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Preface

Welcome to the 12th International Conference on Parsing Technologies (IWPT 2011) in Dublin, Ireland.
IWPT 2011 continues the tradition of biennial conferences organized by SIGPARSE, ACL’s Special
Interest Group on Parsing, serving as the primary specialized forum for research on natural language
parsing.

This year we received a total of 64 valid submissions, 42 long papers and 22 short papers, 6 of which
were later withdrawn after being accepted for publication elsewhere. Of the remaining 58 submissions,
28 were accepted for presentation at the conference, which gives an acceptance rate of 48%. After
notification, 2 more papers were withdrawn, which brings the final number of accepted papers to 26, all
of which are published in these proceedings and presented at the conference in one of two ways: (i) as
a long talk (long papers only) or (ii) as a short talk and a poster (short papers and some long papers).
In this way, we were able to accommodate as many papers as possible and still give all the authors the
opportunity of an oral presentation.

In addition to the contributed papers, IWPT 2011 will as usual feature invited talks on topics relevant to
natural language parsing. This year we are delighted to welcome three very distinguished researchers:
Ina Bornkessel-Schlesewsky, Michael Collins, and Mark Steedman. You will find the abstracts of their
talks in the proceedings. There will also be a special workshop devoted to parsing of morphologically
rich languages on the second day of the conference, a workshop that has had its own program committee
and selection process.

Organizing IWPT 2011 would not have been possible without the dedicated work of a number of people.
First and foremost, we would like to thank the local organizing committee, chaired by Özlem Çetinoğlu,
who has done an outstanding job in taking care of all the local and practical organization. We are also
grateful to the members of the program committee, who worked hard to review and discuss papers in
the middle of the holiday season, and to the staff of SoftConf for support in managing the START
system. Finally, thanks are due to the sponsors whose support helped to make IWPT 2011 possible:
the Science Foundation Ireland, Dublin City University, the Centre for Next Generation Localisation,
Springer Publishers, and Fáilte Ireland.

Enjoy the conference!

Harry Bunt Joakim Nivre
General Chair Program Chair
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Computing Scope in a CCG Parser

Mark Steedman
School of Informatics

University of Edinburgh
steedman@inf.ed.ac.uk

Abstract

Ambiguities arising from alternations of scope in interpretations for multiply quantified sen-
tences appear to require grammatical operations that compromise the strong assumptions of
syntactic/semantic transparency and monotonicity underlying the Frege-Montague approach
to the theory of grammar. Examples that have been proposed include covert movement at the
level of logical form, abstraction or storage mechanisms, and proliferating type-changing op-
erations. The paper examines some interactions of scope alternation with syntactic phenomena
including coordination, binding, and relativization. Starting from the assumption of Fodor and
Sag, and others, that many expressions that have been treated as generalized quantifiers are
in fact referential expressions, and using Combinatory Categorial Grammar (CCG) as a gram-
matical framework, the paper presents an account of quantifier scope ambiguities according to
which the available readings are projected directly from the lexicon by the combinatorics of
the syntactic derivation, without any independent manipulation of logical form and without re-
course to otherwise unmotivated type-changing operations. As a direct result, scope ambiguity
can be efficiently processed using packed representations from which the available readings
can be simply enumerated.
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A Generalized View on Parsing and Translation

Alexander Koller
Dept. of Linguistics

University of Potsdam, Germany
koller@ling.uni-potsdam.de

Marco Kuhlmann
Dept. of Linguistics and Philology

Uppsala University, Sweden
marco.kuhlmann@lingfil.uu.se

Abstract

We present a formal framework that gen-
eralizes a variety of monolingual and syn-
chronous grammar formalisms for parsing
and translation. Our framework is based on
regular tree grammars that describe deriva-
tion trees, which are interpreted in arbitrary
algebras. We obtain generic parsing algo-
rithms by exploiting closure properties of
regular tree languages.

1 Introduction

Over the past years, grammar formalisms that relate
pairs of grammatical structures have received much
attention. These formalisms include synchronous
grammars (Lewis and Stearns, 1968; Shieber and
Schabes, 1990; Shieber, 1994; Rambow and Satta,
1996; Eisner, 2003) and tree transducers (Comon
et al., 2007; Graehl et al., 2008). Weighted vari-
ants of both of families of formalisms have been
used for machine translation (Graehl et al., 2008;
Chiang, 2007), where one tree represents a parse
of a sentence in one language and the other a parse
in the other language. Synchronous grammars and
tree transducers are also useful as models of the
syntax-semantics interface; here one tree represents
the syntactic analysis of a sentence and the other
the semantic analysis (Shieber and Schabes, 1990;
Nesson and Shieber, 2006).

When such a variety of formalisms are avail-
able, it is useful to take a step back and look for
a generalized model that explains the precise for-
mal relationship between them. There is a long
tradition of such research on monolingual grammar
formalisms, where e.g. linear context-free rewriting
systems (LCFRS, Vijay-Shanker et al. (1987)) gen-
eralize various mildly context-sensitive formalisms.
However, few such results exist for synchronous
formalisms. A notable exception is the work by
Shieber (2004), who unified synchronous tree-
adjoining grammars with tree transducers.

In this paper, we make two contributions. First,
we provide a formal framework – interpreted reg-
ular tree grammars – which generalizes both syn-
chronous grammars, tree transducers, and LCFRS-
style monolingual grammars. A grammar of this
formalism consists of a regular tree grammar (RTG,
Comon et al. (2007)) defining a language of deriva-
tion trees and an arbitrary number of interpreta-
tions which map these trees into objects of arbi-
trary algebras. This allows us to capture a wide
variety of (synchronous and monolingual) gram-
mar formalisms. We can also model heterogeneous
synchronous languages, which relate e.g. trees with
strings; this is necessary for applications in ma-
chine translation (Graehl et al., 2008) and in pars-
ing strings with synchronous tree grammars.

Second, we also provide parsing and decoding al-
gorithms for our framework. The key concept that
we introduce is that of a regularly decomposable
algebra, where the set of all terms that evaluate to
a given object form a regular tree language. Once
an algorithm that computes a compact representa-
tion of this language is known, parsing algorithms
follow from a generic construction. All important
algebras in natural language processing that we are
aware of – in particular the standard algebras of
strings and trees – are regularly decomposable.

In summary, we obtain a formalism that pulls
together much existing research under a common
formal framework, and makes it possible to ob-
tain parsers for existing and new formalisms in a
modular, universal fashion.

Plan of the paper. The paper is structured as
follows. We start by laying the formal foundations
in Section 2. We then introduce the framework of
interpreted RTGs and illustrate it with some simple
examples in Section 3. The generic parsing and
decoding algorithms are described in Section 4.
Section 5 discusses the role of binarization in our
framework. Section 6 shows how interpreted RTGs
can be applied to existing grammar formalisms.

2



2 Formal Foundations

For n ≥ 0, we define [n] = { i | 1 ≤ i ≤ n }.
A signature is a finite set Σ of function sym-

bols f , each of which has been assigned a non-
negative integer called its rank. Given a signature
Σ, we can define a (finite constructor) tree over Σ
as a finite tree whose nodes are labeled with sym-
bols from Σ such that a node with a label of rank
n has exactly n children. We write TΣ for the set
of all trees over Σ. Trees can be written as terms;
f(t1, . . . , tn) stands for the tree with root label f
and subtrees t1, . . . , tn. The nodes of a tree can be
identified by paths π ∈ N∗ from the root: The root
has address ε, and the i-th child of the node at path
π has the address πi. We write t(π) for the symbol
at path π in the tree t.

A Σ-algebra A consists of a non-empty set A
called the domain and, for each symbol f ∈ Σ
with rank n, a total function fA : An → A, the
operation associated with f . We can evaluate a
term t ∈ TΣ to an object JtKA ∈ A by executing
the operations:

Jf(t1, . . . , tn)KA = fA(Jt1KA, . . . , JtnKA) .

Sets of trees can be specified by regular tree
grammars (RTGs) (Gécseg and Steinby, 1997;
Comon et al., 2007). Formally, such a grammar is
a structure G = (N,Σ,P, S), where N is a signa-
ture of nonterminal symbols, all of which are taken
to have rank 0, Σ is a signature of terminal sym-
bols, S ∈ N is a distinguished start symbol, and P
is a finite set of productions of the form B → t,
where B is a nonterminal symbol, and t ∈ TN∪Σ .
The productions of a regular tree grammar are used
as rewriting rules on terms. More specifically, the
derivation relation of G is defined as follows. Let
t1, t2 ∈ TN∪Σ be terms. Then G derives t2 from t1
in one step, denoted by t1 ⇒G t2, if there exists a
production of the form B → t and t2 can be ob-
tained by replacing an occurrence of B in t1 by t.
The (regular) language L(G) generated by G is the
set of all terms t ∈ TΣ that can be derived, in zero
or more steps, from the term S.

A (tree) homomorphism is a total function
h: TΣ → T∆ which expands symbols of Σ into
trees over ∆ while following the structure of the in-
put tree. Formally, h is specified by pairs (f, h(f)),
where f ∈ Σ is a symbol with some rank n, and
h(f) ∈ T∆∪{x1,...,xn} is a term with variables.
Given t ∈ TΣ , the value of t under h is defined as

h(f(t1, . . . , tn)) = h(f){h(ti)/xi | i ∈ [n] } ,

where { ti/xi | i ∈ [n] } represents the substitu-
tion that replaces all occurrences of xi with the
respective ti. A homomorphism is called linear
if every term h(f) contains each variable at most
once; and a delabeling if every term h(f) is of the
form g(xπ(1), . . . , xπ(n)) where n is the rank of f
and π a permutation of {1, . . . , n}.

3 Interpreted Regular Tree Grammars

We will now present a generalized framework for
synchronous and monolingual grammars in terms
of regular tree grammars, tree homomorphisms,
and algebras. We will illustrate the framework with
two simple examples here, but many other grammar
formalisms can be seen as special cases too, as we
will show in Section 6.

3.1 An Introductory Example

The derivation process of context-free grammar is
usually seen as a string-rewriting process in which
nonterminals are successively replaced by the right-
hand sides of production rules. The actual parse
tree is explained as a post-hoc description of the
rules that were applied in the derivation.

However, we can alternatively view this as a two-
step process which first computes a derivation tree
and then interprets it as a string. Say we have the
CNF grammar G in Fig. 2, and we want to derive
the string w = “Sue watches the man with the
telescope”. In the first step, we use G to generate a
derivation tree like the one in Fig. 2a. The nodes of
this tree are labeled with names of the production
rules in G; nodes with labels r7 and r3 are licensed
by G to be the two children of r1 because r1 has
the two nonterminals NP and VP in its right-hand
side, and the left-hand sides of r7 and r3 are NP
and VP, respectively. In a second step, we can then
interpret the derivation tree into w by interpreting
each leaf labeled with a terminal production (say,
r7) as the string on its right-hand side (“Sue”), and
each internal node as a string concatenation opera-
tion which arranges the string yields of its subtrees
in the order given by the right-hand side of the
production rule.

This view differs from the traditional perspec-
tive on context-free grammars in that it makes the
derivation tree the primary participant in the deriva-
tion process. The string is only one particular in-
terpretation of the derivation tree, and instead of
a string we could also have interpreted it as some
other kind of object. For instance, if we had inter-
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Figure 1: Our unified perspective on grammar formalisms: (a) ordinary grammar formalisms; (b) synchronous for-
malisms; (c) multiple “inputs” and “outputs”.

result of this can be (non-standardly) recorded as a
derivation tree, whose nodes are labeled by names
of production rules, and in which a rule application
a1 is the child of another a2 if a1 introduced a non-
terminal occurrence that was expanded by a2. In a
second step, we can transform this derivation tree
into a string by interpreting each rule application as
a string-concatenation operation.

While this picture seems complicated for context-
free grammars by themselves, the separation into
two different generative processes (first a derivation
tree, then the string from the derivation tree) is appli-
cable much more widely and, we argue, widely use-
ful. The general picture looks as follows. Consider
a regular tree grammar G over a signature Σ, an al-
gebra A with signature ∆, and a homomorphism h :
TΣ → T∆. If we apply h to any tree t ∈ L(G), we
obtain a term over A, which we can interpret as an
element of A. By collecting all such terms, we ob-
tain a language LA(G, h) = {�h(t)�A | t ∈ L(G)}
of elements of A. This perspective is illustrated in
Fig. 1a.

We can define an obvious membership problem:
Given some element a ∈ A, is a ∈ LA(G, h)? We
can also define a parsing problem: For every ele-
ment a ∈ LA(G, h), compute (some compact repre-
sentation of)

parsesA,G,h(a) = {t ∈ L(G) | �h(t)�A = a}.

We call the trees over Σ derivation trees, and the
trees in parses(a) the derivation trees of a.

In the case of context-free grammars, it is known
that the language of derivation trees is a regular tree
language (Comon et al., 2007). It is defined by an
RTG G over the signature of production rule names
of the context-free grammar G. For every produc-
tion rule r of the form A → ω1A1 . . . Anωn+1

(where A and all Ai are nonterminals, and the ωi are
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Figure 2: A context-free grammar and one of its deriva-
tion trees.

possibly empty strings of terminals), G contains a
rule A → r(A1, . . . , An). We interpret such deriva-
tion trees into strings in the string algebra As over
some terminal alphabet T ; the elements of this alge-
bra are the strings in T ∗, and we have constants for
the elements of T and a binary string concatenation
operation ·. As a last step, we use a homorphism h to
map each rule into a term over As: for the above rule
r, we have h(r) = ω1 · x1 · . . . · xn · ωn+1. It can be
shown that under this construction, LAs(G, h) is ex-
actly L(G), the string language of the original gram-
mar.

For illustration, consider the context-free gram-
mar in Fig. 2a, and let’s say we want to parse the
sentence “John loves Mary”. The RTG for the gram-
mar contains rules such as S → r1(NP, V P );
it generates the derivation tree shown in Fig. 2b.
This tree can now be interpreted using a homomor-
phism h with h(r1) = x1 · x2, h(r3) = John,
etc. h maps the derivation tree in Fig. 2b to the
term (John · loves) · Mary over As, which eval-
uates to the string “John loves Mary”. This means
that it is a derivation tree of that string. In fact,
parses(“John loves Mary”) is the set that contains
only this derivation tree.
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morphisms with algebraic interpretations and illus-
trate the approach on several grammar formalisms in
Section 3. We will define generic algorithms in Sec-
tion 4. Section 7 discusses related work, and Sec-
tion 8 concludes.
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each of which has been assigned a non-negative in-
teger called its rank. Given a signature Σ, we can
define a (finite constructor) tree over Σ as a finite
tree whose nodes are labeled with symbols from Σ
such that a node with a label of rank n has exactly n
children. We write TΣ for the set of all trees over Σ.
Trees can be written as terms; f(t1, . . . , tn) stands
for the tree with root label f and subtrees t1, . . . , tn.
The nodes of a tree can be identified by the paths
π ∈ N∗ from the root to the node: The root has ad-
dress �, and the i-th child of the node below path π
has the address πi. We write t(π) for the symbol at
path π in the tree t.

A Σ-algebra A consists of a non-empty set A
called the domain and, for each symbol f ∈ Σ with
rank m, a total function fA : Am → A, called the
operation associated with f . We can evaluate a term
t ∈ TΣ to an object �t�A ∈ A by executing the op-
erations:

�σ(t1, . . . , tm)�A = fAσ (�t1�A, . . . , �tm�A) .

Sets of trees can be specified by regular tree
grammars (Gécseg and Steinby, 1997; Comon et
al., 2007). Formally, such a grammar is a structure
G = (N, Σ, P, S), where N is a signature of nonter-
minal symbols, all of which are taken to have rank 0,
Σ is a signature of terminal symbols, S ∈ N is a
distinguished start symbol, and P is a finite set of
productions of the form B → t, where B is a non-
terminal symbol, and t ∈ TN∪Σ. The productions
of a regular tree grammar are used as rewriting rules
on terms. More specifically, the derivation relation
of G is defined as follows. Let t1, t2 ∈ TN∪Σ be

terms. Then G derives t2 from t1 in one step, de-
noted by t1 ⇒G t2, if there exists a production of
the form B → t and t2 can be obtained by replacing
an occurrence of B in t1 by t. The language L(G)
generated by G is the set of all terms t ∈ TΣ that can
be derived, in zero or more steps, from the term S.

A (tree) homomorphism is a function h : TΣ →
T∆ which expands symbols of Σ into (possibly mul-
tiple) symbols of ∆ while following the structure
of the input tree. Formally, h is defined by a term
h(f) ∈ T∆∪{x1,...,xn} for each f ∈ Σ, where n is
the rank of f and the xi are variable symbols of rank
0. Given a term t ∈ TΣ, h(t) is defined recursively
by

h(f(t1, . . . , tn)) = h(f){h(t1)/x1, . . . , h(tn)/xn},
where {t�1/x1, . . . , t
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n/xn} represents a substitution

that replaces all occurrences of xi with the respec-
tive t�i. A homomorphism is called linear if every
term h(f) contains each variable at most once.

Finally, a tree transducer is a device M for de-
scribing binary relations between trees; the first tree
in each pair is usually seen as the input and the sec-
ond as the output. They generalize string transduc-
ers to the tree case and are defined in more detail in
(Comon et al., 2007). A useful way of thinking of
a tree transducer is in terms of bimorphisms. A bi-
morphism is a triple B = (h1,G, h2) of an RTG G
and two homomorphisms h1, h2; it represents the bi-
nary relation {(h1(t), h2(t)) | t ∈ L(G)}. vielleicht
brauchen wir das hier gar nicht

3 Grammar formalisms based on tree
automata

We will now present a unified framework of
synchronous and non-synchronous grammar for-
malisms in terms of regular tree languages, tree ho-
momorphisms, and algebras. We will illustrate the
framework using ordinary context-free grammars
and synchronous tree-substitution grammars, but the
framework is much more general than this, and we
will hint at this at the end of the section.

3.1 Ordinary grammars
The process of generating a string from a context-
free grammar G can be seen as a two-step process.
In a first step, we generate a derivation of G by ex-
panding nonterminals using production rules. The
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tain a language LA(G, h) = {�h(t)�A | t ∈ L(G)}
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shown that under this construction, LAs(G, h) is ex-
actly L(G), the string language of the original gram-
mar.

