Semantic and Priority Mod-
els, precision rates are increased by removing false 
positives. Even though recall drops drastically, this 
does not cause a big problem in our setup since 
these models try to detect gene names which are 
not identified by BANNER. 
 

 SEM SEMFP PM PMFP

Accuracy 0.7907 0.7773 0.7805 0.8390 
Precision 0.7755 0.8510 0.7405 1.0000 
Recall 0.8323 0.6852 0.8799 0.6856 
F1 0.8029 0.7592 0.8042 0.8135 

Table 3. Performance changes on training set for the 
Semantic Model (SEM) and the Priority Model (PM). 
FP indicates that learned false positives were removed 
from predictions. 

3 Datasets 

For experiments, we rigorously tested the proposed 
method on gene mention gold-standard sets and 
newly annotated sets. GENETAG (Smith et al., 
2008) is the dataset released for BioCreative I and 
BioCreative II workshops. Since it is well-known 
for a gene mention gold-standard set, we used 
GENETAG as training data. 

For test data, two previous gold-standard sets 
were selected and new test sets were also built for 
gene sentence classification. YAPEX (Franzen et 
al., 2002) and JNLPBA (Kim et al., 2004) are con-
sidered of moderate difficulty because they are 
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both related to GENIA corpus, a well-known gold-
standard set. However, Disease, Cell Line and 
Reptiles are considered as more difficult tasks be-
cause they represent new areas and contain recent-
ly published articles. The annotation guideline for 
new test sets basically followed those used in 
GENETAG (Tanabe et al., 2005), however do-
mains, complexes, subunits and promoters were 
not included in new sets. 
 

(1) “Disease” Set: This set of 60 PubMed docu-
ments was obtained from two sources. Fifty of the 
documents were obtained from the 793 PubMed 
documents used to construct the AZDC (Leaman et 
al., 2009). They are the fifty most recent among 
these records. In addition to these fifty documents, 
ten documents were selected from PubMed on the 
topic of maize to add variety to the set and because 
one of the curators who worked with the set had 
experience studying the maize genome.  These ten 
were chosen as recent documents as of early March 
2012 and which contained the text word maize and 
discussed genetics.  The whole set of 60 docu-
ments were annotated by WJW to produce a gold 
standard. 
 

(2) “CellLine” Set: This set comprised the most 
recent 50 documents satisfying the query “cell 
line[MeSH]” in PubMed on March 15, 2012. This 
query was used to obtain documents which discuss 
cell lines, but most of these documents also discuss 
genes and for this reason the set was expected to be 
challenging. The set was annotated by WJW and 
DC and after independently annotating the set they 
reconciled differences to produce a final gold 
standard. 
 

(3) “Reptiles” Set: This set comprised the most 
recent 50 documents satisfying the query “reptiles 
AND genes [text]” in PubMed on March 15, 2012. 
This set was chosen because it would have little 
about human or model organisms and for this rea-
son it was expected to be challenging.  The set was 
annotated by WJW and DC and after independent-
ly annotating the set they reconciled differences to 
produce a final gold standard. 
 

For both “CellLine” and “Reptiles” Sets, the 
most recent data was chosen in an effort to make 
the task more challenging. Presumably such docu-
ments will contain more recently created names 

and phrases that do not appear in the older training 
data. This will then pose a more difficult test for 
NER systems. 

Table 4 shows all datasets used for training and 
testing. The new sets, “Disease”, “CellLine” and 
“Reptiles” are also freely available at 
http://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/
IRET/bionlp.zip 
 

 Positives Negatives Total 
GENETAG 10245 9755 20000 
YAPEX 1298 378 1676 
JNLPBA 17761 4641 22402 
Disease 345 251 596 
CellLine 211 217 428 
Reptiles 179 328 507 

Table 4. Datasets. “GENETAG” was used for training 
data and others were used for test data. “YAPEX” and 
“JNLPBA” were selected from previous gold-standard 
corpora. “Disease”, “Cell Line” and “Reptiles” are new-
ly created from recent publications and considered as 
difficult sets. 

4 Results and Discussion  

In this paper, our goal is to achieve higher-
prediction performance on a wide range of gene 
sentences by combining multiple gene mention 
identifiers. The basic assumption here is that there 
is a strong predictor that performs well for previ-
ously known gold-standard datasets. For this 
strong predictor, we selected BANNER since it 
includes basic features that are known to give good 
performance. 
 

 Accuracy Precision Recall F1 
GENETAG 0.9794 0.9817 0.9779 0.9799 
YAPEX 0.9051 0.9304 0.9483 0.9392 
JNLPBA 0.8693 0.9349 0.8976 0.9159 
Disease 0.8591 0.9223 0.8261 0.8716 
Cell Line 0.8925 0.9146 0.8626 0.8878 
Reptiles 0.8994 0.8478 0.8715 0.8595 

Table 5. Performance of BANNER on training and test 
datasets. 

