
Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, pages 74–82,
Blois (France), July 12-15, 2011. c©2011 Association for Computational Linguistics

Intersection of Multitape Transducers vs. Cascade of Binary Transducers:
The Example of Egyptian Hieroglyphs Transliteration

François Barthélemy
CNAM (Cédric),

292 rue Saint-Martin, Paris, France
INRIA (Alpage),

Rocquencourt, France
francois.barthelemy@cnam.fr

Serge Rosmorduc
CNAM (Cédric),

292 rue Saint-Martin, Paris, France
serge.rosmorduc@cnam.fr

Abstract

This paper uses the task of transliterating an
Egyptian Hieroglyphic text into the latin al-
phabet as a model problem to compare two
finite-state formalisms : the first one is a cas-
cade of binary transducers; the second one
is a class of multitape transducers express-
ing simultaneous constraints. The two sys-
tems are compared regarding their expressiv-
ity and readability. The first system tends to
produce smaller machines, but is more tricky,
whereas the second one leads to more abstract
and structured rules.

1 Introduction

In the eighties, two models of Finite State computa-
tions were proposed for morphological descriptions:
two-level morphology (Koskenniemi, 1983) where
simultaneous constraints are described using two-
level rules, and rewrite rule systems where rules ap-
ply sequentially (Kaplan and Kay, 1994). From a
computational point of view, both kinds of rules are
compiled into binary transducers. The transducers
are merged using intersection in the simultaneous
model whereas transducer composition is used by
the sequential model.

Two-level grammars appeared difficult to write
because of rule conflicts: the different two-level
rules are not independent. Their semantics is not
compositional: the semantics of a set of rule is not
the composition of the semantics of each rule.

In the last decade, a new kind of simultaneous
finite state model has been proposed which does
not use two-level rules and avoids rule conflicts.

The model uses multitape transducers (Barthélemy,
2007). The present paper is devoted to an applica-
tion written successively with a cascade of transduc-
ers and an intersection of multitape transducers.

The application consists in transliterating Egyp-
tian Hieroglyphs without resorting to a lexicon. The
transliteration task is a transcription from the orig-
inal writing to an extended latin alphabet used to
write consonantal skeleton of words. This task is
far from obvious, as we explain in 2.2.

The next section gives more details about hiero-
glyphs. Then, a transliteration grammar using a cas-
cade of weighted rewrite rules is presented. Sec-
tion 4 presents the multigrain multitape transduc-
ers and the Karamel language used to define them.
Then comes a description of a Karamel grammar for
hieroglyph transliteration adapted from the rewrite
rule cascade. The last section compares the two
grammars and their respective strengths and weak-
nesses.

2 Egyptian hieroglyphs

2.1 Hieroglyphic encoding and transliteration

The systems we are about to describe take as input
an ASCII description of hieroglyphic texts, based on
a system called “le manuel de codage” (Buurman et
al., 1988), and output a transliteration of the text,
that is, a transcription in latin characters of the con-
sonants (the Egyptians did not write vowels). Mean-
while, we do also determine word frontiers. An ex-
ample is given in figure 1.

The letter used in the transliteration layer are con-
ventional signs used in ASCII computer-encoding

74

hierogl.
input M17 G43 D21 Z1 N35 O34 A1 Z1 N35 N42 G17 D36 I9 M23 G43
output iw rA n z nHm f sw
trans- part mouth of man save it him
lation the mouth of a man saves him

Figure 1: example of sentence transliteration

of Egyptian texts. In this encoding, uppercase and
lowercase letters note different consonants. Besides,
‘A’, ‘a’ and ‘i’ are used to represent consonantic
signs (which the Egyptological tradition renders as
vowel in scholarly pronunciation). The above sen-
tence would be pronounced “iu ra en se neh. em ef
su”.

2.2 The Egyptian hieroglyphic writing system

In this section, we explain the basics of the hiero-
glyphic system (Allen, 2010) , and we detail a num-
ber of problems met when trying to transliterate it.

Hieroglyphs can be written in lines or columns,
right-to-left or left-to-right and are typically grouped
to fill the available space, as in this text :

. In this work, we will neglect
the exact position of signs and deal with their se-
quence.