For illustration, consider the context-free gram-
mar in Fig. 2a, and let’s say we want to parse the
sentence “John loves Mary”. The RTG for the gram-
mar contains rules such as S → r1(NP, V P );
it generates the derivation tree shown in Fig. 2b.
This tree can now be interpreted using a homomor-
phism h with h(r1) = x1 · x2, h(r3) = John,
etc. h maps the derivation tree in Fig. 2b to the
term (John · loves) · Mary over As, which eval-
uates to the string “John loves Mary”. This means
that it is a derivation tree of that string. In fact,
parses(“John loves Mary”) is the set that contains
only this derivation tree.
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result of this can be (non-standardly) recorded as a
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a1 is the child of another a2 if a1 introduced a non-
terminal occurrence that was expanded by a2. In a
second step, we can transform this derivation tree
into a string by interpreting each rule application as
a string-concatenation operation.

While this picture seems complicated for context-
free grammars by themselves, the separation into
two different generative processes (first a derivation
tree, then the string from the derivation tree) is appli-
cable much more widely and, we argue, widely use-
ful. The general picture looks as follows. Consider
a regular tree grammar G over a signature Σ, an al-
gebra A with signature ∆, and a homomorphism h :
TΣ → T∆. If we apply h to any tree t ∈ L(G), we
obtain a term over A, which we can interpret as an
element of A. By collecting all such terms, we ob-
tain a language LA(G, h) = {�h(t)�A | t ∈ L(G)}
of elements of A. This perspective is illustrated in
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We can define an obvious membership problem:
Given some element a ∈ A, is a ∈ LA(G, h)? We
can also define a parsing problem: For every ele-
ment a ∈ LA(G, h), compute (some compact repre-
sentation of)

parsesA,G,h(a) = {t ∈ L(G) | �h(t)�A = a}.

We call the trees over Σ derivation trees, and the
trees in parses(a) the derivation trees of a.

In the case of context-free grammars, it is known
that the language of derivation trees is a regular tree
language (Comon et al., 2007). It is defined by an
RTG G over the signature of production rule names
of the context-free grammar G. For every produc-
tion rule r of the form A → ω1A1 . . . Anωn+1

(where A and all Ai are nonterminals, and the ωi are

S → NP VP
VP → V NP
NP → John
NP → Mary

V → loves

r1

r3 r2

r5 r4

Figure 2: A context-free grammar and one of its deriva-
tion trees.

possibly empty strings of terminals), G contains a
rule A → r(A1, . . . , An). We interpret such deriva-
tion trees into strings in the string algebra As over
some terminal alphabet T ; the elements of this alge-
bra are the strings in T ∗, and we have constants for
the elements of T and a binary string concatenation
operation ·. As a last step, we use a homorphism h to
map each rule into a term over As: for the above rule
r, we have h(r) = ω1 · x1 · . . . · xn · ωn+1. It can be
shown that under this construction, LAs(G, h) is ex-
actly L(G), the string language of the original gram-
mar.

For illustration, consider the context-free gram-
mar in Fig. 2a, and let’s say we want to parse the
sentence “John loves Mary”. The RTG for the gram-
mar contains rules such as S → r1(NP, V P );
it generates the derivation tree shown in Fig. 2b.
This tree can now be interpreted using a homomor-
phism h with h(r1) = x1 · x2, h(r3) = John,
etc. h maps the derivation tree in Fig. 2b to the
term (John · loves) · Mary over As, which eval-
uates to the string “John loves Mary”. This means
that it is a derivation tree of that string. In fact,
parses(“John loves Mary”) is the set that contains
only this derivation tree.
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Figure 1: Interpreted tree grammars: (a) monolingual; (b) synchronous; (c) multiple “inputs” and “outputs”.

preted r7 as the tree N(Sue) and a rule like r1 as
a tree operation which takes the tree yields of its
two subtrees and inserts them as the children of a
root with label S, etc., the interpretation of a deriva-
tion tree would now be a tree; namely, an ordinary
parse tree of G. We could even interpret the same
derivation tree simultaneously as a string and as a
tree using two different interpretation functions.

3.2 Interpreted Regular Tree Grammars
While this view is unnecessarily complex for ex-
plaining context-free grammars alone, the separa-
tion into two different generative processes (first
derivation, then interpretation) is widely applicable.
In particular, the derivation part can be independent
of whetherw is a string or some other algebra of ob-
jects. We formalize our view as follows. First, we
need an interpretative component that maps deriva-
tion trees to terms of the relevant object algebra:

Definition 1 Let Σ be a signature. A Σ-interpre-
tation is a pair I = (h,A), whereA is a∆-algebra,
and h: TΣ → T∆ is a homomorphism. 2

We then capture the derivation process with a
single regular tree grammar, and connect it with
(potentially multiple) interpretations as follows:

Definition 2 An interpreted regular tree grammar
(IRTG) is a structure G = (G, I1, . . . , In), n ≥ 1,
where G is a regular tree grammar with terminal
alphabet Σ, and the Ii are Σ-interpretations. 2

Let Ii = (hi,Ai) be the ith interpretation. If we
apply the homomorphism hi to any tree t ∈ L(G),
we obtain a term hi(t), which we can evaluate to an
object ofAi. Based on this, we define the language
generated by G as follows. We write JtKIi as a
shorthand for Jhi(t)KAi .

L(G) = { 〈JtKI1 , . . . , JtKIn〉 | t ∈ L(G) }
Given this notion, we can define an obvious

membership problem: For a given tuple of objects
~a = 〈a1, . . . , an〉, is ~a ∈ L(G)? We can also de-
fine a parsing task: For every element ~a ∈ L(G),
compute (some compact representation of) the set

parsesG(~a) = { t ∈ L(G) | ∀i. JtKIi = ai }
We call the trees in this set the derivation trees of ~a.

3.3 Monolingual Grammars
Let us use these definitions to make our example
with context-free grammars as string-generating
devices precise. This is a case with a single inter-
pretation (n = 1), as illustrated in Fig. 1a.

We can adapt a standard construction (Goguen
et al., 1977). Let G be a context-free grammar with
nonterminals N , terminals T , and productions P .
We start by defining a regular tree grammar G. For
a string α ∈ (N ∪ T )∗, let nt(α) denote the string
of nonterminals in α, in the same order. We in-
clude into G all (and only) productions of the form
A → p(A1, . . . , Am), where p = A → α is a
production of G, and A1 · · ·Am = nt(α). Note
that by doing so, we view p as a symbol of rank
|nt(α)|. The nonterminals and the start symbol
of G are as for G. We now interpret the trees gen-
erated by G over the string algebra over T , which
we denote by T ∗. The domain of this algebra is
the set of all strings over T , and we have constants
for the symbols in T and the empty string, as well
as a single binary concatenation operation •. As
a last step, we use a homorphism rb to map each
rule of G into a term over the signature of T ∗:
For each production p of the form above, rb(p)
is the right-branching tree obtained from decom-
posing α into a series of concatenation operations,
where the nonterminal Ai is replaced with the vari-
able xi. Thus we have constructed an IRTG gram-
mar G = (G, (rb, T ∗)). It can be shown that under
this construction L(G) is exactly L(G), the string
language of the original grammar.

Consider the context-free grammar in Fig. 2.
The RTG G contains production rules such as
S→ r1(NP,VP); it generates an infinite language
of trees, including the derivation trees shown in
Fig. 2a and 2b. These trees can now be interpreted
using rb with rb(r1) = x1 •x2,1 rb(r7) = Sue, etc.
This maps the tree in Fig. 2a to the term
Sue•(watches•(the•(man•(with•(the•telescope)))))

over the signature of T ∗, which evaluates in the
algebra T ∗ to the string w mentioned earlier. Simi-
larly, rb maps the tree in Fig. 2b to the term

1Here and below, we write • in infix notation.

4



S

NP1 ↓ NP2 ↓loves

t

e1 ↓

e2 ↓

@

@

loves

NP

John

e

j*

NP

Mary

e

m*

S

NP NPloves

John Mary

t

e

e

@

@

loves j*
m*

α1 α2 α3
α1

α2 α3

(a) (b) (c)

Figure 3: Synchronous TSG: (a) a lexicon consisting of three tree pairs; (b) a derived tree; (c) a derivation tree.

r1 : S → NP VP
r2 : NP → Det N
r3 : VP → V NP
r4 : N → N PP
r5 : VP → VP PP
r6 : PP → P NP
r7 : NP → Sue
r8 : Det → the
r9 : N → man
r10 : N → telescope
r11 : V → watches
r12 : P → with
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Figure 2: A CFG and two of its derivation trees.

Sue•((watches•(the•man))•(with•(the•telescope)))

This means that L(G) is a set of strings which in-
cludes w. The tree language L(G) contains further
trees, which map to strings other than w. Therefore
L(G) includes other strings, but the trees in Fig. 2a
and b are the only two derivation trees of w.

3.4 Synchronous Grammars

We can quite naturally represent grammars that
describe binary relations between objects, i.e. syn-
chronous grammars, as IRTGs with two interpre-
tations (n = 2). We write these interpretations
as IL = (hL,AL) (“left”) and IR = (hR,AR)
(“right”); see Fig. 1b.

Parsing with a synchronous grammar means to
compute (a compact representation of) the set of
all derivation trees for a given pair (aL, aR) from
the set AL × AR. This is precisely the parsing
task that we defined in Section 3.2. A related
task is decoding, in which we take the grammar
G = (G, IL, IR) as a translation device for map-
ping input objects aL ∈ AL to output objects
aR ∈ AR. We define the decoding task as the
task of computing, for a given aL ∈ AL, (a com-
pact representation of) the following set, where
GL = (G, IL):

decodesG(aL) = { JtKIR
| t ∈ parsesGL

(aL) }
To illustrate this with an example, consider the

case of synchronous tree-substitution grammars
(STSGs, Eisner (2003)). An STSG combines lexi-

con entries, as shown in Fig. 3a, into larger derived
trees by replacing corresponding substitution nodes
with trees from other lexicon entries. In the figure,
we have marked the correspondence with numeric
subscripts. The trees in Fig. 3a can be combined
into the derived tree in Fig. 3b in two steps; this
process is recorded in the derivation tree in Fig. 3c.

We capture an STSG GS as an IRTG G by inter-
preting the (regular) language of derivation trees
in appropriate tree algebras. The tree algebra T∆
over some signature ∆ consists of all trees over ∆;
every symbol f ∈ ∆ of rank m is interpreted as
an m-place operation that returns the tree with root
symbol f and its arguments as subtrees. To model
STSG, we use the two tree algebras over all the
symbols occurring in the left and right components
of the lexicon entries, respectively. We can obtain
an RTG G for the derivation trees using a standard
construction (Schmitz and Le Roux, 2008; Shieber,
2004); its nonterminals are pairs 〈AL, AR〉 of non-
terminals occurring in the left and right trees ofGS .
To encode a lexicon entry α with root nonterminals
AL and AR, left substitution nodes A1

L, . . . , A
n
L,

and right substitution nodes A1
R, . . . , A

n
R, we add

an RTG rule of the form

〈AL, AR〉 → α(〈A1
L, A

1
R〉, . . . , 〈An

L, A
n
R〉) .

We also let hL(α) and hR(α) be the left and right
tree of α, with substitution nodes replaced by vari-
ables; hL and hR interpret derivation trees into
derived trees in tree algebras TΣ and T∆ of appro-
priate (and possibly different) signatures. In the
example, we obtain

〈S, t〉 → α1(〈NP, e〉, 〈NP, e〉) ,
hL(α1) = S(x1, loves, x2) , and

hR(α1) = t(@(@(loves, x2), x1)) .

The variables reflect the corresponding substitution
nodes. So if we let G = (G, (hL, TΣ), (hR, T∆)),
L(G) will be a language of pairs of derived trees,
including the pair in Fig. 3b.

Parsing as defined above amounts to computing
a common derivation tree for a given pair of derived
trees; given only a left derived tree, the decoding
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problem is to compute the corresponding right de-
rived trees. However, in an application of STSG to
machine translation or semantic construction, we
are typically given a string as the left input and
want to decode it to a right output tree. We can
support this by left-interpreting the derivation trees
directly as strings: We use the appropriate string
algebra T ∗ (consisting of the symbols of Σ with
arity zero) for AL, and map every lexicon entry
to a term that concatenates the string yields of the
elementary trees. In the example grammar, we can
let h′L(α1) = ((x1 • loves) • x2), h′L(α2) = John,
and h′L(α3) = Mary. With this local change, we
obtain a new IRTG G′ = (G, (h′L, T ∗), (hR, T∆)),
whose language contains pairs of a (left) string
and a (right) tree. One such pair has the string
“John loves Mary” as the left and the right-hand
tree in Fig. 3b as the right component. There-
fore decodes(“John loves Mary”), i.e. the set of
right derived trees that are consistent with the input
string, contains the right-hand tree in Fig. 3b.

We conclude this section by remarking that de-
coding can be easily generalized to n input objects
and m output objects, all of which can be taken
from different algebras (see Fig. 1c).

4 Algorithms

In the previous section, we have taken a view on
parsing and translation in which languages and
translations are obtained as the interpretation of
regular tree grammars. One advantage of this way
of looking at things is that it is possible to define
completely generic parsing algorithms by exploit-
ing closure properties of regular tree languages.

4.1 Parsing
The fundamental problem that we must solve is to
compute, for a given IRTG G = (G, (h,A)) and
object a ∈ A, a regular tree grammar Ga such that
L(Ga) = parsesG(a). A parser for IRTGs with
multiple interpretations follows from this immedi-
ately. Assume that G = (G, I1, . . . , In); then

parsesG(a1, . . . , an) =
n⋂
i=1

parses(G,Ii)(ai) .

Because regular tree languages are closed under in-
tersection, we can parse the different ai separately
and then intersect all the Gai .

The general idea of our parsing algorithm is as
follows. Suppose we were able to compute the
set termsA(a) of all possible terms t over A that

evaluate to a. Then parsesG(a) can be written as
h−1(termsA(a)) ∩ L(G). Of course, termsA(a)
may be a large or infinite set, so computing it in
general algebras is infeasible. But now assume
an algebra A in which termsA(a) is a regular tree
language for every a ∈ A, and in which we can
compute, for each a, a regular tree grammar D(a)
with L(D(a)) = termsA(a). Since regular tree
languages are effectively closed under both inverse
homomorphisms and intersections (Comon et al.,
2007), we obtain a parsing algorithm which first
computes D(a), and then Ga as the grammar for
h−1(L(D(a))) ∩ L(G).

Formally, this can be done for the following class
of algebras.

Definition 3 A Σ-algebraA is called regularly de-
composable if there is a computable function D(·)
which maps every object a ∈ A to a regular tree
grammar D(a) such that L(D(a)) = termsA(a).2

Consider the example of context-free grammars.
We have shown in Section 3.3 how these can be
seen as an IRTG with an interpretation into T ∗. The
string algebra T ∗ is regularly decomposable be-
cause the possible term representations of a string
simply correspond to its bracketings: For a string
w = w1 · · ·wn, the grammar D(w) consists of a
rule Ai−1,i → wi for each 1 ≤ i ≤ n, and a rule
Ai,k → Ai,j • Aj,k for all 0 ≤ i < j < k ≤ n. In
our example “Sue watches the man with the tele-
scope” from Section 3.2, these are rules such as
A2,3 → the, A3,4 → man, A2,4 → A2,3 • A3,4,
and so on. The grammar generates a tree language
consisting of the 132 binary bracketings of the sen-
tence, including the two mentioned in Section 3.3.

Tree algebras are an even simpler example of a
regularly decomposable algebra. For a given tree
t ∈ TΣ , the grammar D(t) consists of the rules
Aπ → f(Aπ1, . . . , Aπn) for all nodes π in t with
label f . D(t) generates a language that contains a
single tree, namely t itself. Thus we can use the
parsing algorithm to parse tree inputs (say, in the
context of an STSG) just as easily as string inputs.

4.2 Computing Inverse Homomorphisms

The performance bottleneck of the parsing algo-
rithm is the computation of the inverse homo-
morphisms. The input of this problem is h and
D(a); the task is to compute an RTG H′ that
uses terminal symbols from the signature Σ of
G and the same nonterminals as D(a), such that
h(L(H′)) = L(D(a)). This problem is nontrivial
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h(f)(π) = xi A ∈ ND(a)

[f, π,A, {A/xi}]
(var)

A→ g(A1, . . . , An) inH h(f)(π) = g
[f, π1, A1, σ1] · · · [f, πn,An, σn]

σ = merge(σ1, . . . , σn) 6= fail

[f, π,A, σ]
(up)

Figure 4: Algorithm for computing h−1(H).

because h may not be a delabeling, so a term h(f)
may have to be parsed by multiple rule applications
in D(a) (see e.g. h′L(α1) in Section 3.4), and we
cannot simply take the homomorphic pre-images
of the production rules of D(a). One approach
(Comon et al., 2007) is to generate all possible
production rules A → f(B1, . . . , Bm) out of ter-
minals f ∈ Σ and D(a)-nonterminals and check
whether A ⇒∗D(a) h(f(B1, . . . , Bm)). Unfortu-
nately, this algorithm blindly combines arbitrary tu-
ples of nonterminals. For parsing with context-free
grammars in Chomsky normal form, this approach
leads to an O(n4) parsing algorithm.

The problem can be solved more efficiently by
the algorithm in Fig. 4. This algorithm computes
an RTGH′ for h−1(L(H)), whereH is an RTG in
a normal form in which every rule contains a sin-
gle terminal symbol; bringing a grammar into this
form only leads to a linear size increase (Gécseg
and Steinby, 1997). The algorithm derives items of
the form [f, π,A, σ], stating that H can generate
the subtree of h(f)σ at node π if it uses A as the
start symbol; the substitution σ is responsible for
replacing the variables in h(f) by nonterminal sym-
bols. It starts by guessing all possible instantiations
of each variable in h(f) (rule var). It then com-
putes items bottom-up, deriving an item [f, π,A, σ]
if there is a rule in H that can combine the non-
terminals derived for the children π1, . . . , πn of π
into A (rule up). The substitution σ is obtained by
merging all mappings in the σ1, . . . , σn; if some
σi, σj assign different nonterminals to the same
variable, the rule fails.