 
Table 5 presents the gene sentence classification 

performance of BANNER on training and test sets. 
We emphasize that performance here means that if 
BANNER annotates a gene/protein name in a sen-
tence, that sentence is classified as positive, other-
wise it is classified as negative. BANNER used 
GENETAG as training data, hence it shows excel-
lent classification performance on the same set. 
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 Unigrams Substrings BANNER Ensemble Uni+Ensemble Sub+Ensemble
YAPEX 0.9414 0.9491 0.9685 0.9704 0.9624 0.9678 
JNLPBA 0.9512 0.9504 0.9584 0.9651 0.9625 0.9619 
Disease 0.8255 0.8852 0.9238 0.9501 0.9573 0.9610 
CellLine 0.8174 0.9004 0.9281 0.9539 0.9429 0.9496 
Reptiles 0.6684 0.7360 0.8696 0.9049 0.9001 0.8937 

Table 6. Average precision results on test sets for different feature combinations. 
 

 Unigrams Substrings BANNER Ensemble Uni+Ensemble Sub+Ensemble
YAPEX 0.8735 0.8819 0.9321 0.9196 0.9298 0.9336 
JNLPBA 0.8902 0.8938 0.9111 0.9197 0.9262 0.9264 
Disease 0.7449 0.7884 0.8479 0.8894 0.8957 0.9043 
CellLine 0.7346 0.8057 0.8698 0.9017 0.9052 0.8957 
Reptiles 0.6257 0.6816 0.8499 0.8199 0.8547 0.8547 

Table 7. Breakeven results on test sets for different feature combinations. 
 

 
 Just one fiber gene was revealed in this strain. 

 
 This transcription factor family is characterized by 

a DNA-binding alpha-subunit harboring the Runt 
domain and a secondary subunit, beta, which binds 
to the Runt domain and enhances its interaction 
with DNA.  

  
Figure 2. False positive examples including misleading 
words. 
 
YAPEX and JNLPBA are gold-standard sets that 
partially overlap the GENIA corpus. Since 
BANNER utilizes features from previous research 
on GENETAG, YAPEX and JNLPBA, we expect 
good performance on these data sets. For that rea-
son, we created the three additional gold-standard 
sets to use in this study, and we believe the per-
formance on these sets is more representative of 
what could be expected when our method is ap-
plied to cases recently appearing in the literature. 

Table 6 show average precision results for the 
different methods and all the test sets. GENETAG 
is left out because BANNER is trained on 
GENETAG. We observe improved performance of 
the ensemble methods over unigrams, substrings 
and BANNER. The improvement is small on 
YAPEX and JNLPBA, but larger for Disease, 
CellLine and Reptiles. We see that unigrams and 
substrings tend to add little to the plain ensemble. 

The MAP (Mean Average Precision) values in 
Table 6 are in contrast to the breakeven results in 
Table 7, where we see that unigrams and sub-
strings included with the ensemble generally give 
improved results.  Some of the unigrams and sub-
strings are specific enough to detect gene/protein 

names with high accuracy, and improve precision 
in top ranks in a way that cannot be duplicated by 
the annotations coming from Semantic or Priority 
Models or BANNER. In addition, substrings may 
capture more information than unigrams because 
of their greater generality. 

Some of our errors are due to false positive NER 
identifications. By this we mean a token was clas-
sified as a gene/protein by BANNER or the Se-
mantic or Priority Models. This often happens 
when the name indeed represents a gene/protein 
class, which is too general to be marked positive 
(Figure 2). A general way in which this problem 
could be approached is to process a large amount 
of literature discussing genes or proteins and look 
for names that are marked as positives by one of 
the NER identifiers, and which appear frequently 
in plural form as well as in the singular. Such 
names are likely general class names, and have a 
high probability to be false positives. 

Another type of error will arise when unseen to-
kens are encountered. If such tokens have string 
similarity to gene/protein names already encoun-
tered in the SemCat data, they may be recognized 
by the Priority Model. But there will be completely 
new strings. Then one must rely on context and 
this may not be adequate. We think there is little 
that can be done to solve this short of better lan-
guage understanding by computers. 

There is a benefit in considering whole sentenc-
es as opposed to named entities. By considering 
whole sentences, name boundaries become a non-
issue. For this reason, one can expect training data 
to be more accurate, i.e., human judges will tend to 
agree more in their judgments. This may allow for 
improved training and testing performance of ma-
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chine learning methods. We believe it beneficial 
that human users are directed to sentences that con-
tain the entities they seek without necessity of 
viewing the less accurate entity specific tagging 
which they may then have to correct. 

5 Conclusions 

We defined a new task for classifying gene/protein 
sentences as an aid to human curation and infor-
mation retrieval. An ensemble approach was used 
to combine three different NER identifiers for im-
proved gene/protein sentence recognition. Our ex-
periments show that one can indeed find improved 
performance over a single NER identifier for this 
task. An additional advantage is that performance 
at this task is significantly more accurate than 
gene/protein NER. We believe this improved accu-
racy may benefit human users of this technology. 
We also make available to the research community 
three gold-standard gene mention sets, and two of 
these are taken from the most recent literature ap-
pearing in PubMed. 
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