Another characteristic is that there are no real
word separators. The present work will address this
issue.

2.2.1 Kinds of signs
The hieroglyphic system used a mix of phonetic

and ideographic signs to note the language. Many
signs may have more than one possible value.

The phonograms note a number of consonants,
typically one, two or three. For instance, the owl

stands for the consonant “m”, and the chessboard

for the sequence of consonant “mn”. Vowels are
not written, so egyptologists would insert arbitrary
“e” between the consonant, and thus, is conven-
tionally pronounced “men”. Those phonograms are
classified as uniliteral, biliteral, and triliteral signs,
depending on the number of consonants they repre-
sent.

Ideograms are more or less word-sign. Usually,
they are followed by a stroke, to mark this specific
use. For instance, writes the word “kA”, bull.

Determinatives are semantic classifiers which

have no phonetic realisation, but give the general se-
mantic class of a word. As they tend to occur at word
endings, they ease the word separation problem too.
For instance, in , “mooring pole”, the
sign classifies the word as a “wooden thing”.

2.2.2 Word formation
Egyptian word spellings tend to contain a pho-

netic part followed by a determinative.
In the phonetic part, signs which represent more

than one consonant come usually with “phonetic
complements”, which are uniliteral signs, repre-
senting one, two or three consonants of the multi-
consonantic sign. For instance, in the group ,
“nDm”, the phonetic sign has the value n + D +
m. But it is nonetheless supplemented by the
“m” sign. The group is to be read “nDm” and not
“nDmm”.

To give a complete example, the word ,
“snDm” ,“to seat”, is to be understood as

s nDm+m=nDm determinative

2.2.3 A few specific problems
Word formation, as we have just described it, is

only a general principle. The presence of determi-
natives is optional, and very usual words (especially
grammatical words) have usually none. This makes
word separation a complex task.

More, single signs may have multiple values. The
frontiers between types of signs are fuzzy; the basis
of the phonetic system is the rebus, and an ideogram,
which represents a given word with a given conso-
nantic skeleton, can often be used phonetically. For
instance, the “house” sign, , can stand both for the
word “house, “pr”, or as phonogram in the verb
“to go out”, which happens to have the same translit-
eration, “pr”. The same sign can be abstracted
the other way, losing any phonetic value, and be
used as determinative for “house-like” places, like

, “kAp”, “shelter”.

75

This fuzziness makes it difficult to give a clear-
cut description of signs, even in context. Some
signs, which have the behaviour of both determi-
natives (they tend to stand at word endings) and
of phonetic signs (they have still a very definite
phonetic value) have been coined as “phonetic de-
terminatives”. They pose specific problems, be-
cause the word, as in many languages, may have
grammatical inflections standing after the word root.
Those inflections are usually written before the pho-
netic determinative, and make the phonetic part non-
continuous. For instance, in the word “sr.t”,
“what has been predicted”, the root of the verb, “sr”,
is written phonetically , then we have an intru-
sive , “t” , which is a feminine/neutral inflection,
then, the phonetic-determinative “sr” , for the verb
“to predict” , and finally, the determinative for
“mouth actions”. We want to limit the number of
rules which deal with this phenomenon.

Other signs have simply a number of unrelated
phonetic values. For instance, can be either “Ab”
or “mr”. Usually, the context, and in particular, the
phonetic complements, help to choose.

Apart from the present work, a number of sys-
tems dealing with transliteration have been created:
S. Billet (?) has written an transliteration agent-
oriented system, and M.-J. Nederhof (?) has de-
scribed an algorithm for aligning hieroglyphic en-
coding and transliteration.

3 A first solution : a cascade of
transducers

In (Rosmorduc, 2008), we introduced a system
based on a cascade of weighted finite-state transduc-
ers with variables. Basically, each weighted trans-
ducer applies a set of rewriting rules of the form:

t1, ...tn → u1...um/c

where c is the cost of the rule (a real number) and ti
and uj are terms. Terms can be either a variable (of
the form $X), a constant identifier or integer, e.g. A1
or 100, or a functional term, whose argument can be
either constants or variables, e.g. P(i, $A, $B).
Variables on the right side must also appear on the
left side.