Whenever the algorithm derives an item of
the form [f, ε, A, σ], it has processed a com-
plete tree h(f), and we add a production A →
f(σ(x1), . . . , σ(xn)) to H′; for variables xi on
which σ is undefined, we let σ(xi) = $ for the
special nonterminal $. We also add rules to H′
which generate any tree from TΣ out of $.

The complexity of this algorithm is bounded by
the number of instances of the up rule (McAllester,
2002). For parsing with context-free grammars, up
is applied to rules of the form Al,r → Al,k • Ak,r
of D(w); the premises are [f, π1, Al,k, σ1] and
[f, π2, Ak,r, σ2] and the conclusion [f, π,Al,r, σ].
The substitution σ defines a segmentation of the
substring between positions l and r into m − 1
smaller substrings, where m is the number of vari-
ables in the domain of σ. So the instances of up are
uniquely determined by at most m+ 1 string posi-
tions, where m is the total number of variables in
the tree h(f); the parsing complexity is O(nm+1).
By our encoding of context-free grammars into
IRTGs, m corresponds to the maximal number of
nonterminals in the right-hand side of a production
of the original grammar. In particular, the generic
algorithm parses Chomsky normal form grammars
(where m = 2) in cubic time, as expected.

4.3 Parse Charts

We will now illustrate the operation of the parsing
algorithm with our example context-free grammar
from Fig. 2 and our example sentence w = “Sue
watches the man with the telescope”. We first com-
pute D(w), which generates all bracketings of the
sentence. Next, we use the algorithm in Fig. 4 to
compute a grammarH′ for h−1(L(D(w))) for the
language of all derivation trees that are mapped by
h to a term evaluating to w. H′ contains rules such
as A2,4 → r2(A2,3, A3,4), A3,5 → r2(A3,4, A4,5),
and A3,4 → man. That is, H′ uses terminal sym-
bols from Σ, but the nonterminals from D(w). Fi-
nally, we intersectH′ with G to retain only deriva-
tion trees that are grammatical according to G.
We obtain a grammar Gw for parses(w), which is
shown in Fig. 5 (we have left out unreachable and
unproductive rules). The nonterminals of Gw are
pairs of the form (N,Ai,k), i.e. nonterminals of G
andH′; we abbreviate these pairs asNi,k. Note that
L(Gw) consists of exactly two trees, the derivation
trees shown in Fig. 2.

There is a clear parallel between the RTG in
Fig. 5 and a parse chart of the CKY parser for the
same input. The RTG describes how to build larger
parse items from smaller ones, and provides exactly
the same kind of structure sharing for ambiguous
sentences that the CKY chart would. For all intents
and purposes, the RTG Gw is a parse chart. When
we parse grammars of other formalisms, such as
STSG, the nonterminals of Ga generally record non-
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terminals of G and positions in the input objects, as
encoded in the nonterminals of D(a1), . . . , D(an);
the spans [i, k] occurring in CKY parse items sim-
ply happen to be the nonterminals of the D(a) for
the string algebra.

In fact, we maintain that the fundamental pur-
pose of a chart is to act as a device for generating
the set of derivation trees for an input. This tree-
generating nature of parse charts is made explicit by
modeling them directly as RTGs; the well-known
view of parse charts as context-free grammars (Bil-
lot and Lang, 1989) captures the same intuition, but
abuses context-free grammars (which are primarily
string-generating devices) as tree description for-
malisms. One difference between the two views
is that regular tree languages are closed under in-
tersection, which means that parse charts that are
modeled as RTGs can be easily restricted by ex-
ternal constraints (see Koller and Thater (2010)
for a related approach), whereas this is hard in the
context-free view.

4.4 Decoding

We conclude this section by explaining how to
solve the decoding problem. Suppose that in the
scenario of Fig. 1c, we have obtained a parse chart
G~a for a tuple ~a = 〈a1, . . . , an〉 of inputs, if neces-
sary by intersecting the individual parse charts Gai .
Decoding means that we want to compute RTGs
for the languages h′j(L(G~a)) where j ∈ [m]. The
actual output objects can be obtained from these
languages of terms by evaluating the terms.

In the case where the homomorphisms h′j are
linear, we can once again exploit closure proper-
ties: Regular tree languages are closed under the
application of linear homomorphisms (Comon et
al., 2007), and therefore we can apply a standard
algorithm to compute the output RTGs from the
parse chart. In the case of non-linear homomor-
phisms, the output languages are not necessarily
regular, so decoding exceeds the expressive capac-
ity of our framework. However, linear output ho-
momorphisms are frequent in practice; see e.g. the
analysis of synchronous grammar formalisms in
(Shieber, 2004; Shieber, 2006). Some of the work-
load of a non-linear homomorphism may also be
carried by the output algebra, whose operations
may copy or delete material freely (as long as the
algebra remains regularly decomposable). Notice
that non-linear input homomorphisms are covered
by the algorithm in Fig. 4.

S0,7 → r1(NP0,1, VP1,7) NP5,7 → r2(Det5,6, N6,7)
VP1,7 → r3(V1,2, NP2,7) NP0,1 → r7

VP1,7 → r5(VP1,4, PP4,7) V1,2 → r11

NP2,7 → r2(Det2,3, N3,7) Det2,3 → r8

N3,7 → r4(N3,4, PP4,7) N3,4 → r9

VP1,4 → r3(V1,2, NP2,4) P4,5 → r12

NP2,4 → r2(Det2,3, N3,4) Det5,6 → r8

PP4,7 → r6(P4,5, NP5,7) N6,7 → r10

Figure 5: A “parse chart” RTG for the sentence “Sue
watches the man with the telescope”.

5 Membership and Binarization

A binarization transforms an m-ary grammar into
an equivalent binary one. Binarization is essen-
tial for achieving efficient recognition algorithms,
in particular the usual O(n3) time algorithms for
context-free grammars, and O(n6) time recogni-
tion of synchronous context-free grammars. In this
section, we discuss binarization in terms of IRTGs.

5.1 Context-Free Grammars

We start with a discussion of parsing context-free
grammars. Let G = (G, (rb, T ∗)) be a CFG as
we defined it in Section 3.3. We have shown in
Section 4.2 that our generic parsing algorithm pro-
cesses a sentencew = w1 . . . wn in timeO(nm+1),
where m is the maximal number of nonterminal
symbols in the right-hand side of the grammar. To
achieve the familiar cubic time complexity, an al-
gorithm needs to convert the grammar into a binary
form, either explicitly (by converting it to Chomsky
normal form) or implicitly (as in the case of the
Earley algorithm, which binarizes on the fly).

Strictly speaking, no algorithm that works on the
binarized grammar is a parsing algorithm in the
sense of ‘parsing’ as we defined it above. Under
our view of things, such an algorithm does not
compute the set parsesG(w) of derivation trees ofw
according to the grammar G, but according to a
second, binarized grammar G′ = (G′, (rb, T ∗)).
The binarization then takes the form of a function
bin that transforms terms over the signature of the
RTG G into terms over the binary signature of the
RTG G′. For a binarized grammar, we have m =
2, and so the parsing complexity is O(n3) plus
whatever time it takes to compute G′ from G andw.
Standard binarization techniques of context-free
grammars are linear in the size of the grammar.

Although binarization does not simplify pars-
ing in the sense of this paper, it does simplify
the membership problem of G: Given a string
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G

bin

G2

A1 A2

h1

h2
1

h2

h2
2

Figure 6: Binarization.

w ∈ T ∗, is there some derivation tree t ∈ G
such that Jh(t)K = w? Because L(G) = L(G′),
this question can be decided by testing the empti-
ness of parsesG′(w), without the need to compute
parsesG(w). Furthermore, the set parsesG′(w) is
useful not only for deciding membership in L(G),
but also for computing other quantities, such as
inside probabilities of derivation trees of G.

5.2 Synchronous Context-Free Grammars

Synchronous context-free grammars can be repre-
sented as IRTGs along the same lines as STSG
grammars in Section 3.4. The resulting gram-
mar G = (G, (h1, T

∗
1 ), (h2, T

∗
2 )) consists of two

‘context-free’ interpretations of the RTG G into
string algebras T ∗1 and T ∗2 ; as above, the synchro-
nization is ensured by requiring that related strings
in T ∗1 and T ∗2 are interpretations of the same deriva-
tion tree t ∈ L(G). As above, we can parse
synchronously by parsing separately for the two
interpretations and intersecting the results. This
yields a parsing complexity for SCFG parsing of
O(nm+1

1 · nm+1
2 ), where n1 and n2 are the lengths

of the input strings and m is the rank of the RTG G.
Unlike in the monolingual case, this is now consis-
tent with the result that the membership problem of
SCFGs is NP-complete (Satta and Peserico, 2005).

The reason for the intractability of SCFG pars-
ing is that SCFGs, in general, cannot be binarized.
However, Huang et al. (2009) define the class of
binarizable SCFGs, which can be brought into a
weakly equivalent normal form in which all produc-
tion rules are binary and the membership problem
can be solved in time O(n3

1 ·n3
2). The key property

of binarizable SCFGs, in our terms, is that if r is
any production rule pair of the SCFG, h1(r) and
h2(r) can be chosen in such a way that they can be
transformed into each other by locally swapping
the subterms of a node. For instance, an SCFG rule
pair 〈A → A1 A2 A3 A4, B → B3 B4 B2 B1〉
can be represented by h1(r) = (x1 •x2)• (x3 •x4)
and h2(r) = (x4•x3)•(x1•x2), and h2(r) can be
obtained from h1(r) by swapping the children of

the nodes ε and 2. In such a situation, we can bina-
rize the rule 〈A,B〉 → r(〈A1, B1〉, . . . , 〈A4, B4〉)
in a way that follows the structure of h1(r), e.g.

〈A,B〉 → rε1(〈Ar1, Br
1〉, 〈Ar2, Br

2〉)
〈Ar1, Br

1〉 → r11(〈A1, B1〉, 〈A2, B2〉)
〈Ar2, Br

2〉 → r21(〈A3, B3〉, 〈A4, B4〉)

We can then encode the local rotations in two
new left and right homomorphisms h2

1 and h2
2, i.e.

h2
1(r

ε
1) = h2

1(r
1
1) = h2

1(r
2
1) = h2

2(r
2
1) = x1 •

x2, h2
2(r

ε
1) = h2

2(r
1
1) = x2 • x1. To determine

membership of some (a1, a2) inL(G), we compute
the pre-images of D(a1) and D(a2) under h2

1 and
h2

1 and intersect them with the binarized version,
G2, of G. This can be done in time O(n3

1 · n3
2).

5.3 A Generalized View on Binarization
The common theme of both examples we have just
discussed is that binarization, when it is available,
allows us to solve the membership problem in less
time than the parsing problem. A lower bound for
the membership problem of a tuple 〈a1, . . . , an〉 of
inputs is O(|D(a1)| · · · |D(an)|), because the pre-
images of the D(ai) grammars are at least as big
as the grammars themselves, and the intersection
algorithm computes the product of these. This
means that a membership algorithm is optimal if it
achieves this runtime.

As we have illustrated above, the parsing algo-
rithm from Section 4 is not optimal for monolin-
gual context-free membership, because the RTG G
has a higher rank than D(a), and therefore permits
too many combinations of input spans into rules.
The binarization constructions above indicate one
way towards a generic optimal membership algo-
rithm. Assume that we have algebras A1, . . . ,An,
all of which over signatures with maximum rank
k, and an IRTG G = (G, (h1,A1), . . . , (hn,An)),
where G is an RTG over some signature Σ. As-
sume further that we have some other signature
∆, of maximum rank k, and a homomorphism
bin : TΣ → T∆. We can obtain a RTG G2

with L(G2) = bin(L(G)) as in the SCFG exam-
ple above. Now assume that there are delabelings
h2
i : T∆ → TAi such that h2

i (L(G2)) = hi(L(G))
for all i ∈ [n] (see Fig. 6). Then we can decide
membership of a tuple 〈a1, . . . , an〉 by intersecting
G2 with all the (h2

i )
−1(L(D(ai))). Because the

h2
i are delabelings, computing the pre-images can

be done in linear time; therefore this membership
algorithm is optimal. Notice that if the result of
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the intersection is the RTGH, then we can obtain
parses(a1, . . . , an) = bin−1(L(H)); this is where
the exponential blowup can happen.

The constructions in Sections 5.1 and 5.2 are
both special cases of this generalized approach,
which however also maintains a clear connection to
the strong generative capacity. It is not obvious to
us that it is necessary that the homomorphisms h2

i

must be delabelings for the membership algorithm
to be optimal. Exploring this landscape, which ties
in with the very active current research on binariza-
tion, is an interesting direction for future research.

6 Discussion and Related Work

We conclude this paper by discussing how a num-
ber of different grammar formalisms from the lit-
erature relate to IRTGs, and use this discussion to
highlight a number of features of our framework.

6.1 Tree-Adjoining Grammars

We have sketched in Section 3.4 how we can cap-
ture tree-substitution grammars by assuming an
RTG for the language of derivation trees and a ho-
momorphism into the tree algebra which spells out
the derived trees; or alternatively, a homomorphism
into the string algebra which computes the string
yield. This construction can be generalized to tree-
adjoining grammars (Joshi and Schabes, 1997).

Assume first that we are only interested in the
string language of the TAG grammar. Unlike in
TSG, the string yield of a derivation tree in TAG
may be discontinuous. We can model this with
an algebra whose elements are strings and pairs
of strings, along with a number of different con-
catenation operators that represent possible ways in
which these elements can be combined. (These are
a subset of the operations considered by Gómez-
Rodríguez et al. (2010).) We can then specify a
homomorphism, essentially the binarization proce-
dure that Earley-like TAG parsers do on the fly, that
maps derivation trees into terms over this algebra.
The TAG string algebra is regularly decomposable,
and D(a) can be computed in time O(n6).

Now consider the case of mapping derivation
trees into derived trees. This cannot easily be done
by a homomorphic interpretation in an ordinary tree
algebra. One way to deal with this, which is taken
by Shieber (2006), is to replace homomorphisms
by a more complex class of tree translation func-
tions called embedded pushdown tree transducers.
A second approach is to interpret homomorphically

into a more powerful algebra. This approach is
taken by Maletti (2010), who uses an ordinary tree
homomorphism to map a derivation tree t into a
tree t′ of ‘building instructions’ for a derived tree,
and then applies a function ·E to execute these
building instructions and build the TAG derived
tree. Maletti’s approach fits nicely into our frame-
work if we assume an algebra in which the building
instruction symbols are interpreted according to ·E .

Synchronous tree-adjoining grammars (Shieber
and Schabes, 1990) can be modeled simply as an
RTG with two separate TAG interpretations. We
can separately choose to interpret each side as trees
or strings, as described in Section 3.4.

6.2 Weighted Tree Transducers

One influential approach to statistical syntax-based
machine translation is to use weighted transducers
to map parse trees for an input language to parse
trees or strings of the output language (Graehl et al.,
2008). Bottom-up tree transducers can be modeled
in terms of bimorphisms, i.e. triples (hL,G, hR) of
an RTG G and two tree homomorphisms hL and hR
that map a derivation t ∈ L(G) into the input tree
hL(t) and the output tree hR(t) of the transducer
(Arnold and Dauchet, 1982). Thus bottom-up trans-
ducers fit into the view of Fig. 1b. Although Graehl
et al. use extended top-down transducers and not
bottom-up transducers, a first inspection of their
transducers leads us to believe that nothing hinges
on this specific choice for their application. The
exact situation bears further investigation.

Graehl et al.’s transducers further differ from
the setup we have presented above in that they are
weighted, i.e. each derivation step is associated
with a numeric weight (e.g., a probability), and
we can ask for the optimum derivation for a given
input. Our framework can be straightforwardly
extended to cover this case by assuming that the
RTG G is a weighted RTG (wRTG, Knight and
Graehl (2005)). The parsing algorithm from Sec-
tion 4.1 generalizes to an algorithm for computing
a weighted chart RTG, from which the best deriva-
tion can be extracted efficiently (Knight and Graehl,
2005). Similarly, the decoding algorithm from Sec-
tion 4.4 can be used to compute a weighted RTG for
the output terms, and an algorithm for EM training
can be defined directly on the weighted charts. In
general, every grammar formalism that can be cap-
tured as an IRTG has a canonical weighted variant
in this way. As probabilistic grammar formalisms,
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these assume that all RTG rule applications are
statistically independent. That is, the canonical
probabilistic version of context-free grammars is
PCFG, and the canonical probabilistic version of
tree-adjoining grammar is PTAG (Resnik, 1992).

A final point is that Graehl et al. invest consider-
able effort into defining different versions of their
transducer training algorithms for the tree-to-tree
and tree-to-string translation cases. The core of
their paper, in our terms, is to define synchronous
parsing algorithms to compute an RTG of deriva-
tion trees for (tree, tree) and (tree, string) input
pairs. In their setup, these two cases are formally
completely different objects, and they define two
separate algorithms for these problems. Our ap-
proach is more modular: The training and parsing
algorithms can be fully generic, and all that needs
to be changed to switch between tree-to-tree and
tree-to-string is to replace the algebra and homo-
morphism on one side, as in Section 3.4. In fact, we
are not limited to interpreting derivation trees into
strings or trees; by interpreting into the appropriate
algebras, we can also describe languages of graphs
(Eaton et al., 2007), pictures (Drewes, 2006), 3D
models (Bokeloh et al., 2010), and other objects
with a suitable algebraic structure.

6.3 Generalized Context-Free Grammars

Finally, the view we advocate here embraces a
tradition of grammar formalisms going back to
generalized context-free grammar (GCFG, Pollard
(1984)), which follows itself research in theoret-
ical computer science (Mezei and Wright, 1967;
Goguen et al., 1977). A GCFG grammar can be
seen as an RTG over a signature Σ whose trees are
evaluated as terms of some Σ-algebra A. This is
a special case of an IRTG, in which the homomor-
phism is simply the identical function on TΣ , and
the algebra is A. In fact, we could have equiva-
lently defined an IRTG as an RTG whose trees are
interpreted in multiple Σ-algebras; the mediating
homomorphisms do not add expressive power. We
go beyond GCFG in three ways. First, the fact
that we map the trees described by the RTG into
terms of other algebras using different homomor-
phisms means that we can choose the signatures of
these algebras and the RTG freely; in particular, we
can reuse common algebras such as T ∗ for many
different RTGs and homomorphisms. This is espe-
cially important in relation to the second advance,
which is that we offer a generic parsing algorithm

for arbitrary regularly decomposable algebras; be-
cause the algebras and RTGs are modular, we can
reuse algorithms for computing D(a) even when
we change the homomorphism. Finally, we offer a
more transparent view on synchronous grammars,
which separates the different dimensions clearly.

An important special case of GCFG is that of
linear context-free rewrite systems (LCFRS, Vijay-
Shanker et al. (1987)). LCFRSs are essentially
GCFGs with a “yield” homomorphism that maps
objects of A to strings or tuples of strings. There-
fore every grammar formalism that can be seen as
an LCFRS, including certain dependency grammar
formalisms (Kuhlmann, 2010), can be phrased as
string-generating IRTGs. One particular advantage
that our framework has over LCFRS is that we
do not need to impose a bound on the length of
the string tuples. This makes it possible to model
formalisms such as combinatory categorial gram-
mar (Steedman, 2001), which may be arbitrarily
discontinuous (Koller and Kuhlmann, 2009).

7 Conclusion

In this paper, we have defined interpreted RTGs, a
grammar formalism that generalizes over a wide
range of existing formalisms, including various syn-
chronous grammars, tree transducers, and LCFRS.
We presented a generic parser for IRTGs; to apply
it to a new type of IRTG, we merely need to define
how to compute decomposition grammars D(a)
for input objects a. This makes it easy to define
synchronous grammars that are heterogeneous both
in the grammar formalism and in the objects that
each of its dimensions describes.

The purpose of our paper was to pull together
a variety of existing research and explain it in a
new, unified light: We have not shown how to do
something that was not possible before, only how
to do it in a uniform way. Nonetheless, we expect
that future work will benefit from the clarified for-
mal setup we have proposed here. In particular,
we believe that the view of parse charts as RTGs
may lead to future algorithms which exploit their
closure under intersection, e.g. to reduce syntactic
ambiguity (Schuler, 2001).
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Abstract

Restricting the input or the output of a

grammar-induced translation to a given set

of trees plays an important role in statistical

machine translation. The problem for prac-

tical systems is to find a compact (and in

particular, finite) representation of said re-

striction. For the class of synchronous tree-

adjoining grammars, partial solutions to this

problem have been described, some being

restricted to the unweighted case, some to

the monolingual case. We introduce a for-

mulation of this class of grammars which is

effectively closed under input and output re-

strictions to regular tree languages, i.e., the

restricted translations can again be repre-

sented by grammars. Moreover, we present

an algorithm that constructs these grammars

for input and output restriction, which is in-

spired by Earley’s algorithm.

1 Introduction

Many recent systems for statistical machine trans-

lation (SMT) (Lopez, 2008) use some grammar at

their core. Chiang (2007), e. g., uses synchronous

context-free grammars (SCFG) that derive pairs

of translationally equivalent sentences. Huang

et al. (2006) use tree-to-string transducers (called

xRLNS) that describe pairs of the form (phrase-

structure tree, string). Other systems, such as

(Eisner, 2003; Zhang et al., 2008; Nesson et al.,

2006; DeNeefe and Knight, 2009), use variants

of synchronous tree-adjoining grammars (STAGs)

(Abeille et al., 1990; Joshi and Schabes, 1997)

that derive pairs of dependency or phrase-structure

trees. Common variants of STAGs are syn-

chronous tree-substitution grammars (STSGs) and

synchronous tree-insertion grammars (STIGs).

For grammar-based systems, a variety of tasks

can be described using the general concepts of in-

put product and output product (Maletti, 2010b).

Roughly speaking, these products restrict the

translation described by the grammar to a given

tree or string language on the input or output side.

For practical purposes, the derivations of the re-

stricted translation are represented in a compact

way, e.g., using a weighted regular tree grammar

(WRTG) (Alexandrakis and Bozapalidis, 1987).

The process of obtaining this representation is

called tree parsing or string parsing, depending

on the type of restriction. We illustrate the impor-

tance of input and output product by considering

its role in three essential tasks of SMT.

Grammar Estimation. After the rules of the

grammar have been obtained from a sample of

translation pairs (rule extraction), the probabilities

of the rules need to be determined. To this end,

two approaches have been employed.

Some systems such as those by Chiang (2007)

and DeNeefe and Knight (2009) hypothesize a

canonical derivation for each translation pair, and

apply relative-frequency estimation to the result-

ing derivations to obtain rule probabilities. While

this procedure is computationally inexpensive, it

only maximizes the likelihood of the training data

under the assumption that the canonical deriva-

tions are the true ones.

Other systems such as those by Eisner (2003),

Nesson et al. (2006), and Graehl et al. (2008)

use a variant of the EM algorithm (Dempster et

al., 1977) called Inside-Outside. This algorithm

requires that the set of derivations for a given

translation pair be representable by a WRTG. In

most cases, this can be computed by restricting the

grammar at hand to the given translation pair, that

is, by applying input and output product. Note that

the pair can contain strings or trees or even some

combination thereof.

Feature Weight Estimation. In the systems

mentioned at the beginning of this section, a prob-

ability distribution of the form p(e, d | f) is chosen
from a log-linear model (Berger et al., 1996; Och

and Ney, 2002), where e, d, and f are an English
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sentence, a derivation, and a foreign sentence, re-

spectively. Such a distribution combines informa-

tion from different sources, called features, such as

the grammar or a probability distribution over En-

glish sentences. The features are represented by

real-valued functions hi(e, d, f). For said combi-
nation, each feature gets a weight λi.

The feature weights are usually estimated us-

ing minimum-error-rate training (Och, 2003). For

this it is necessary to compute, for a given f , the
set Df of n highest ranking derivations generat-

ing f on the foreign side. Roughly speaking, this

set can be computed by applying the input prod-

uct with f , and then applying the n-best algorithm
(Huang and Chiang, 2005; Büchse et al., 2010).

We note that, while f is usually a string, it can in

some circumstances be a phrase-structure tree, as

in (Huang et al., 2006).

Decoding. The actual translation, or decoding,

problem amounts to finding, for a given f ,

ê = argmaxe

∑

d

∏

i hi(e, d, f)λi .

Even for the simplest grammars, this problem is

NP hard (Casacuberta and de la Higuera, 2000).

As a result, SMT systems use approximations

such as crunching or variational decoding (Li et

al., 2009). Here we focus on the former, which

amounts to restricting the sum in the equation to

the set Df . Since this set is finite, the sum is then

zero for almost all e, which makes the computa-

tion of ê feasible. As mentioned before, the input
product can be used to compute Df .

As we have seen in these tasks, tree parsing is

employed in recent SMT systems. Table 1 lists

five relevant contributions in this area. These con-

tributions can be classified according to a number

of characteristics indicated by the column head-

ings. One of these characteristics is the abstraction

level (AL), which we categorize as follows:

1. language-theoretic result,

2. construction,

3. algorithm,

4. implementation.

The first three entries of Tab. 1 deal with con-

tributions that are restricted to tree substitution.

Huang et al. (2006) show an algorithm for com-

puting the best derivation of the input product of

an xRLNS with a single tree. Graehl et al. (2008)

present an algorithm for computing the derivation

WRTG for the input and output product of a tree-

to-tree transducer (called xRLN) with a single pair

of trees. Eisner (2003) describes an algorithm for

computing the set of derivations for the input and

output product of an STSG with a single pair of

trees.

We note that the grammar classes covered so far

are strictly less powerful than STAGs. This is due

to the fact that STAGs additionally permit an op-

eration called adjoining. As Nesson et al. (2006)

and DeNeefe and Knight (2009) point out, the

adjoining operation has a well-founded linguistic

motivation, and permitting it improves translation

quality.

There are two papers approaching the problem

of tree parsing for STAGs, given in the fourth

and fifth entries of the table. These papers estab-

lish closure properties, that is, their constructions

yield a grammar of the same type as the original

grammar. Since the resulting grammars are com-

pact representations of the derivations of the input

product or output product, respectively, these con-

structions constitute tree parsing.

Nederhof (2009) shows that weighted linear in-

dex grammars (WLIGs) are closed under weighted

intersection with tree languages generated by

WRTGs. WLIGs derive phrase-structure trees,

and they are equivalent to tree-adjoining gram-

mars (TAGs). His construction can be extended

to some kind of synchronous WLIG without prob-

lems. However, synchronization interacts with

the height restriction present for WLIG rules in a

way that makes synchronousWLIGs less powerful

than STAGs.

Maletti (2010a) uses an alternative represen-

tation of STAG, namely as extended tree trans-

ducers (XTT) with explicit substitution. In this

framework, adjoining is encoded into the phrase-

structure trees by introducing special symbols, to

be evaluated in a separate step. He indicates that

his representation of STAG is closed under input

and output product with regular tree languages by

providing a corresponding construction. However,

in his setting, both the translations and the lan-

guages are unweighted.

The advantage of closure properties of the

above kind is that they allow cascades of input

and output products to be constructed in a uniform

way, as well as applying further operations on the

grammars, such as projection. Ultimately, SMT

tasks may be described in this framework, as wit-

nessed by toolboxes that exist for WFSTs (Mohri,

2009) and XTTs (May and Knight, 2006).
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characteristics

paper AL grammar restriction type result

(Huang et al., 2006) 3–4 xRLNS tree best derivation

(Graehl et al., 2008) 3–4 xRLN (tree, tree) derivation WRTG

(Eisner, 2003) 3–4 STSG (tree, tree) derivations

(Nederhof, 2009) 2 WLIG regular tree language WLIG

(Maletti, 2010a) 2 XTT regular tree language XTT

(this paper) 1–3 WSTAG regular tree language WSTAG

Table 1: Tree-parsing algorithms published so far in comparison with this paper.

In this paper, we propose a weighted formula-

tion of STAGs which is closed under input and

output product withWRTGs, and we present a cor-

responding tree-parsing algorithm. This paper is

organized as follows.

In Sec. 2, we introduce our formulation of

STAGs, which is called weighted synchronous

tree-adjoining grammar (WSTAG). The major dif-

ference with respect to the classical STAGs is two-

fold: (i) we use states and (ii) we encode substi-

tution and adjoining sites as variables in the tree.

The states make intersection with regular proper-

ties possible (without the need for relabeling as

in (Shieber, 2004) and (Maletti, 2010a)). In addi-

tion, they permit implementing all features of con-

ventional STAG/STIG, such as potential adjoining

and left/right adjoining. The variables are used for

synchronization of the input and output sides.

In Sec. 3, we show that WSTAGs are closed un-

der input and output product with tree languages

generated by WRTGs (cf. Theorem 1). We do this

by means of a direct construction (cf. Sec. 4). Our

construction is based on the standard technique

for composing two top-down tree transducers (cf.

page 195 of (Baker, 1979)). This technique has

been extended in Theorem 4.12 of (Engelfriet and

Vogler, 1985) to the composition of a macro tree

transducer and a top-down tree transducer (also cf.

(Rounds, 1970)); in fact, our direct construction is

very similar to the latter one.

Section 5 contains Algorithm 1, which com-

putes our construction (modulo reduction). It is

inspired by a variant of Earley’s algorithm (Ear-

ley, 1970; Graham et al., 1980). In this way we

avoid computation of a certain portion of useless

rules, and we ensure that the complexity is linear

in the size of the input WSTAG. The algorithm is

presented in the framework of deductive parsing

(Goodman, 1999; Nederhof, 2003).

In Sections 6 and 7, we discuss the correctness

of our algorithm and its complexity, respectively.

2 Formalisms

We denote the set of all unranked, ordered, la-

beled trees over some alphabet Σ by UΣ. We

represent trees as well-formed expressions, e.g.,

S(Adv(yesterday), ∗); a graphical representation

of this tree occurs at the very bottom of Fig. 1(a).

Sometimes we assign a rank (or: arity) k ∈ N

to a symbol σ ∈ Σ and then require that every

σ-labeled position of a tree has exactly k succes-

sors. We denote the set of all positions of a tree

t ∈ UΣ by pos(t). A position is represented as

a finite sequence of natural numbers (Gorn nota-

tion). If w ∈ pos(t), then t(w) denotes the label
of t at w, and rkt(w) denotes the number of suc-
cessors of w.

2.1 Weighted Regular Tree Grammars

A weighted regular tree grammar (for short:

WRTG) is a tuple H = (P, Σ, r0, R, p) where P
is a finite set of states, Σ is an alphabet, r0 ∈ P is

the initial state, and R is a finite set of rules; ev-

ery rule ρ has the form r → σ(r1, . . . , rk) where
k ∈ N, r, r1, . . . , rk ∈ P , and σ ∈ Σ (note

that σ(r1, . . . , rk) is a tree over Σ ∪ P ); finally,

p : R → R≥0 is the weight assignment, where

R≥0 is the set of all non-negative real numbers.

A run (of H) is a tree κ ∈ UP . Let t ∈ UΣ

and let κ be a run. We say that κ is a run on t
if pos(κ) = pos(t) and for every position w ∈
pos(t) the rule ρ(κ, t, w) is in R, where ρ(κ, t, w)
is defined as

κ(w)→ t(w)
(

κ(w1), . . . , κ(w rkt(w))
)

.

The weight of a run κ on t is the value wt(κ, t) ∈
R≥0 defined by

wt(κ, t) =
∏

w∈pos(t)

p(ρ(κ, t, w)) .

The weighted tree language generated by

WRTG H is the mapping L(H) : UΣ → R≥0
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defined by

L(H)(t) =
∑

κ run on t
κ(ε)=r0

wt(κ, t) .

The support supp(L(H)) of L(H) is the set of all
t ∈ UΣ such that L(H)(t) 6= 0.

2.2 Weighted Tree-Adjoining Grammars

In our formulation of STAGs we use states (cf.

Fülöp et al. (2010) for the use of states in

STSGs). The states make intersection with de-

vices of finite-state power possible. More specif-

ically, they allow for a product construction as is

common in automata theory (cf. Sec. 4). More-

over, they permit implementing all features of con-

ventional STAG/STIG, such as potential adjoining

and left/right adjoining. In contrast to the tradi-

tional setting, substitution sites and adjoining sites

are formalized as explicit positions in the right-

hand sides of rules; these positions are labeled by

variables. For this, we assume that x1, x2, . . . and
z1, z2, . . . are two fixed infinite and disjoint se-

quences of pairwise distinct variables. We assume

that every xj has rank 0 and every zj has rank 1.
We use x1, x2, . . . to denote substitution sites and
z1, z2, . . . to denote adjoining sites. The foot node
is labeled by an additional nullary symbol ∗. The
input and output components are synchronized via

these sites and the corresponding states.

A weighted synchronous tree-adjoining gram-

mar with states (for short: WSTAG) is a tuple

G = (Q, F, Σ, q0, R, p) where
• Q and F are disjoint finite sets (of nullary

and unary states, respectively, each denoted

by variants of q and f , respectively),
• Σ is an alphabet (terminal alphabet),

• q0 is a nullary state (initial state),

• R is a finite set of rules of either of the fol-

lowing forms:

q → 〈ζζ ′, q1 · · · qm, f1 · · · fl〉 (α)

f(∗)→ 〈ζζ ′, q1 · · · qm, f1 · · · fl〉 (β)

where ζ and ζ ′ are trees over Σ ∪ V and

V = {x1, . . . , xm, z1, . . . , zl} (α)

V = {x1, . . . , xm, z1, . . . , zl, ∗} (β)

and every element of V occurs exactly once

in each of ζ and ζ ′, and
• p : R→ R≥0 is the weight assignment.

Rules of the forms (α) and (β) are called (m, l)-
rules; ζ and ζ ′ are called the input tree and the

output tree of the rule, respectively. For fixed q
and f , the sets of all rules of the form (α) and (β)
are denoted byRq andRf , resp. Figure 1(a) shows

an example of aWSTAG. In the following, letG =
(Q, F, Σ, q0, R, p) be a WSTAG.

We define the semantics in terms of bimor-

phisms (Shieber, 2006). For this we define a

WRTG HG that generates the weighted tree lan-

guage of derivation trees ofG, and two tree homo-

morphisms h1 and h2 that retrieve from a deriva-

tion tree the derived input tree and output tree, re-

spectively.

The derivation tree WRTG of G is the WRTG

HG = (Q ∪ F, R, q0, R
′, p′) where

• we assign the rank m+ l to every (m, l)-rule,
• R′ is the set of all rules D(ρ) with ρ ∈ R and

– if ρ is of the form (α), then
D(ρ) = q → ρ(q1, . . . , qm, f1, . . . , fl),

– if ρ is of the form (β), then
D(ρ) = f → ρ(q1, . . . , qm, f1, . . . , fl),

• and p′(D(ρ)) = p(ρ).

Recall that L(HG) is the weighted tree lan-

guage generated by HG. We call the trees in

supp(L(HG)) derivation trees. For instance,

with the WSTAG of Fig. 1(a), the tree dex =
ρ1(ρ2, ρ3(ρ4), ρ5) is a derivation tree of the de-

rived trees shown in Fig. 1(b) and Fig. 1(c).

Formally, the derived trees are obtained by the

tree homomorphisms h1 and h2, each of type

supp(L(HG)) → UΣ, which we define induc-

tively as follows:

h1(ρ(d1, . . . , dm, d′1, . . . , d
′
l))

= ζ[~x/h1(~d)][[~z/h1(~d
′)]]

where [~x/h1(~d)] abbreviates the m first-order

substitutions [x1/h1(d1)] . . . [xm/h1(dm)], and

[[~z/h1(~d
′)]] abbreviates the l second-order sub-

stitutions [[z1/h1(d
′
1)]] . . . [[zl/h1(d

′
l)]]. The first-

order substitution [x/s] replaces every occurrence
of x by s, and the second-order substitution [[z/s]]
is defined inductively in Fig. 2. The tree homo-

morphism h2 is defined in the same way as h1, but

with ζ ′ instead of ζ. We call d a derivation tree of

the pair (h1(d), h2(d)).