The text entry (which is variable-free) is used as
input for the first transducer in the cascade. Vari-
ables values are lazily matched with the input - as

a result, the rules representation is compact, while
the final transducer can be quite large (e.g. for a text
of 1300 words, the last resulting transducer contains
over 1 000 000 nodes).

The costs are attached to the last link of a rule rep-
resentation. When the cascade is computed, they are
combined by a simple addition. When all transduc-
ers have been used to process the input, one of the
least-cost path is selected as “the” best path, and the
transliteration can be read on the output layer. The
actual costs are quite ad-hoc, with low values indi-
cating likely rules, and high values, unlikely ones.
With equally valued rules, the system tends to prefer
the rules which encourage the grouping of signs.

The current system is compounded of five trans-
ducers. We will first explain the main purpose of
each one, and then concentrate on exceptional uses.

First transducer, normalization: this is a rather
simple technical layer, as we need to normalize the
entry, because the encoding often proposes a choice
of codes for the same sign.

Second layer, sign values: The second layer re-
places the sign codes with their values. Values are
expressed using functors. Each functor corresponds
to a particular kind of value, and the functor’s argu-
ments represent the value.

phonetic values are expressed as P(X), P(X,Y) or
P(X,Y,Z), depending on the number of conso-
nants in a given sign. For instance, the follow-
ing rules.

A17 => P(X,r,d) / 100
A17 => P(n,m,H) / 300

states that sign A17 can have the phonetic value
“Xrd” or “nmH”, “Xrd” being preferred with a
cost of 100 over nmH (cost 300).

determinatives are expressed as
DET(MEANING), where “MEANING” is
(occasionally) used to keep track of the
determinative’s value. E.g.

A17 => DET(child) / 100

states that A17 can be a determinative for
“child”.

76

phonetic determinatives and ideograms are
expressed with the same system as phonetic
signs:

A17 => IP(X,r,d) / 100
D56 => ID(r,d) / 100

plural and ideogram markers which can be found
as word endings, are expressed using END(),
which takes as argument “P1” if the word is sin-
gular, or “P3” if it is plural.

Third layer, groups: this layer build “groups” ag-
gregating a complex phonetic sign with its phonetic
complements. Note that groups are not words, as a
word can contain more than one group.

P($x,$y), P($x), P($y) =>
G($x,$y), endGroup / 10

states that a biliteral sign of value P($x,$y), can
be completed with two uniliteral signs representing
both $x and $y, and that they form a group of pho-
netic value G($x,$y). The symbol endGroup,
which is inserted after the group, will be used in the
next layer when gluing the phonetic parts and the
word endings.

The layer also recognises the possible forms of
word endings, which include some inflections, de-
terminative, and possibly plural markers :

P(w), P(t), DET($x), END($y) =>
b3,L(w),L(t),DET($x),endWord/100

The ”b3” is a marker which will be combined with
”endGroup” in the following layers.

Fourth layer, words phonetics: This forth layer
deals mainly with the phonetic shape of words. Not
all consonantic sequence, nor all group sequences,
can form a word with equal probability. Egyptian
has mostly bi and tri-consonantal roots, so shorter
and longer words (ignoring the inflections) are not
that likely. Two typical rules are:

G($x,$y), endGroup, G($z) =>
L($x), L($y), L($z) / 100

G($x,$y), endGroup, G($x,$y) =>
L($x), L($y), L($x), L($y)
/ 100

The first states that building a triliteral word with
two groups, a biliteral one and a uniliteral one,

is quite possible. The other concerns quadrilit-
eral rules. Arbitrary combinations resulting in a
quadriliteral root are usually given a high cost, but
in this rule, we represent a reduplicated1 root of the
form XYXY, which is a rather usual way of building
intensive words in Egyptian.

Word endings and groups are also attached
by rules which erase at no cost the sequence
endGroup, b3, which ensures that a “phonetic
part” followed by a word ending is the favoured way
of building a word. Erasing endGroup on its own,
which amounts to allowing a word with only a pho-
netic part (which is still possible), is given a large
cost of 1000.

Fifth layer, cleanup and ending attachment
This last part does some cleanup, and removes data
which was copied from layer to layer, in order to
keep only relevant analysis. It also deals with pho-
netic determinatives, for which the previous layer is
a bit too early.