In continuation of our running example, we cal-

culate h1(dex), where we use [1], [2], and [[3]]
as abbreviations for the substitutions [x1/h1(ρ2)],
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ρ1 : q1 →

〈

z1

S

x1 VP

V

saw

x2

z1

S

VP

V

sah

x1 x2 , q2q2, f

〉

# 1

ρ2 : q2 →

〈
NP

N

Mary

NP

N

Mary

, ε, ε

〉

# 0.6

ρ3 : q2 →

〈

NP

x1 N

man

NP

x1 N

Mann

, q3, ε

〉

# 0.4

ρ4 : q3 →

〈 D

a

D

einen
, ε, ε

〉

# 1

ρ5 : f(∗)→

〈

S

Adv

yesterday

∗

S

Adv

gestern

∗ , ε, ε

〉

# 1

(a)

S

Adv

yesterday

S

NP

N

Mary

VP

V

saw

NP

D

a

N

man

S

Adv

gestern

S

VP

V

sah

NP

N

Mary

NP

D

einen

N

Mann

(b) (c)

Figure 1: (a) Example of a WSTAG (following (Joshi and Schabes, 1997)), (b) input tree, and (c) output tree.

σ(ζ1, . . . , ζk)[[z/s]] = σ(ζ1[[z/s]], . . . , ζk[[z/s]]) xj [[z/s]] = xj ∗[[z/s]] = ∗

zj(ζ)[[z/s]] =

{

s′ if z = zj and s′ is obtained from s by replacing the ∗ by ζ

zj(ζ[[z/s]]) otherwise.

Figure 2: Second-order substitution [[z/s]], where σ ∈ Σ, xj is a nullary variable, and zj is a unary variable.
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[x2/h1(ρ3(ρ4))], and [[z1/h1(ρ5)]], respectively:

h1(dex)

= z1(S(x1, VP(V(saw), x2)))[1][2][[3]]

= z1(S(h1(ρ2), VP(V(saw), x2)))[2][[3]]

= z1(S(h1(ρ2), VP(V(saw), h1(ρ3(ρ4))))
︸ ︷︷ ︸

ξ

)[[3]]

= S(Adv(yesterday), ξ) ,

which evaluates to the tree of Fig. 1(b).

The weighted tree transformation specified by

WSTAG G is T (G) : UΣ×UΣ → R≥0 defined by

T (G)(s, t) =
∑

d derivation tree of (s, t)

L(HG)(d).

We note that for every derivation tree d there is

a unique run κd of HG on d: κd(w) is the state
occurring in the left-hand side of the rule d(w),
for every w ∈ pos(d).
As an example, we reconsider dex, which is

a derivation tree of the translation pair (s, t),
given by Fig. 1(b) and Fig. 1(c). Then we have

L(HG)(dex) = wt(κdex , dex) =
∏5

i=1 p(ρi) =
0.24. Since dex is the only derivation tree of (s, t),
we have that T (G)(s, t) = 0.24.
STSGs as defined in Fülöp et al. (2010) are

WSTAGs which only have nullary states. Also

classical STAGs (Abeille et al., 1990; Shieber and

Schabes, 1990) and STIGs (Nesson et al., 2005;

Nesson et al., 2006; DeNeefe and Knight, 2009)

can be viewed as particular WSTAGs. In partic-

ular, potential adjoining as it occurs in classical

STAGs can be simulated, as the following excerpt

of a WSTAG shall illustrate:

q → 〈z1(A(x1)) ζ ′, q′, f〉

f(∗)→ 〈∗ ∗, ε, ε〉

f(∗)→ 〈z1(∗) z1(∗), ε, f
′〉

Moreover, the left-/right adjoining restriction of

STIGs can be handled by keeping appropriate fi-

nite information in the states.

3 Closure Result

First we define the input product and output prod-

uct of a weighted tree transformation T : UΣ ×
UΣ → R≥0 and a weighted tree language

L : UΣ → R≥0. Formally, the input product

of T and L is the weighted tree transformation

L � T : UΣ × UΣ → R≥0 such that

(L � T )(s, t) = L(s) · T (s, t) .

Similarly, we define the output product of T andL
as T � L : UΣ × UΣ → R≥0 such that

(T � L)(s, t) = T (s, t) · L(t) .

We note that the input product and output prod-

uct can be considered as a kind of composition

of weighted relations by viewing L as mapping

L′ : UΣ × UΣ → R≥0 with L′(s, t) = L(s) if
s = t, and L′(s, t) = 0 otherwise.
Here we prove that WSTAGs are closed under

input product (and output product) with WRTGs.

Theorem 1 For every WSTAG G and WRTG H
there are WSTAGs H � G and G � H such that

• T (H � G) = L(H) � T (G) and
• T (G � H) = T (G) � L(H).

We will only prove the closure under input

product, because the proof for the output product

is similar.

For the unweighted case, the closure result fol-

lows from classical results. The unweighted case

is obtained if we replace the algebra in Sec. 2

by another one: R≥0 is replaced by the set B =
{true, false} and the operations + and · are re-
placed by disjunction and conjunction, respec-

tively. In other words, we replace the inside

semiring (R≥0, +, ·, 0, 1) by the Boolean semiring
(B,∨,∧, false, true). Then L(H) and T (G) be-
come sets L(H) ⊆ UΣ and T (G) ⊆ UΣ × UΣ.

In this setting and using h : supp(L(HG)) →
UΣ × UΣ defined by h(d) = (h1(d), h2(d)), we
have that

L(H) � T (G) = h(h−1
1 (L(H))) .

Note that h−1
1 (L(H)) ⊆ supp(L(HG)). Now we

observe that h1 can be computed by a particular

macro tree transducer (Engelfriet, 1980; Courcelle

and Franchi-Zannettacci, 1982); we note that in

(Shieber, 2006) such macro tree transducers were

called embedded tree transducers.

Engelfriet and Vogler (1985) proved in Theo-

rem 7.4 that the class of regular tree languages

is closed under the inverse of macro tree trans-

ducers. Thus, since L(H) is a regular tree lan-

guage, also h−1
1 (L(H)) is a regular tree language.

Thus L(H) � T (G) = h(L(H̄)) for some regular
tree grammar H̄ . Now it is easy to construct (us-

ing h1 and h2) a STAG H � G from H̄ such that

T (H � G) = h(L(H̄)).
For the weighted case, we give a direct con-

struction in the next section.
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4 Direct Construction

We now provide our construction of the

WSTAG H � G in Theorem 1 where

G = (Q, F, Σ, q0, R, p) is a WSTAG and

H = (P, Σ, r0, RH , pH) is a WRTG.

First we define an enrichment ofH that can gen-

erate trees like ζ as they occur in rules of G, that

is, including variables xj , zj , and possibly ∗. To
this end, let ρ ∈ R. A (state) assignment for ρ is a
mapping θ that maps each nullary variable in ρ to

a state of H and each unary variable in ρ to a pair

of such states. Likewise, if ∗ occurs in ζ, then θ
maps it to a state of H . For every r ∈ P and as-

signment θ, we define the WRTG H(r, θ), which
is obtained from H by using r as initial state and
adding the following rules with weight 1 for every

r, r′ ∈ P :

r → xj if θ(xj) = r,

r → zj(r
′) if θ(zj) = (r, r′), and

r → ∗ if θ(∗) = r .

Roughly speaking, for every rule ρ ∈ R, we let
H(r, θ) “run” on the input tree ζ of ρ. Formally,
we define the product WSTAG of H and G as the

WSTAG H � G =

(Q× P, F × (P × P ), Σ, (q0, r0), R
′, p′)

as follows. Let ρ ∈ R, r ∈ P , and θ an assign-

ment for ρ. Then, depending on whether ρ has the
form (α) or (β), the rule

(q, r)→ 〈ζζ ′, u, v〉 (α)

(f, (r, θ(∗)))→ 〈ζζ ′, u, v〉 (β)

is in R′ where

• u = (q1, θ(x1)) · · · (qm, θ(xm)) and
• v = (f1, θ(z1)) · · · (fm, θ(zl)).

We denote this rule by (ρ, r, θ). Its weight is

p′(ρ, r, θ) = p(ρ) · L(H(r, θ))(ζ). There are no
further elements in R′.

We omit a proof for T (H�G) = L(H)�T (G).
We have that |R′| ∈ O(|R| · |P |C) where C =

max{m + 2 · l + y | ∃ρ : ρ is an (m, l)-rule, y =
1 in case (α), y = 2 in case (β)}.

5 Algorithm

Now we present Algorithm 1, which performs the

construction ofH�G. It uses a strategy similar to

that of Earley’s algorithm to construct at least all

useful rules of H �G while avoiding construction

of a certain portion of useless rules. A rule is use-

ful if it occurs in some derivation tree; otherwise it

is useless.

Algorithm 1 Product construction algorithm

Require: G = (Q, F, Σ, q0, R, p) a WSTAG and

H = (P, Σ, r0, RH , pH) a WRTG,

Ensure: Ru contains at least the useful rules ofH�G,

pu coincides with the weight assignment ofH�G
on Ru

⊲ step 1: compute I
1: I ← ∅
2: repeat

3: add items to I by applying the rules in Fig. 3
4: until convergence

⊲ step 2: compute rules
5: Ru ← ∅
6: for [ρ, ε, r, θ] ∈ I do
7: Ru ← Ru ∪ {(ρ, r, θ)} as in Sec. 4

⊲ step 3 (optional): reduce
8: perform reachability analysis to remove useless

rules from Ru

⊲ step 4: compute weights
9: for (ρ, r, θ) ∈ Ru do

10: pu(ρ, r, θ)← p(ρ) · W([ρ, ε, r, θ])
⊲ defined in Fig. 4

Conceptually, the algorithm proceeds in four

steps. Note that, in practice, some of these steps

may be implemented interleaved in order to reduce

constants in the runtime complexity.

The first step is based on a deductive system, or

deductive parsing schema, which is given in Fig. 3.

Its central notion is that of an item, which is a syn-

tactic representation of a proposition. We say that

an item holds if the corresponding proposition is

true. In Sec. 6 we will explain the meaning of

the items in detail. Roughly speaking, the items

drive a depth-first left-to-right simulation of H on

the trees on the input side of rules of G. Items

with round brackets are responsible for top-down

traversal and items with square brackets for hori-

zontal and bottom-up traversal. The deductive sys-

tem contains inference rules which are, as usual,

syntactic representations of conditional implica-

tions (Goodman, 1999; Nederhof, 2003).

The first step of the algorithm computes the

least set I of items that is closed under applica-

tion of the inference rules. This is done in the

usual iterative way, starting with the empty set and

applying rules until convergence. Since there are

only finitely many items, this process will termi-

nate. Note that, given the soundness of the infer-
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(1)
(q0, r0)

(2q)
(q, r)

(ρ, ε, r)
{ ρ ∈ Rq (2f)

(f, r)

(ρ, ε, r)
{ ρ ∈ Rf

(3q)
(q, r) [ρ, ε, r, θ]

[q, r]
{ ρ ∈ Rq (3f)

(f, r) [ρ, ε, r, θ]

[f, r, θ(∗)]
{ ρ ∈ Rf

(4)
(ρ, w, r)

[ρ, w, 0, r, r1 · · · rk, ∅]

{
ζ(w) ∈ Σ k = rkζ(w)

pH(r → ζ(w)
(
r1, . . . , rk

)
) > 0

(5)
[ρ, w, j, r, r1 · · · rk, θ]

(ρ, w(j + 1), rj+1)
{ ζ(w) ∈ Σ k = rkζ(w) 1 ≤ j + 1 ≤ k

(6)
[ρ, w, j, r, r1 · · · rk, θ] [ρ, w(j + 1), rj+1, θ

′]

[ρ, w, j + 1, r, r1 · · · rk, θ ∪ θ′]
{ ζ(w) ∈ Σ k = rkζ(w)

(7)
[ρ, w, k, r, r1 · · · rk, θ]

[ρ, w, r, θ]
{ ζ(w) ∈ Σ k = rkζ(w)

(8x)
(ρ, w, r)

(qj , r)
{ ζ(w) = xj (8z)

(ρ, w, r)

(fj , r)
{ ζ(w) = zj

(9x)
(ρ, w, r) [qj , r]

[ρ, w, r, {xj 7→ r}]
{ ζ(w) = xj (9z)

(ρ, w, r) [fj , r, r
′]

(ρ, w1, r′)
{ ζ(w) = zj

(10)
(ρ, w, r) [fj , r, r

′] [ρ, w1, r′, θ]

[ρ, w, r, θ ∪ {zj 7→ (r, r′)}]
{ ζ(w) = zj

(11)
(ρ, w, r)

[ρ, w, r, {∗ 7→ r}]
{ ζ(w) = ∗

Note: whenever ρ is mentioned, we implicitly assume that
ρ = q → 〈ζζ ′, q1 · · · qm, f1 · · · fl〉 or
ρ = f(y)→ 〈ζζ ′, q1 · · · qm, f1 · · · fl〉.

Figure 3: Deductive parsing schema for the input product.

If ζ(w) ∈ Σ, with k = rkζ(w), and θj is the restriction of θ to variables below node wj in ρ, then:

W([ρ, w, r, θ]) =
∑

r1, . . . , rk :
[ρ, w1, r1, θ1], . . . , [ρ, wk, rk, θk] ∈ I

pH(r → ζ(w)
(
r1, . . . , rk

)
) ·

∏

j

W([ρ, wj, rj , θj ])

If ζ(w) ∈ {∗, x1, . . . , xm}, thenW([ρ, w, r, θ]) = 1.

If ζ(w) = {zj}, with θ(zj) = (r, r′), thenW([ρ, w, r, θ]) =W([ρ, w1, r′, θ \ {zj 7→ (r, r′)}])

Figure 4: Computing the weights of rules in the product grammar H � G.
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ence rules (cf. Sec. 6), all items in I hold.
In the second step, for each [ρ, ε, r, θ] in I we

construct one rule ofH�G as in (α) or as in (β) in
Sec. 4, depending on whether ρ ∈ Rq or ρ ∈ Rf .

The third step is a reachability analysis to re-

move useless rules. This step is optional—it de-

pends on the application whether the runtime spent

here is amortized by subsequent savings.

In the fourth step, we determine the weight of

each of the rules we have. For a rule (ρ, r, θ) this is
p(ρ) ·W([ρ, ε, r, θ]), whereW is defined in Fig. 4.

The computation can be sped up by storing “back

pointers” for each item, i.e., the items which were

used for its generation. Alternatively, it is possi-

ble to compute the weights on-the-fly during the

first step, thus alleviating the need for a separate

recursive computation.

To this end, items should be prioritized to make

sure that they are generated in the right order for

the computation. To be more precise, one has to

ensure that all items referred to on the right-hand

sides of the equations in Fig. 4 are generated be-

fore the items on the left-hand sides.

6 Meaning of Items

The meaning of the items can best be illustrated by

the concepts of enriched derivation tree and partial

enriched derivation tree.

An enriched derivation tree is a modified

derivation tree in which the labels have the form

(ρ, c) for some rule ρ and some decoration map-

ping c; c maps every position of the input tree ζ
of ρ to a state of the WRTG H . Moreover, c must
be consistent with the rules of H , and positions

that coincide in the derived tree must be decorated

with the same state (cf. Fig. 5, dashed lines). A

partial enriched derivation tree (for short: pedt) is

an enriched derivation tree in which subtrees can

still be missing (represented by ⊥) or the decora-
tion with states from H is not yet complete (i.e.,

some positions are mapped to ?).
Figure 5 shows an example pedt d, where we

represent the decoration at each position of d by

annotating the corresponding input tree. This pedt

can be viewed as representing application of the

following rules:

(1), (2q), (8z), (2f), (4), (5), (4), (5), (4), (7), . . .

Now we make our description of pedts more

precise. Let n be a position of d, ρ be the rule

occurring in the label d(n), and ζ be the input

z1

S

x1 VP

V

saw

x2

NP

N

Mary

⊥

S

Adv

yesterday

∗

ρ1

ρ2
ρ5

r0

r0

r1 ?

?

?

?

r1

?

?

r0

r1 r0

r2

RH : r0 → S(r1, r3)

r1 → Adv(r2)

r2 → yesterday

...

Figure 5: Partial enriched derivation tree.

tree of ρ. Then there is a position w of ζ such

that (1) every position u which is lexicographi-

cally smaller than w is decorated by a state and,

if ζ(u) is a variable xj or zj , then the subtree of n
which corresponds to the variable does not con-

tain ⊥ or ?, and (2) every position v which is lexi-
cographically greater thanw is decorated by ? and,
if ζ(v) is a variable xj or zj , then the child of n
which corresponds to the variable is ⊥. For in-

stance, if we consider the root n = ε of the pedt

in Fig. 5, then w = 11 (i.e., the position with la-

bel x1).

Finally we can describe the meaning of the

items by referring to properties of pedts.

(q, r) (and (f, r)): There are a pedt d, a po-
sition n of d, a rule ρ, and a decoration c such

that d(n) = (ρ, c), ρ ∈ Rq (resp., ρ ∈ Rf ), and

c(ε) = r.

[q, r]: There are a pedt d, a position n of d, a
rule ρ, and a decoration c such that d(n) = (ρ, c),
ρ ∈ Rq, c(ε) = r, and c is a complete decoration.

[f, r, r′]: There are a pedt d, a position n of d, a
rule ρ, and a decoration c such that d(n) = (ρ, c),
ρ ∈ Rf , c(ε) = r, c is a complete decoration,

and c maps the ∗-labeled position of the input tree
of ρ to r′.

(ρ, w, r): There are a pedt d, a position n of d,
and a decoration c such that d(n) = (ρ, c) and

c(w) = r.

[ρ, w, r, θ]: There are a pedt d, a position n
of d, and a decoration c such that d(n) = (ρ, c),
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c(w) = r and, if a position u below w of the input

tree ζ of ρ is labeled by xj , then c(u) = θ(xj), and
if it is labeled by zj , then (c(u), c(u1)) = θ(zj),
and if it is labeled by ∗, then c(u) = θ(∗).
[ρ, w, j, r, r1 · · · rk, θ]: There are a pedt d,

a position n of d, and a decoration c such that

d(n) = (ρ, c), c(w) = r, and, if a position u of

the input tree ζ of ρ is labeled by some variable y
and u is lexicographically smaller thanwj, c and θ
agree in the same way as in the preceding item.

Given this semantics of items, it is not difficult

to see that the inference rules of the deduction sys-

tem are sound. The completeness of the system

can be derived by means of a small proof by con-

tradiction.

7 Complexity Analysis

In this section, we analyse the worst-case space

and time complexity of step 1 of Algorithm 1.

The space complexity is

O
(
|G|in · |RH | · |P |

C
)

,

which is determined by the number of possible

items of the form [ρ, w, j, r, r1 · · · rk, θ]. The first
factor, |G|in, denotes the input size of G, defined

by
∑

ρ∈R |pos(ζ(ρ))|, where ζ(ρ) is the input tree
of ρ. It captures the components ρ,w, and j in said
items, which together identify exactly one node

of an input tree of G. The factor |RH | captures
the components r and r1 · · · rk. The final factor,

|P |C , captures the θ, where C is given at the end

of Sec. 4.

Following McAllester (2002) we determine the

time complexity by the number of instantiations of

the inference rules. In our case the time complex-

ity coincides with the space complexity.

8 Conclusion

We have introduced a formulation of STAGs that

is closed under input product and output product

with regular weighted tree languages. By the re-

sult of Maletti and Satta (2009), this implies clo-

sure under input product and output product with

regular weighted string languages. We have pro-

vided a direct construction of the STAG that gener-

ates said input product (and, mutatis mutandis, the

output product). No such construction has been

published before that deals with both weights and

synchronization. Moreover, we have presented a

novel algorithm for computing our construction.

This algorithm is inspired by Earley’s algorithm

to the effect that computation of a certain portion

of useless rules is avoided.

The next step towards an implementation would

be to consider pruning. This amounts to partition-

ing the set I of items and imposing a bound on

the size of each partition. Such a technique has

already been presented by Chiang (2007) for his

cube-pruning algorithm.

Another possible future contribution could be

an algorithm specifically tailored to the input prod-

uct with a regular weighted string language. For

this scenario, several contributions exist, requiring

additional restictions however. For instance, Nes-

son et al. (2006) show a CYK-like algorithm for

intersecting a STIG with a pair of strings. Their

algorithm requires that the trees of the grammar

be binarized. As DeNeefe and Knight (2009)

point out, this makes the grammar strictly less

powerful. They in turn propose a construction

which converts the STIG into an equivalent tree-

to-string transducer, and they use corresponding

algorithms for parsing, such as the one by DeNero

et al. (2009). However, their construction relies on

the fact that tree-insertion grammars are weakly

equivalent to context-free grammars. Thus, it is

not applicable to the more general STAGs.
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Abstract

The problem of finding the most proba-
ble string for a distribution generated by a
weighted finite automaton or a probabilistic
grammar is related to a number of important
questions: computing the distance between
two distributions or finding the best transla-
tion (the most probable one) given a prob-
abilistic finite state transducer. The prob-
lem is undecidable with general weights and
is NP-hard if the automaton is probabilis-
tic. We give a pseudo-polynomial algorithm
which computes the most probable string in
time polynomial in the inverse of the proba-
bility of the most probable string itself, both
for probabilistic finite automata and proba-
bilistic context-free grammars. We also give
a randomised algorithm solving the same
problem.

1 Introduction

When using probabilistic machines to define dis-
tributions over sets of strings, the usual and best
studied problems are those of parsing and of find-
ing the most probable explanation of a given
string (the most probable parse). These problems,
when dealing with probabilistic (generating) finite
state automata, hidden Markov Models (HMMs) or
probabilistic context-free grammars depend on the
ambiguity of the machine: indeed, if there can be
different parses for the same string, then the prob-
ability of the string is obtained by summing over
the different parses.

A more difficult problem we study here is that
of finding the most probable string; this string is
also known as theconsensusstring.

The problem of finding the most probable string
was first addressed in the computational linguis-
tics community by Sima’an (1996): he proved the
problem to beNP-hard if we consider tree gram-
mars, and as a corollary he gave the same result for

context-free grammars. Goodman (1998) showed
that, in the case of HMMs, the problem of finding
whether the most most probable string of a given
lengthn is at leastp isNP-Complete. Moreover,
he points that his technique cannot be applied to
show theNP-completeness of the problem when
n is not prespecified because the most probable
string can be exponentially long. Casacuberta
and de la Higuera (2000) proved the problem to
beNP-hard, using techniques developed for lin-
guistic decoding (Casacuberta and de la Higuera,
1999): their result holds for probabilistic finite
state automata and for probabilistic transducers
even when these are acyclic: in the transducer case
the related (and possibly more important) ques-
tion is that of finding the most probable transla-
tion. The problem was also addressed with mo-
tivations in bioinformatics by Lyngsø and Peder-
sen (2002). Their technique relies on reductions
from maximal cliques. As an important corol-
lary of their hardness results they prove that the
L1 andL∞ distances between distributions repre-
sented by HMMs are also hard to compute: indeed
being able to compute such distances would en-
able to find (as a side product) the most probable
string. This result was then applied on probabilis-
tic finite automata in (Cortes et al., 2006; Cortes et
al., 2007) and theLk distance, for each oddk was
proved to be intractable.

An essential consequence of these results is that
finding the most probable translation given some
probabilistic (non deterministic) finite state trans-
ducer is also at least as hard. It can be shown
(Casacuberta and de la Higuera, 1999; Vidal et al.,
2005) that solving this problem consists in finding
the most probable string inside the set of all ac-
ceptable translations, and this set is structured as a
probabilistic finite automaton. Therefore, the most
probable translation problem is alsoNP-hard.

On the other hand, in the framework of multi-
plicity automata or ofacceptingprobabilistic finite
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automata (also called Rabin automata), the prob-
lem of the existence of a string whose weight is
above (or under) a specific threshold is known to
be undecidable (Blondel and Canterini, 2003). In
the case where the weight of each individual edge
is between 0 and 1, the score can be interpreted as
a probability. The differences reside in the fact that
in multiplicity automata the sum of the probabili-
ties of all strings does not need to be bounded; this
is also the case for Rabin automata, as each prob-
ability corresponds to the probability for a given
string to belong to the language.

In this paper we attempt to better understand
the status of the problem and provide algorithms
which find a string of probability higher than a
given threshold in time polynomial in the inverse
of this threshold. These algorithms give us prag-
matic answers to the consensus string problem as
it is possible to use the probabilistic machine to de-
fine a threshold and to use our algorithms to find,
in this way, the most probable string.

We will first (Section 2) give the different defi-
nitions concerning automata theory, distributions
over strings and complexity theory. In Section
3 we show that we can compute the most prob-
able string in time polynomial in the inverse of
the probability of this most probable string but in
the bounded case,i.e. when we are looking for
a string of length smaller than some given bound.
In Section 4 we show how we can compute such
bounds. In Section 5 the algorithms are experi-
mentally compared and we conclude in Section 6.

2 Definitions and Notations

2.1 Languages and Distributions

Let [n] denote the set{1, . . . , n} for eachn ∈ N.
An alphabetΣ is a finite non-empty set of sym-
bols calledletters. A string w over Σ is a fi-
nite sequencew = a1 . . . an of letters. Let|w|
denote the length ofw. In this case we have
|w| = |a1 . . . an| = n. The empty stringis
denoted byλ. When decomposing a string into
substrings, we will writew = w1 . . . wn where
∀i ∈ [n] wi ∈ Σ⋆.

Letters will be indicated bya, b, c, . . ., and
strings byu, v, . . . , z.

We denote byΣ⋆ the set of all strings, byΣn

the set of those of lengthn, by Σ<n (respectively
Σ≤n, Σ≥n) the set of those of length less thann
(respectively at mostn, at leastn).

A probabilistic languageD is a probability dis-

tribution over Σ⋆. The probability of a string
x ∈ Σ⋆ under the distributionD is denoted as
PrD(x) and must verify

∑

x∈Σ⋆ PrD(x) = 1.
If the distribution is modelled by some syntactic

machineM, the probability ofx according to the
probability distribution defined byM is denoted
PrM(x). The distribution modelled by a machine
M will be denoted byDM and simplified toD if
the context is not ambiguous.

If L is a language (thus a set of strings, included
in Σ⋆), andD a distribution overΣ⋆, PrD(L) =
∑

x∈L PrD(x).

2.2 Probabilistic Finite Automata

The probabilistic finite automata (PFA) (Paz,
1971) are generative devices:

Definition 1. A Probabilistic Finite Automaton
(PFA) is a tupleA = 〈Σ, Q, S, F, δ〉, where:

- Σ is the alphabet;

- Q = {q1,. . . ,q|Q|} is a finite set ofstates;

- S : Q→ R+ ∩ [0, 1] (initial probabilities);

- F : Q→ R+ ∩ [0, 1] (final probabilities);

- δ : Q × (Σ ∪ {λ}) × Q → R+ is a
transition function; the function is complete:
δ(q, a, q′) = 0 can be interpreted as “no
transition fromq to q′ labelled witha”.

S, δ andF are functions such that:

∑

q∈Q
S(q) = 1, (1)

and∀q ∈ Q,

F (q) +
∑

a∈Σ∪{λ}, q′∈Q
δ(q, a, q′) = 1. (2)

Let x ∈ Σ⋆. ΠA(x) is the set of all
paths acceptingx: a path is a sequenceπ =
qi0x1qi1x2 . . . xnqin wherex = x1 · · ·xn, xi ∈
Σ ∪ {λ}, and ∀j ≤ n, ∃pj 6= 0 such that
δ(qij−1 , xj , qij ) = pj . The probability of the path
π is

S(qi0) ·
∏

j∈[n]

pj · F (qin)

And the probability of the stringx is obtained
by summing over all the paths inΠA(x). Note
that this may result in an infinite sum because of
λ-transitions (and more problematicallyλ-cycles.
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An effective computation can be done by means of
the Forward (or Backward) algorithm (Vidal et al.,
2005).

0.4 : q1

0.6 : q2 : 0.1

q3 : 0.4

q4 : 0.3

a 0.5 a 0.5

b 0.4a 0.5

b 0.2b 0.5

a 0.2 b 0.4

Figure 1: Graphical representation of a PFA.

Alternatively, a PFA (with n states) is given
when the following matrices are known:

• S ∈ R1×n represents the probabilities of
starting at each state.S[i]=S(qi);

• M = {Ma ∈ Rn×n|a ∈ Σ ∪ {λ}} repre-
sents the transition probabilities.Ma[i, j] =
δ(qi, a, qj);

• F ∈ Rn×1 represents the probabilities of
ending in each state.F[i]=F (qi).

Given a stringx = a1 · · · ak we compute
PrA(x) as:

PrA(x) = S

|x|
∏

i=1

[M∗
λMai ]M

∗
λF (3)

where

M
∗
λ =

∞
∑

i=0

M i
λ = (I −Mλ)

−1

Then, equations 1 and 2 can be written as:

S1 = 1 (4)
∑

a∈Σ∪{λ}
Ma1 + F = 1 (5)

where1 ∈ Rn is such that∀i 1[i] = 1.
Note that

PrA(λ) = SM
∗
λF ∈ [0, 1] (6)

This implies thatM∗
λ should be a non singular

matrix.
Moreover, in order forPrA to define a distribu-

tion probability overΣ⋆ it is required that:

∑

x∈Σ∗

PrA(x) =
∞

∑

i=0

SM
∗
λM

i
ΣM

∗
λF

= SM
∗
λ(I −MΣ)−1

M
∗
λF = 1

where I is the identity matrix andMΣ =
∑

a∈Σ Ma. Note that as a consequence of that,
(I −MΣ) is a non singular matrix.

2.3 Hidden Markov Models

Hidden Markov models (HMMs) (Rabiner, 1989;
Jelinek, 1998) are finite state machines defined by
(1) a finite set of states, (2) a probabilistic transi-
tion function, (3) a distribution over initial states,
and (4) an output function.

An HMM generates a string by visiting (in a
hidden way) states and outputting values when in
those states. Typical problems include finding the
most probable path corresponding to a particular
output (usually solved by the Viterbi algorithm).
Here the question of finding the most probable
output has been addressed by Lyngsø and Peder-
sen (2002). In this paper the authors prove that the
hardness of this problem implies that it is also hard
to compute certain distances between two distribu-
tions given by HMMs.

Note that to obtain a distribution overΣ⋆ and
not eachΣn the authors introduce a unique final
state in which, once reached, the machine halts.
An alternative often used is to introduce a special
symbol (♯) and to only consider the strings termi-
nating with♯: the distribution is then overΣ⋆ ♯.

Equivalence results between HMMs and PFA

can be found in (Vidal et al., 2005).

2.4 Probabilistic Context-free Grammars

Definition 2. A probabilistic context-free gram-
mar (PCFG) G is a quintuple< Σ, V,R, P,N >

where Σ is a finite alphabet (of terminal sym-
bols),V is a finite alphabet (of variables or non-
terminals),R ⊂ V × (Σ ∪ V )∗ is a finite set
of production rules, andN (∈ V ) is the axiom.
P : R→ R+ is the probability function.

A PCFG is used to generate strings by rewriting
iteratively the non terminals in the string, start-
ing from the axiom. A string may be obtained
by different derivations. In this case the problem
is called ambiguity. Parsing with a PCFG is usu-
ally done by adapting the Earley or the CKY algo-
rithms.
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Particularly appealing is a very efficient exten-
sion of the Early algorithm due to Stolcke (1995)
that can compute:

• the probability of a given stringx generated
by a PCFGG;

• the single most probable parse forx;

• the probability thatx occurs as a prefix of
some string generated byG, which we denote
by PrG(xΣ⋆).

2.5 Probabilistic Transducers

There can be different definitions of probabilistic
transducers. We use the one from (Vidal et al.,
2005):

q1 : 0.2 q2 : 0.3 q3 : 0

λ :: 1, 0.3

b :: 00, 0.2

b :: 0, 0.2

λ :: 1, 0.5

a :: λ, 0.4

a :: 1, 0.3 λ :: 0, 0.6

Figure 2: Transducer.

q[1,λ] q[2,λ] q[3,λ]

q[1,a] q[2,a] q[3,a]

q[1,ab] : 0.2 q[2,ab] : 0.3 q[3,ab]

(λ) 1, 0.3 (λ) 1, 0.5

(λ) 0, 0.6

(a) 1, 0.3

(a)λ, 0.4

(λ) 1, 0.3 (λ) 1, 0.5

(λ) 0, 0.6

(b) 00, 0.2(b) 0, 0.2

(λ) 1, 0.3 (λ) 1, 0.5

(λ) 0, 0.6

Figure 3: Corresponding non normalized PFA for the
translations ofab. Each state indicates which input
prefix has been read. Between the brackets, on the tran-
sitions, the input symbol justifying the transition.

Probabilistic finite-state transducers(PFST) are
similar to PFA, but in this case two different alpha-
bets (sourceΣ and targetΓ) are involved. Each
transition in a PFST has attached a symbol from
the source alphabet (orλ) and a string (possible
empty string) of symbols from the target alphabet.
PFSTs can be viewed as graphs, as for example in
Figure 3.

Definition 3 (Probabilistic transducer). A proba-
bilistic finite statetransducer(PFST) is a 6-tuple
〈Q,Σ,Γ, S, E, F 〉 such that:

q1,λ q3,λ q3,λ

q1,a q2,a

q1,ab : 0.4 q2,ab : 1

1, 0.5 1, 1
0, 0.6

1, 0.5

λ, 0.4
1, 1

0, 1

1, 0.6

Figure 4: Corresponding normalized PFA for the trans-
lations ofab. The most probable string (111) has prob-
ability 0.54.

- Q is a finite set ofstates; these will be la-
belledq1,. . . ,q|Q|;

- S : Q→ R+ ∩ [0, 1] (initial probabilities);

- F : Q→ R+ ∩ [0, 1] (halting probabilities);

- E ∈ Q× (Σ∪{λ})×Γ⋆×Q×R+ is the set
of transitions;

S, δ andF are functions such that:
∑

q∈Q
S(q) = 1,

and∀q ∈ Q,

F (q) +
∑

a∈Σ∪{λ}, q′∈Q
p : (q, a, w, q′, p) ∈ E = 1.

Let x ∈ Σ⋆ andy ∈ Γ⋆. Let ΠT (x, y) be the
set of all paths accepting(x, y): a path is a se-
quenceπ = qi0(x1, y1)qi1(x2, y2) . . . (xn, yn)qin
wherex = x1 · · ·xn andy = y1 · · · yn, with ∀j ∈
[n], xj ∈ Σ∪{λ} andyj ∈ Γ⋆, and∀j ∈ [n], ∃pij
such that(qij−1 , xj , yj , qij , pij ) ∈ E. The proba-
bility of the path is

S(qi0) ·
∏

j∈[n]

pij · F (qin)

And the probability of the translation pair(x, y)
is obtained by summing over all the paths in
ΠT (x, y).

Note that the probability ofy given x (the
probability of y as a translation ofx, denoted as
PrT (y|x)) is PrT (x,y)

P

z∈Σ⋆ PrT (x,z) .

Probabilistic finite state transducers are used as
models for the thestochastic translation problem
of a source sentencex ∈ Σ⋆ that can be defined as
the search for a target stringy that:

argmax
y

Pr(y | x) = argmax
y

Pr(y, x).
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The problem of finding this optimal translation
is proved to be aNP-hard by Casacuberta and de
la Higuera (2000).

An approximate solution to the stochastic trans-
lation can be computed in polynomial time by us-
ing an algorithm similar to the Viterbi algorithm
for probabilistic finite-state automata (Casacu-
berta, 1995; Pićo and Casacuberta, 2001).

The stochastic translation problem is compu-
tationally tractable in particular cases. If the
PFSTT is non-ambiguous in the translation sense
(∀x ∈ Σ⋆ there are not two target sentences
y, y′ ∈ Γ⋆, y 6= y′, such thatPrT (x, y) > 0 and
PrT (x, y′) > 0), the translation problem is poly-
nomial. If the PFST T is simply non-ambiguous
(∀x ∈ Σ⋆ there are not two different paths that
deal with (x, y) and with probability different to
zero), the translation problem is also polynomial.
In both cases, the computation can be carried out
using an adequate version of the Viterbi algorithm
(Vidal et al., 2005).