3.1 Cross layers issues and discussions

3.1.1 The so-called phonetic determinatives
The problem of phonetic determinative is that we

are going to combine them, not with a group, but
with the word’s phonetics. Let’s consider the fol-
lowing example :

glyphs
codes O34 D21 X1 E27 A2
groups s r t IP(s,r) det

phonetics word ending
Here, the root part of the word phonetics is com-

pounded of two uniliteral signs, making two groups.
The word ending contains a “t” which is the femi-
nine inflection, the phonetic determinative E27, and
the determinative of mouth actions.

The problem is that we need to combine the first
part with the ending, while keeping a low number of
rules. This is done in two steps. First, in the group
layer, we re-order the signs, in order to put the pho-
netic determinative before the inflections. We intro-
duce a token, “b4”, which will be consumed in the
last layer.

P(t), IP($x,$y), DET($a) =>

1this is the technical word used by the scholars, even though
duplicated would probably suffice.

77

b4, IP($x,$y), L(t), DET($a),
e4 / 10

The word layer will simply copy the result of the
group layer. Then, in the “cleanup” layer, as we do
have a representation of the word, we can combine
it with the IP if needed :

L($X), L($Y), b4, IP($X,$Y) =>
L($X), L($Y) / 10

Note that this rule is agnostic about the way the L()
readings were produced.

3.1.2 Word separation
Word separation is a by-product of our system.

Basically, we explicitly mark certain sequences of
signs as word endings, plus, we can transform any
group ending into a word ending. The possible pho-
netic structures of a word (as a group sequence) are
also listed. The combination of those systems, along
with their associated cost, is used to produce a rea-
sonable words separation.

3.1.3 Exceptions
The idea of the system was to try to experiment on

transliteration without a lexicon, which can be use-
ful for unknown word. Basically, no extensive lexi-
con is used; however, grammatical words, and some
very frequent verbs don’t respect the usual word-
formation rules. For instance, the verb “Dd” “to say”
is written with (I10) and (D46), which are
respectively uniliteral signs we will render “D” and
“d”. The nice thing with automata here is that they
lend to a graceful representation of those exceptions.
We directly map the signs to the final output in one
of our levels, and the result will be copied by each
level until the last one :

I10, D46 => startWord, L(D),
L(d), endWord / 100

4 Intersection-oriented multitape
transducers

This section is devoted to Karamel, a language
used to define multitape finite state transducers
(Barthélemy, 2009).

The definition of multi-tape machines is done us-
ing regular expressions extended with tuples. Tu-
ples are somehow Cartesian products which glue to-
gether independent regular expressions read on dif-

ferent tapes, but unlike Cartesian product, tuples
are not distributive with respect to concatenation.
The theoretical basis of the language is the multi-
grain relations (Barthélemy, 2007). The tuples used
in regular expressions are instances of tuple types
which must be declared beforehand. The tuples are
written using curly braces and begin with the type
name, followed by the components. Components of
the tuples are both named and ordered, so two syn-
taxes are allowed to write them: with the name or
using the order. Default values are defined for each
component.

Embedded tuples are used to give tree-structure to
tuples in the relations. There is a constraint: a tape
appears in at most one of the components of the tu-
ple. Recursive structures are therefore not allowed.
The regular sets defined by regular expressions ex-
tended with tuples are closed under intersection and
difference. So these two operations are available for
writing extended regular expressions.

Here are a couple of concrete examples writ-
ten using Karamel syntax. The value of a sign
is expressed using a tuple type called val which
has 4 tapes: for hieroglyph signs, for phonetic
values written with the latin alphabet, for the se-
mantic value and one for a subtype of values
used in composition rules. The tapes are called
respectively tsig, tphon, tsem and vtype.
An instance of a purely phonetic sign value:
{val: tsig=<P17>, tphon=nmh,

tsem=<>, vtype=<phon>}
The notation <> stands for the empty string and
<P17> for the single symbol P17, whereas nmh is
a string of three symbols. The notation {val} is
used when no value is specified for the components
of a val tuple. In this case, all the components take
their respective default values.