Alternative types of PFSTs have been intro-
duced and applied with success in different areas
of machine translation. In (Mohri, 1997; Mohri
et al., 2000),weighted finite-state transducersare
studied.

2.6 Complexity Classes and Decision
Problems

We only give here some basic definitions and re-
sults from complexity theory. Adecision prob-
lem is one whose answer istrue or false. A deci-
sion problem isdecidableif there is an algorithm
which, given any specific instance, computes cor-
rectly the answer and halts. It isundecidableif
not. A decision problem is inP if there is a poly-
nomial time algorithm that solves it.

A decision problem isNP-completeif it is both
NP-hard and in the classNP: in this case a
polynomial time non-deterministic algorithm ex-
ists that always solves this problem. Alterna-
tively, a problem is inNP if there exists apoly-
nomial certificatefor it. A polynomial certificate
for an instanceI is a short (polynomial length)
string which when associated to instanceI can be
checked in polynomial time to confirm that the in-
stance is indeed positive. A problem isNP-hard
if it is at least as hard as the satisfiability problem
(SAT), or either of the otherNP-complete prob-
lems (Garey and Johnson, 1979).

A randomized algorithm makes use of random

bits to solve a problem. Itsolves a decision prob-
lem with one-sided errorif given any valueδ and
any instance, the algorithm:

• makes no error on a negative instance of a
problem (it always answers no);

• makes an error in at mostδ cases when work-
ing on a positive instance.

If such an algorithm exists, the problem is said to
belong to the classRP. It should be noticed that
by running such a randomized algorithmn times
the error decreases exponentially withn: if a pos-
itive answer is obtained, then the instance had to
be positive, and the probability of not obtaining a
positive answer (for a positive instance) inn tries
is less thanδn. A randomized algorithm which
solve a decision problem in the conditions above
is called aMonte Carlo algorithm.

When a decision problem depends on an in-
stance containing integer numbers, the fair (and
logical) encoding is in base 2. If the problem ad-
mits a polynomial algorithm whenever the integers
are encoded in base 1, the problem (and the algo-
rithm) are said to bepseudo-polynomial.

2.7 About Sampling

One advantage of using PFA or similar devices is
that they can be effectively used to develop ran-
domised algorithms. But when generating ran-
dom strings, the fact that the length of these is un-
bounded is an issue. Therefore the termination of
the algorithm might only be truewith probability
1: this means that the probability of an infinite run,
even if it cannot be discarded, is of null measure.

In the work of Ben-David et al. (1992) which
extends Levin’s original definitions from (Levin,
1986), a distribution over{0, 1}∗ is considered
samplableif it is generated by a randomized al-
gorithm that runs in time polynomial in the length
of its output.

We will require a stronger condition to be met.
We want a distribution represented by some ma-
chineM to be sampable in a bounded way, ie,
we require that there is a randomized algorithm
which, when given a boundb, will either return
any stringw in Σ≤b with probabilityPrM(w) or
return fail with probabilityPrM(Σ>b). Further-
more, the algorithm should run in time polynomial
in b.

As we also need parsing to take place in polyno-
mial time, we will say that a machineM is stronly
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sampableif

• one can parse an input stringx by M and
returnPrM(x) in time polynomial in|x|;

• one can sampleDM in a bounded way.

2.8 The Problem

The question is to find the most probable string in
a probabilistic language. An alternative name to
this string is theconsensusstring.

Name: Consensus string (CS)
Instance: A probabilistic machineM
Question: Find in Σ⋆ a string x such that
∀y ∈ Σ⋆ PrM(x) ≥ PrM(y).

With the above problem we associate the fol-
lowing decision problem:

Name: Most probable string (MPS)
Instance: A probabilistic machineM, ap ≥ 0
Question: Is there inΣ⋆ a string x such that
PrM(x) ≥ p?

For example, if we consider the PFA from Fig-
ure 1, the most probable string isa.

Note thatp is typically encoded as a fraction and
that the complexity of our algorithms is to depend
on the size of the encodings, hence oflog 1

p .

The problem MPS is known to beNP-hard
(Casacuberta and de la Higuera, 2000). In their
proof the reduction is from SAT and uses only
acyclic PFA. There is a problem with MPS: there
is no bound, in general, over the length of the
most probable string. Indeed, even for regular lan-
guages, this string can be very long. In Section 4.4
such a construction is presented.

Of interest, therefore, is to study the case where
the longest string can be bounded, with a bound
given as a separate argument to the problem:

Name: Bounded most probable string (BMPS)
Instance: A probabilistic machineM, a p ≥ 0,
an integerb
Question: Is there inΣ≤b a stringx such that
PrM(x) ≥ p?

In complexity theory, numbers are to be en-
coded in base 2. In BMPS, it is necessary, for the
problem not to be trivially unsolvable, to consider
a unary encoding ofb, as strings of length up tob
will have to be built.

3 Solving BMPS

In this section we attempt to solve the bounded
case. We first solve it in a randomised way, then
propose an algorithm that will work each time
the prefix probabilities can be computed. This is
the case for PFA and for probabilistic context free
grammars.

3.1 Solving by Sampling

Let us consider a class ofstrongly sampablema-
chines.

Then BMPS, for this class, belongs toRP:

Theorem 1. If a machineM is strongly sampable,
BMPS can be solved by a Monte Carlo algorithm.

Proof. The idea is that any strings whose proba-
bility is at leastp, should appear (with high proba-
bility, at least1−δ) in a sufficiently large randomly
drawn sample (of sizem), and have a relative fre-
quency fm of at leastp2 .

Algorithm 1 therefore draws this large enough
sample in a bounded way and then checks if any
of the more frequent strings (relative frequencyfm
of at leastp2 ) has real probability at leastp.

We use multiplicative Chernov bounds to com-
pute the probability that an arbitrary string whose
probability is at leastp has relative frequencyfm
of at leastp2 :

Pr
( f

m
<
p

2

)

≤ 2e−mp/8

So for a value ofδ ≤ 2e−mp/8 it is sufficient
to draw a sample of sizem ≥ 8

p ln 2
δ in order to

be certain (with errorδ) that in a sample of sizem
any probable string is in the sample with relative
frequencyfm of at leastp2 .

We then only have to parse each string in the
sample which has relative frequency at leastp

2 to
be sure (within errorδ) thats is in the sample.

If there is no string with probability at leastp,
the algorithm will returnfalse.

The complexity of the algorithm depends on
that of bounded sampling and of parsing. One can
check that in the case of PFA, the generation is in
O(b · log |Σ|) and the parsing (of a string of length
at mostb) is inO(b · |Q|2).

3.2 A Direct Computation in the Case of PFA

When the machine is a probabilistic finite automa-
ton, we can do a bit better by making use of simple
properties concerning probabilistic languages.
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Data: a machineM, p ≥ 0, b ≥ 0
Result: w ∈ Σ≤b such thatPrM(w) ≥ p,

false if there is no suchw
begin

Map f;
m = 8

p ln 2
δ ;

repeat m times
w = bounded sample(M, b);
f [w]++;

foreachw: f [w] ≥ pm
2 do

if PrM(w) ≥ p then
return w;

return false

Algorithm 1: Solving BMPS in the general
case

We are given ap > 0 and a PFA A. Then we
have the following properties:

Property 1. ∀u ∈ Σ⋆, PrA(uΣ⋆) ≥ PrA(u).

Property 2. For eachn ≥ 0 there are at most1p
stringsu in Σn such thatPrA(uΣ⋆) ≥ p.

Both proofs are straightforward and hold not
only for PFA but for all distributions. Notice that
a stronger version of Property 2 is Property 3:

Property 3. If X is a set of strings such that (1)
∀u ∈ X,PrA(uΣ⋆) ≥ p and (2) no string inX
is a prefix of another different string inX, then
|X| ≤ 1

p .

Analysis and complexity of Algorithm 2. The
idea of the algorithm is as follows. For each length
n compute the set of viable prefixes of lengthn,
and keep those whose probability is at leastp. The
process goes on until either there are no more vi-
able prefixes or a valid string has been found. We
use the fact thatPrA(uaΣ⋆) andPrA(u) can be
computed fromPrA(uΣ⋆) provided we memo-
rize the value in each state (by a standard dynamic
programming technique). Property 2 ensures that
at every moment at most1

p valid prefixes are open.
If all arithmetic operations are in constant time,

the complexity of the algorithm is inO( b|Σ|·|Q|
2

p ).

3.3 Sampling Vs Exact Computing

BMPS can be solved with a randomized algorithm
(and with error at mostδ) or by the direct Algo-
rithm 2. If we compare costs, and assuming that
bounded sampling a string can be done in time
linear in b, and that all arithmetic operations take
constant time we have:

Data: a PFA : A = 〈Σ,S,M,F〉, p ≥ 0,
b ≥ 0

Result: w ∈ Σ≤b such thatPrA(u) ≥ p,
false if there is no suchw
begin

QueueQ;
pλ = SF;
if pλ ≥ p then

return pλ;

push( Q, (λ, F));
while not empty(Q) do

(w, V) = pop (Q);
foreach a ∈ Σ do

V
′ = VMa;

if V
′
F ≥ p then

return V
′
F;

if |w| < b and V
′
1 ≥ p then

push( Q, (wa, V′));

return false

Algorithm 2: Solving BMPS for automata

• Complexity of (randomized) Algorithm 1 for
PFA is inO(8b

p ln 2
δ ·log |Σ|) to build the sam-

ple andO(2b
p · |Q|2) to check the2

p most fre-
quent strings.

• Complexity of Algorithm 2 is inO( b|Σ|·|Q|
2

p ).

Therefore,for the randomized algorithm to be
faster, the alphabet has to be very large. Experi-
ments (see Section 5) show that this is rarely the
case.

3.4 Generalising to Other Machines

What is really important in Algorithm 2 is that the
differentPrM(uΣ⋆) can be computed. If this is
a case, the algorithm can be generalized and will
work with other types of machines. This is the
case for context-free grammars (Stolcke, 1995).

For classes which are strongly sampable, we
propose the more general Algorithm 3.

4 More about the Bounds

The question we now have to answer is: how do
we choose the bound? We are given some machine
M and a numberp ≥ 0. We are looking for a
valuenp which is the smallest integer such that
PrM(x) ≥ p =⇒ |x| ≤ np. If we can compute
this bound we can run one of the algorithms from
the previous section.
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Data: a machineM, p ≥ 0, b ≥ 0
Result: w ∈ Σ≤b such thatPrM(w) ≥ p,

false if there is no suchw
begin

QueueQ;
pw = PrM(λ);
if pw ≥ p then

return pw;

push( Q, λ);
while not empty(Q) do

w = pop (Q);
foreach a ∈ Σ do

if PrM(wa) ≥ p then
return PrM(wa);

if |w| < b and PrM(waΣ∗) ≥ p

then
push( Q, wa);

return false

Algorithm 3: Solving BMPS for general ma-
chines

4.1 Computing Analytically np

If given the machineM we can compute the mean
µ and the varianceσ of the length of strings in
DM, we can use Chebychev’s inequality:

PrM
(∣

∣|x| − µ
∣

∣ > kσ
)

<
1

k2

We now choosek = 1√
p and rewrite:

PrM
(

|x| > µ+
σ√
p

)

< p

This means that, if we are looking for strings with
a probability bigger thanp, it is not necessary to
consider strings longer thanµ+ σ√

p .

In other words, we can setb = ⌈µ+ σ√
p⌉ and run

an algorithm from Section 3 which solves BMPS.

4.2 Computing Analytically np for PFA

We consider the special case where the probabilis-
tic machine is a PFA A. We are interested in
computing the mean and the variance of the string
length. It can be noted that the fact the PFA is de-
terministic or not is not a problem.

The mean string length of the strings generated

byA can be computed as:

µ =
∞

∑

i=0

i PrA(Σi)

=
∞

∑

i=0

iSM
∗
λM

i
ΣM

∗
λF

= SM
∗
λMΣ(I −MΣ)−2

M
∗
λF

Moreover, taking into account that:

∞
∑

i=0

i2PrA(Σi) =
∞

∑

i=0

i2SM
∗
λM

i
ΣM

∗
λF

= SM
∗
λMΣ(I + MΣ)(I −MΣ)−3

M
∗
λF

The variance can be computed as:

σ2 =
∞

∑

i=0

(i− µ)2PrA(Σi)

=
∞

∑

i=0

i2PrA(Σi)− µ2

= SM
∗
λMΣ(I + MΣ)(I −MΣ)−3

M
∗
λF

−
[

SM
∗
λMΣ(I −MΣ)−2

M
∗
λF

]2

Then, both values are finite since(I −MΣ) is
non singular.

4.3 Computingnp,δ via Sampling

In certain cases we cannot draw an analytically ob-
tained value for the mean and the variance. We
have to resort to sampling in order to compute an
estimation ofnp.

A sufficiently large sample is built and used by
Lemma 1 to obtain our result. In that case we have
the following:

• If the instance is negative, it is anyhow im-
possible to find a string with high enough
probability, so the answer will always be
false.

• If the instance is positive, the bound returned
by the sampling will be good in all but a small
fraction (less thanδ) of cases. When the sam-
pling has gone correctly, then the algorithm
when it halts has checked all the strings up to
lengthn. And the total weight of the remain-
ing strings is less thanp.

The general goal of this section is to com-
pute, given a strogly sampable machineM ca-
pable of generating strings following distribution
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DM and a positive valuep, an integernp,δ such
thatPrDM(Σnp,δ) < p. If we do this by sampling
we will of course have the result depend also on
the valueδ covering the case where the sampling
process went abnormally wrong.

Lemma 1. LetD be a distribution overΣ⋆. Then
if we draw, following distributionD, a sampleS
of size at least1p ln 1

δ , given anyp > 0 and any
δ > 0, the following holds with probability at least
1-δ: the probability of sampling a stringx longer
than any string seen inS is less thanp.

Alternatively, if we writenS = max{|y| :
y ∈ S}, then, with probability at least1 − δ,
PrD(|x| > nS) < p.

Proof. Denote bymp the smallest integer such
that the probability for a randomly drawn string to
be longer thanmp is less thanp: PrD(Σ>mp) <
p.

We need now to compute a large enough sample
to be sure (with a possible error of at mostδ) that
max{|y| : y ∈ S} ≥ mp. ForPrD(|x| > mp) <
p to hold, a sufficient condition is that we take a
sample large enough to be nearly sure (i.e. with
probability at least1−δ) to have at least one string
as long asmp. On the contrary, the probability
of having all (k) strings inS of length less than
mp is at most(1 − p)k. Using the fact that(1 −
p)k > δ implies thatk > 1

p ln 1
δ , it follows that it

is sufficient, once we have chosenδ, to takenp,δ >
1
p ln 1

δ to have a correct value.

Note that in the above, all we ask is that we
are able to sample. This is indeed the case
with HMM , PFA and (well defined) probablistic
context-free grammars, provided these are not ex-
pansive. Lemma 1 therefore holds for any of such
machines.

4.4 The Most Probable String Can Be of
Exponential Length

If the most probable string can be very long, how
long might it be? We show now an automaton for
which the most probable string is of exponential
length with the size of the automaton. The con-
struction is based on (de la Higuera, 1997). Let
us use a valueγ > 0 whose exact value we will
compute later.

We first note (Figure 5) how to build an automa-
ton that only gives non null probabilities to strings
whose length are multiples ofψ for any value ofψ

(and of particular interest are the prime numbers).
Here,Pr(akψ) = γ(1− γ)k.

γ

a : 1 a : 1

a : 1

a : 1

a : 1− γ

Figure 5: Automaton for(a5)∗.

We now extend this construction by building
for a set of prime numbers{ ψ1, ψ2,. . . , ψz}
the automaton for eachψi and adding an initial
state. When parsing a non empty string, a sub-
automaton will only add to the mass of probabili-
ties if the string is of length multiple ofψi. This
PFA can be constructed as proposed in Figure 6,
and has1 +

∑i=z
i=1 ψi states.

The probability of stringak with k =
∏i=z
i=1 pi

is
∑i=z

i=1
1
zγ(1− γ)

k
ψi
−1

= γ
z

∑i=z
i=1(1− γ)

k
ψi
−1

.
First consider a string of length less thank. This

string is not accepted by at least one of the sub-
automata so it’s probability is at mostγ z−1

z .
On the other hand we prove now that for a good

value ofγ, Pr(ak) > γ z−1
z .

We simplify by noticing that sincekψi − 1 ≤ k,

(1− γ)
k
ψi
−1

> (1− γ)k.
SoPr(ak) > γ

z

∑i=z
i=1(1− γ)k = γ(1− γ)k.

(1− γ)k >
z − 1

z

1− γ >
k

√

z − 1

z

γ < 1− k

√

z − 1

z

no shorter string can have higher probability.

5 Experiments

We report here some experiments in which we
compared both algorithms over probabilistic au-
tomata.

In order to have languages where the most prob-
able string is not very short, we generated a set of
random automata with a linear topology, only one
initial state and one final state, and where tran-
sitions were added leading from each state to all
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γ

a : 1 a : 1

a : 1

a : 1

a : 1− γ

γ

a : 1 a : 1− γ

γ

a : 1

a : 1

a : 1− γ
a : 1

z

a : 1
z

a : 1
z

γ

a : 1
z

γ

a : 1
z

Figure 6: An automaton whose smallest ‘interesting
string’ is of exponential length.

previous states labelled by all the symbols of the
vocabulary.

The probabilities on the edges and the final state
were set assigning to them randomly (uniformly)
distributed numbers in the range[0, 1] and then
normalizing.

Voc size Sampling (s) Exact (s)
2 0.34 0.00
4 13.26 0.00
6 13.80 0.01
8 31.85 0.02

10 169.21 0.09
12 156.58 0.10

Table 1: Execution time of Algorithm 1 (sampling) and
Algorithm 2 (exact) for 4 state automata

In our experiments, the exact algorithm is sys-
tematically faster than the one that uses sampling.

Alternative settings which would be favourable
to the randomized algorithm are still to be found.