Phonetic values are sometimes composed in
groups where some consonants are redundantly
written. Groups are implemented by 2-tuples where
the first component contains a string of phonetic val-
ues and the second one is the transliteration (on tape
trans). Here is an example:
{group: vals=

{val: tsig=<F28>, tphon=ab,
vtype=<phon>}

{val: tsig=<D58>,tphon=b,
vtype=<phon> },

78

trans= ab}
The examples given above are string tu-

ples. Extended regular expression may use
regular operators to describe regular sets
of tuples, like in the following example:
{wend: ({det}|{phon}|{tend})+}
which describes the set of all tuples of type wend
where the first component is a non-empty string of
tuples of types det, phon and tend.

A Karamel grammar begins with some declara-
tions: symbols, classes of symbols, tapes and tuple
types. A class of symbol is a finite set of symbols
which has a name. A class name may be used in
regular expressions and stands for the disjunction of
the symbols in the class. Variables are available and
take values in such classes. Occurrences of a vari-
able within a given regular expression must take the
same value. Variables express long-distance depen-
dencies. Here is an example of expression using a
variable:
{group:

vals={phon: $x in (<letter>)},
trans= $x}

This may be read: the letter found in the phon tuple
on tape tphon is the same as the letter found on the
trans tape of the same group tuple.

It is possible to define abbreviations for tu-
ples where the order and the default value of
the components may be different from the ones
in the type definition. For example, an abbre-
viation called phon is defined for instances of
the type val where the component tsem is set
to the empty string and the component vtype
is set to the value <phon>. This abbreviation
is used to define purely phonetic values. For
instance {phon: tsig=<F28>, tphon=ab}
is just another notation for the tuple
{val: tsig=<F28>, tphon=ab,

vtype=<phon>, tsem=<>}.
A machine already defined may be used

in an extended regular expression, using its
name written between << and >>. E.g.
{group: <<some_vals>>*} uses the machine
some vals.

The extended regular expressions may include
weights which are arbitrary floating numbers.
Weights are written in expressions enclosed by two
exclamation marks. The operations on transducers

combine weights using the tropical semiring. Oper-
ations such as concatenation, composition and inter-
section compute sums of weights of both operands.
The n-best operation is available to select the paths
having the smallest weights in a machine.

The external composition is a binary operation
which combines a multitape machine and a reg-
ular language, considered as an input on a given
tape. The external projection projects a multitape
machine on one tape and then removes all the tuple
boundaries. These two operations are the interface
of a multitape machine with the outer world.

5 Transliteration using multitape
transducers

A Karamel Grammar has been written by translat-
ing the cascade of binary transducers presented in
section 4. The classes of symbols defined include
the hieroglyphs (class sign), the letters used in
the transliteration (class letter), a set of seman-
tics values (class sem), divided in two subclasses,
generic values (class gensem) and regular values
(class regsem). There are also several classes of
auxiliary symbols such as subtype names. The tapes
include one tape for the text written with hiero-
glyphs (tape tsig), one tape contains the transliter-
ation (tape trans), two tapes contain respectively
the phonetic and the semantic values of the signs
(tapes tphon and tsem). There are several auxil-
iary tapes for information such as subtypes and rule
identifiers.

There are a number of different tuple types with
up to four levels of embedding. A tuple type is used
to represent sign values on four tapes. One tape is
used for the hieroglyphs, possibly a sequence of sev-
eral signs, another for the phonetic value which is a
sequence of latin letters, another tape contains the
semantic value. The last tape called vtype con-
tains a value type which is important to separate sub-
classes of values which play a different role and ap-
pear in different places of the forms. There are six
subtypes: pure phonetic values, ideograms, phonetic
ideograms, determinatives and numbers. Six abbre-
viations are defined for these subtypes, which set the
vtype value and some other tapes. For instance,
for the determiners, the phonetic value (tape phon)
is set to the empty string.

79

The tuple type group is used for groups of pho-
netic values where some consonants are written re-
dundantly. A sequence of such groups is used to
write the phonetic part of a form which is repre-
sented using a core tuple.

There are also tuples to write frozen forms, di-
rectly from hieroglyphs. These forms do not use
embedded val tuples. The type wend is used to
describe the word endings which usually follow the
phonetic parts. Word endings contain the inflection
written phonetically and determinatives. The types
idform, number and gram describe forms and
their main component is a sequence of values (val
tuples). They describe respectively an ideographic
notation, a number and a grammatical word such
as a pronoun or a preposition. With all these tuple
types, there are several possible structures for forms
:
{cpform: {core: {group: {val}*}*}

{wend: {val}*}+}|
{idform: {val}*}|{number:{val}*}|
{gram: {val}*}|{frozen};

An instance of the most complex structure :
{cpform:

{core:
{group: {phon: s, <S29>}, s}
{group: {phon: nDm, <M29>}

{phon: m, <G17>}, nDm}}
{wend:{det: <seat>, <A17>}}}

This corresponds to the analysis of nDm :
S29= M29+G17= A17=
s nDm+m=nDm determinative
Each tuple type is described in the grammar using

two transducers: one which describes all the pos-
sible values for one occurrence of the tuple type,
the second one describes the context in which se-
quences of the tuple types may appear to make a
form. The second transducers uses the definition of
the first one. For instance, the word endings fol-
low a number of patterns including phonetic values
and determiners. These patterns are described in
a machine called all word endings. The con-
text of the patterns is described in a machine called
actual word endings. Part of the code of the
two machines is given below. Note that the second
machine uses the first one in its definition.

let all_word_endings =

{wend: seq = {phon: y},
trans = y};!1000!

|{wend: seq = {det}{phon: y},
trans = y};!100!

|{wend: seq = {phon: y}{det},
trans = y};!100!

| ...

let actual_word_endings =
{cpform:{core:{group:{val}*}*}

<<all_word_endings>>+}|
{idform:{val}*}|{number:{val}*}|
{gram:{val}*}|{frozen};

Each pattern in a machine all XXX corresponds
to one rule of the rewrite rule system of the original
grammar. The excerpt above translates the rules :

P(y) => b3, L(y), endWord / 1000
DET($x), P(y) => b3, L(y),

DET($x), endWord / 100
P(y), DET($x) => b3, L(y),

DET($x), endWord / 100

The auxiliary symbols b3 and endWord used in
the rewrite rules correspond to the opening and clos-
ing of a wend tuple in Karamel.

The description of all written forms is poten-
tially given by the intersection of all the machines
actual XXX, one machine for each tuple type.
This intersection is statically computable, and the
result is a large transducer. It is also possible to
compute the intersection dynamically: the text rep-
resented by a sequence of hieroglyphs is first com-
bined with one of the machines using an external
composition operation, then the result is inter-
sected successively with all the other transducers.
The best transliteration is computed by an n-best
computation and the transliteration is finally ex-
tracted using an external projection.

6 Comparison of the two approaches

The two grammars represent the structure of forms
using different means: the cascade grammar uses
pairs of auxiliary symbols whereas the Karamel
grammar uses tuples. The structure described is
almost identical in both grammars. Some tuples
of the grammar are not represented in the cascade
grammar: it is the case of the smallest tuples (type
val) and some of the largest tuples (type cpform).

80

Values in the cascade grammars are rewritten ei-
ther phonetically or semantically. The sign and the
corresponding value are never simultaneously repre-
sented in the intermediate strings.

The multitape grammar puts homogeneous infor-
mation on each tape: there is a tape for hieroglyphs,
two for phonetic values, one for semantics, several
for auxiliary values. The cascade concatenates dif-
ferent kind of symbols, especially at the intermedi-
ate levels. The input consists in hieroglyphs and the
output in latin letters, but the intermediate strings
have not only both kind of representations (hiero-
glyph and latin letters), but also semantic values and
auxiliary symbols.

Some of the rewrite rules change the order of
signs with respect to the text order. This is used for
two purposes: in word ending, determinatives which
sometime appear before the inflection marked using
phonetic values, are pushed to the end of the word
in such a way that all the determinatives of a word
ending are contiguous. This is important for the next
layer of the cascade which rewrites pairs of determi-
natives with various weights, depending on seman-
tics constraints. The other case of reordering deals
with the phonetic determinatives which are put at the
beginning of word endings. This is done to check
that the phonetic value of the sign is coherent with
the transliteration of the phonetic part.

The Karamel grammar does not need to change
the order of symbols. The constraints on multi-
ple determinatives and the coherence between pho-
netic ideograms and the phonetic part transliteration
are expressed as long-distance dependencies using
Karamel variables.

The formalism used in the cascade consists in
rewrite rules without context: a center is rewritten
regardless of the surrounding symbols. There is no
way to express long-distance dependencies within
the formalism. On the other hand, long-distance de-
pendencies are costly: they result in larger transduc-
ers.

There are also some cases of changes in the struc-
ture proposed for a form in the cascade grammar:
two word endings are collapsed into one by remov-
ing the symbols marking the end of the first and be-
ginning of the second. In the Karamel grammar, this
rule is not implemented as a change of the struc-
ture, but by allowing under conditions a second word

step states arcs
step binary multitape binary multitape

values 75 12 723 2 095 61 581
groups 8 675 165 286 20 234 277 812
words 10 383 104 844 23 605 7 458 881

cleanup 923 821 031 5 001 924 514

Figure 2: sizes of binary and multitape machines

ending after the first one. The structures are never
changed once built.

The multitape transducers are larger than binary
transducers for a couple of reasons. They contain
more information because they keep all the informa-
tion whereas in the cascade, some symbols are for-
gotten after they have been rewritten. Another rea-
son is that there is an overhead due to representation
of tapes and tuples, which are compiled using aux-
iliary symbols. The third reason is that some long
distance dependencies are implemented in the mul-
titape machines. These long-distance dependencies
do not appear in one binary transducer, but they ap-
pear when statically composing the transducers of
the cascade. Figure 2 gives the sizes of comparable
machines of the two grammars.

7 Conclusion

The comparison done here is not completely fair be-
cause the second grammar has been translated from
the first one, almost rule by rule. This does not give
the best possible implementation of the application
in Karamel. Some features available in Karamel are
not used.

The Karamel language provides a more abstract
description of the forms, using an explicit tree struc-
ture and separating the different pieces of informa-
tion on different tapes, according to semantic crite-
ria. On the other hand, the Karamel machine is much
larger. Karamel is a high-level declarative formalism
whereas non contextual rewrite rules are an efficient
low-level language.

Some trade-off is possible: cascade of transduc-
ers may be expressed using a richer language (e.g.
XFST (Beesley and Karttunen, 2003)) whereas the
Karamel language has some contextual rewrite rules
which have not been presented in this paper be-
cause they are not used in the Egyptian transliter-
ation grammar.

81

References
James P. Allen. 2010. Middle Egyptian: An Introduction

to the Language and Culture of Hieroglyphs. Cam-
bridge University Press.

François Barthélemy. 2007. Multi-grain relations. In Im-
plementation and Application of Automata, 12th Inter-
national Conference (CIAA), pages 243–252, Prague,
Czech Republic.

François Barthélemy. 2009. A testing framework for
finite-state morphology. In Implementation and Ap-
plication of Automata, 14th International Conference
(CIAA), volume 5642 of Lecture Notes in Computer
Science (LNCS), pages 75–83, Sydney, Australia.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications.

Jan Buurman, Nicolas Grimal, Michael Hainsworth,
Jochen Hallof, and Dirk Van Der Plas. 1988. Inven-
taire des signes hieroglyphiques en vue de leur saisie
informatique. Mémoires de l’Académie des Inscrip-
tions et Belles Lettres. Institut de France, Paris.

Ronald M. Kaplan and Martin Kay. 1994. Regular mod-
els of phonological rule systems. Computational Lin-
guistics, 20:3:331–378.

Kimmo Koskenniemi. 1983. Two-level model for mor-
phological analysis. In IJCAI-83, pages 683–685,
Karlsruhe, Germany.

Serge Rosmorduc. 2008. Automated transliteration of
egyptian hieroglyphs. In Nigel Strudwick, editor, In-
formation Technology and Egyptology in 2008, Pro-
ceedings of the meeting of the Computer Working
Group of the International Association of Egyptolo-
gists (Informatique et Egyptologie), Vienna, 811 July
2008, pages 167–183. Gorgias Press.

82