6 Conclusion

We have proved the following:

1. There exists a PFA whose most probable
string is not of polynomial length.

2. If we can sample and parse (strongly sam-
pable distribution), then we have a ran-
domised algorithm which solves MPS.

3. If furthermore we can analytically compute
the mean and variance of the distribution,
there is an exact algorithm for MPS. This
means that the problem is decidable for a PFA

or HMMs.

4. In the case of PFA the mean and the variance
are polynomially computable, so MPScan be
solved in time polynomial in the size of the
PFA and in 1

p .

5. In the case of PFA, we can use practical algo-
rithms:

(a) randomly draw a sampleS of n strings
following distributionDA;

(b) let p = max{p(u) : u ∈ S} andb =
max{|u| : u ∈ S};

(c) run Algorithm 2 usingp andb.

Practically, the crucial problem may be CS; A
consensus string can be found by either sampling
to obtain a lower bound to the probability of the
most probable string and solving MPS, or by some
form of binary search.

Further experiments are needed to see in what
cases the sampling algorithm works better, and
also to check its robustness with more complex
models (like probabilistic context-free grammars).

Finally, in Section 4.4 we showed that the length
of the most probable string could be exponential,
but it is unclear if a higher bound to the length can
be obtained.
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Abstract

We present a simple and effective way to
perform out-of-domain statistical parsing by
drastically reducing lexical data sparseness
in a PCFG-LA architecture. We replace
terminal symbols with unsupervised word
clusters acquired from a large newspaper
corpus augmented with biomedical target-
domain data. The resulting clusters are ef-
fective in bridging the lexical gap between
source-domain and target-domain vocabu-
laries. Our experiments combine known
self-training techniques with unsupervised
word clustering and produce promising re-
sults, achieving an error reduction of 21%
on a new evaluation set for biomedical text
with manual bracketing annotations.

1 Introduction

If Natural Language Processing were the
Olympics, statistical parsing would be the com-
bination of “long jump” and “100 meters”: a
discipline where performance is evaluated in
light of raw metric data in a very specific arena.
Leaving aside this far-fetched metaphor, it is a
fact that statistical constituent-based parsing has
long been subjected to an evaluation process that
can almost be qualified asaddictedto its own test
set (Gildea, 2001; McClosky et al., 2006; Foster,
2010). However, the gap between this intrinsic
evaluation methodology, which is only able to
provide a ranking of some parser/treebank pairs
using a given metric, and the growing need for
accurate wide coverage parsers suitable for coping
with an unlimited stream of new data, is currently
being tackled more widely. Thus, the task of
parsing out-of-domain text becomes crucial.

Various techniques have been proposed to adapt
existing parsing models to new genres: domain
adaptation via self training (Bacchiani et al., 2006;
McClosky et al., 2006; Sagae, 2010), co-training
(Steedman et al., 2003), treebank and target trans-
formation (Foster, 2010), source-domain target

data matching prior to self-training (Foster et al.,
2007), and recently, uptraining techniques (Petrov
et al., 2010). Although very diverse in prac-
tice, these techniques are all designed to overcome
the syntactic and lexical gaps that exist between
source domain and target domain data. Interest-
ingly, the lexical gap found for English (Sekine,
1997) can only be wider for out-of-domain pars-
ing of languages that are morphologically richer.
Indeed, the relatively small size of their annotated
treebanks and their levels of lexical variation are
already a stress case for most statistical parsing
models, without adding the extreme challenges
caused by lexical out-of-domain variation.

In this paper, we take the PCFG-LA frame-
work (Petrov and Klein, 2007), implemented by
Attia et al. (2010), and explore a combination of
known self-training techniques with a novel appli-
cation of unsupervised word clustering (Koo et al.,
2008) that was successfully used to reduce lexical
data sparseness for French parsing (Candito and
Crabbé, 2009; Candito and Seddah, 2010).

2 Target Domain Corpus

For our work on domain adaptation, we used
the French Treebank (FTB) (Abeillé and Barrier,
2004) as thesource domaincorpus, which con-
sists of 12,351 sentences from theLe Mondenews-
paper. For thetarget domain, we used biomed-
ical texts from the European Medicines Agency,
specifically the French part of the EMEA section1

of the OPUS corpus (Tiedemann, 2009). Although
we chose the biomedical domain for this paper,
our approach can be used for any target domain.

2.1 Corpus Characteristics

The EMEA corpus includes documents related to
medicinal products: it mostly consists of sum-
maries of European public assessment reports
(EPAR), each on a specific medicine. The French

1opus.lingfil.uu.se/EMEA.php
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part we used (hereafter EmeaFr) was taken from
the English-French aligned bi-text of the EMEA
corpus, which consists of raw text converted from
PDF files. We estimate that the French part con-
tains around 1000 documents. According to the
Standard Operating Procedure of the EMEA for
EPARs2, these documents are first written in En-
glish, in a “language understandable by someone
not an expert in the field”. The translation into
all official European languages is managed by the
Translation Centre for the Bodies of the European
Union (CdT), with standardized terminology for
biomedical lay language. As far as we can judge,
the quality of the French translation is very good.

This corpus is challenging for domain adapta-
tion: though it contains well-formed sentences, it
uses specialized terminology (protocols to test and
administrate medicines, and descriptions of dis-
eases, symptoms and counter-indications), and its
writing style is very different from that used in the
journalistic domain. There are many uses of im-
perative verbs (in the instructions for use), numer-
ous dosage descriptions, and frequent information
within brackets (containing abreviations, glosses
of medical terms, and frequency information).

2.2 Corpus Preprocessing

The original EmeaFr corpus contains approxi-
mately 14 million words. We corrected some
obvious errors from the PDF to text conversion,
such as missing quotes after elided tokens (j’ for
elided “I”, n’ for elided “not”, etc.). We then per-
formed tokenization, segmentation into sentences,
and recognition of multiword expressions using
the BONSAI package3, in order to obtain tok-
enized text that resembles the tokenization of the
FTB. Finally we removed lines (sentences) not
containing any alphabetical character, as well as
duplicated sentences (we kept only one occurrence
of each unique tokenized sentence). This resulted
in a drastic reduction of the corpus, as many sen-
tences provide general information or recommen-
dations that are repeated in every EPAR docu-
ment. In the end, the resulting preprocessed cor-
pus (hereafter EmeaFrU) contains approximately
5.3 million tokens and 267 thousand sentences.

2.3 Manual Bracketing Annotation

To evaluate parsing performance, we manually an-
notated two extracts of the EmeaFrU corpus, cor-

2Document 3131, at: www.ema.europa.eu
3alpage.inria.fr/statgram/frdep/fr_stat_dep_parsing.html

Test Set Dev Set
# of sentences 544 574
avg sent. length 21.5 16.2
# of tokens 11,679 9,346
Stats for any type of token
# of tokens (% unknown) 9,346 (23%)
# of types (% unknown) 1,917 (42%)
Stats for alpha-lc tokens
# of tokens (% unknown) 8,109 (22%)
# of types (% unknown) 1,608 (36%)

Table 1: Statistics on the EMEA dev and test sets.
alpha-lc stands for tokens converted to lowercase and
containing at least one letter.Unknowntokens/types
are those absent from the FTB training set.

responding to two EPAR documents: one for de-
velopment and one for final tests. We removed
them from EmeaFrU. In order to obtain gold
parses for the development and test sets, we first
parsed them using the BONSAI package, which
contains the Berkeley parser (Petrov and Klein,
2007), and a French model as described in (Can-
dito et al., 2010). We retained only the POS
tags, and had them validated by an expert. Then
we reparsed the sets in pre-tagged mode, and
had them validated by the same expert, using the
WORDFREAK tool (Morton and LaCivita, 2003)
that we adapted to French. We removed section
numbers starting or ending sentences, table cells,
and also a few obviously incomplete sentences.4

Table 1 shows a few statistics for the evaluation
sets, and a comparison of the dev set vocabulary
with that of the FTB standard training set. Focus-
ing on non-punctuation, non-numeric tokens, we
see that more than1/3 of the vocabulary is un-
known (36%), representing22% of the token oc-
currences. This strongly motivates a domain adap-
tation technique focused on lexical variation be-
tween the source domain and the target domain.

3 Lexical Domain Adaptation

In our approach to domain adaption, we use unsu-
pervised word clustering performed on a mixture
of target-domain (biomedical) and source-domain
(journalistic) text. The objective is to obtain clus-
ters grouping together source-domain and target-
domain words, thus bridging the two vocabularies.

We build on the work of Candito and Crabbé
(2009), who proposed a technique to improve in-
domain parsing by reducing lexical data sparse-

4We plan to make the manually-annotated corpus freely
available, following a final validation step.
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ness: (i) replace tokens with unsupervised word
clusters both in training and test data; (ii) learn
a grammar from the word-clustered sentences in
the training set; (iii) parse the word-clustered sen-
tences in the test set; (iv) reintroduce the original
tokens into the test sentences to obtain the final
parsed output. The clustering is performed in two
steps: (i) a morphological clustering is applied us-
ing the Lefff morphological lexicon (Sagot et al.,
2006), where plural and feminine suffixes are re-
moved from word forms and past/future tenses are
mapped to present tense (provided this does not
change the part-of-speech ambiguity of the form);
(ii) an unsupervised clustering algorithm (Brown
et al., 1992) is run on a large unlabeled corpus to
learn clusters over the desinflected forms. Both
clustering steps proved to be beneficial for parsing
in-domain French text using the Berkeley parser.

We apply a similar unsupervised word cluster-
ing technique to lexical domain adaptation, with
the difference being that clusters are learned over
a mixture of source-domain and target-domain text
(hereaftermixed clusters). We test this technique
when training a parser on the FTB training set as
well as in self-training mode (McClosky and Char-
niak, 2008), where the parser is trained on both
the source-domain training set and automatically
parsed sentences from the target domain.

4 Experiments

For our parsing experiments, we used the PCFG-
LA algorithm of Petrov and Klein (2007), imple-
mented by Attia et al. (2010).5 The treebank used
was the FTB (cf. Section 2). More precisely, we
used the version of the treebank as defined by Can-
dito and Crabbé (2009), which has a 28 POS tagset
and some multiword expressions replaced by reg-
ular syntactic structures. We used the standard
training (80%), dev (10%), and test (10%) split,
containing respectively 9881, 1235 and 1235 sen-
tences from theLe Mondenewspaper.

For unsupervised clustering, we first systemat-
ically applied the desinflection process of Can-
dito and Crabbé (2009), using the Bonsai tool.
We obtainedsource clustersby applying Percy
Liang’s implementation6 of the Brown clustering
algorithm to theL’Est Républicaincorpus (her-
after ER), a 125 million word journalistic corpus,

5Our experiments were run using five split-merge cycles
and tuned suffixes for handling French unknown words.

6www.eecs.berkeley.edu/~pliang/software

F-Measure on EMEA test set (≤ 40)
Symbols No self-training 200k self-training
raw 81.25 84.75
dfl 81.82 84.72
clt-er 82.65 85.09
clt-er-emea 83.53 85.19

Table 2: F-Measure for sentences≤ 40 tokens on
the EMEA test set, both with self-training (200k auto-
parsed sentences from EmeaFrU) and without.

freely available at CNRTL7. Though this newspa-
per is less formal thanLe Monde, it is still journal-
istic, so we consider it as being in the source do-
main. Themixed clusterswere obtained by con-
catenating theL’Est Républicaincorpus and the
EmeaFrU (cf. Section 2), herafter ER+EMEA.
We did not investigate any weighting techniques
for building the source corpus for mixed clusters.
On both the ER and ER+EMEA corpora, we ran
Brown clustering with 1000 clusters for the desin-
flected forms appearing at least 60 times.

Having performed desinflection and different
types of clustering, we trained PCFG-LA gram-
mars on the FTB training set using four settings for
terminal symbols:raw uses original word forms;
dfl uses desinflected word forms;clt-er uses clus-
ters of desinflected forms computed over the ER
corpus, with a process described in detail by Can-
dito and Crabbé (2009);clt-er-emeais the same as
clt-er, but with mixed clusters over the ER+EMEA
corpus. Having obtained these initial grammars,
we used each to parse the EmeaFrU unlabeled cor-
pus (with appropriate desinflection and clustering
preprocessing for each of the four terminal sym-
bol settings). We then performed self-training ex-
periments adding up to 200k predicted parses from
EmeaFrU to the FTB training set, and training new
grammars for each such enlarged training set.

4.1 Results

Figure 1 shows the effect of self-training on pars-
ing the EMEA and FTB dev sets. Unsurpris-
ingly, the baseline parser (raw setting without self-
training) has a 5 point drop in F-measure when
parsing the EMEA compared to the FTB. Con-
sistent with previous results on English biomed-
ical texts (Lease and Charniak, 2005; McClosky
and Charniak, 2008), self-training helps in parsing
the EMEA, with more predicted parses generally
leading to better performance on the EMEA (and
worse performance on the FTB).

7www.cnrtl.fr/corpus/estrepublicain
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Figure 1: F-Measure for sentences of length≤ 40 on the EMEA (left) and FTB (right) dev sets using self-training
(with different amounts of auto-parsed sentences from EmeaFrU), by terminal symbol setting.

Concerning the different settings for terminal
symbols, for source-domain data we reproduce
(right side of Figure 1) the findings of Candito
and Crabbé (2009): parsing desinflected forms
(dfl) increases performance, and parsing unsuper-
vised clusters of desinflected forms (clt-er andclt-
er-emea) is even better. For target-domain data,
we find that desinflection does help, and even
achieves better performance than source clusters.
This can be explained by the fact that the desin-
flection process provides forms that still follow
French morphology, so the general handling of un-
known words (with classes of suffixes) does apply.
In contrast, terminological tokens are (hopefully)
more frequently absent from the ER corpus than
the ER+EMEA corpus, and they are replaced by
the UNK token more often for source clusters (clt-
er) than for mixed clusters (clt-er-emea). Indeed,
for the EMEA dev set, 1,466 tokens are UNK in
theclt-er setting, while only 729 tokens are UNK
in theclt-er-emeasetting.

Table 2 shows final parsing results on the
EMEA test set for each of the four terminal sym-
bol settings, with and without self-training (using
200k parses from EmeaFrU). We evaluated using
F-Measure on labeled precision and recall, ignor-
ing punctuation, and calculated the significance
of differences between settings.8 Theclt-er-emea
setting gives the best overall performance, with
or without self-training. When comparingclt-er-
emeawith self-training (best overall) toraw with-
out self-training (baseline), we obtain a21% error

8Significance atp = 0.05, using Bikel’s Statistical Sig-
nificance Tester: www.cis.upenn.edu/~dbikel/software.html

reduction. This result is encouraging, given the
small amount of raw target-domain data added to
the ER corpus (5M added to 125M words). How-
ever, self-training produces the most pronounced
increase in performance (statistically significant
improvement over no self-training for each termi-
nal symbol setting), and attenuates the improve-
ment attained by clustering: whileclt-er-emeais
significantly better thanraw or dfl without self-
training, the differences are not significant with
self-training. More raw target-domain data may
be needed for mixed clusters to be fully effective.

5 Conclusion

We have proposed a technique of parsing word
clusters for domain adaptation, clustering together
source and target-domain words. We have shown
this to be beneficial for parsing biomedical French
texts, though it did not provide significant addi-
tional improvement over self-training.

Our perspectives for future work are to in-
vestigate: (i) producing mixed clusters with a
larger unlabeled target-domain corpus; (ii) using
lexicon-informed part-of-speech taggers; (iii) sup-
plementing our approach with other techniques
like reranking, known to improve self-training
for domain adaptation (McClosky and Charniak,
2008), or uptraining (Petrov et al., 2010).

Acknowledgements

Thanks to J. Foster, D. Hogan and J. Le Roux for
making the LORG parser available to us and to
the French National Research Agency (SEQUOIA
project ANR-08-EMER-013).

40



References

Anne Abeillé and Nicolas Barrier. 2004. Enrich-
ing a french treebank. InProc. of LREC’04,
Lisbon, Portugal.

Mohammed Attia, Jennifer Foster, Deirdre Hogan,
Joseph Le Roux, Lamia Tounsi, and Josef van
Genabith. 2010. Handling unknown words
in statistical latent-variable parsing models for
arabic, english and french. InProceedings
of the NAACL/HLT Workshop on Statistical
Parsing of Morphologically Rich Languages
(SPMRL 2010), Los Angeles, CA.

M. Bacchiani, M. Riley, B. Roark, and R. Sproat.
2006. Map adaptation of stochastic grammars.
Computer speech & language, 20(1):41–68.

Peter F. Brown, Vincent J. Della, Peter V. Des-
ouza, Jennifer C. Lai, and Robert L. Mer-
cer. 1992. Class-based n-gram models of
natural language. Computational linguistics,
18(4):467–479.

Marie Candito and Benoît Crabbé. 2009. Im-
proving generative statistical parsing with semi-
supervised word clustering. InProceedings of
the 11th International Conference on Parsing
Technologies (IWPT’09), pages 138–141, Paris,
France, October. Association for Computational
Linguistics.

Marie Candito and Djamé Seddah. 2010. Pars-
ing word clusters. InProceedings of the
NAACL/HLT Workshop on Statistical Parsing
of Morphologically Rich Languages (SPMRL
2010), Los Angeles, CA.

Marie Candito, Joakim Nivre, Pascal Denis, and
Enrique Henestroza Anguiano. 2010. Bench-
marking of statistical dependency parsers for
french. InProceedings of COLING 2010, Bei-
jing, China.

J. Foster, J. Wagner, D. Seddah, and J. Van Gen-
abith. 2007. Adapting wsj-trained parsers to
the british national corpus using in-domain self-
training. In Proceedings of the Tenth IWPT,
pages 33–35.

Jennifer Foster. 2010. “cba to check the spelling”:
Investigating parser performance on discussion
forum posts. InHuman Language Technolo-
gies: The 2010 Annual Conference of the North

American Chapter of the Association for Com-
putational Linguistics, pages 381–384, Los An-
geles, California, June. Association for Compu-
tational Linguistics.

Daniel Gildea. 2001. Corpus variation and parser
performance. InProceedings of the First Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 167–202.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency
parsing. InProceedings of ACL-08, pages 595–
603, Columbus, USA.

M. Lease and E. Charniak. 2005. Parsing biomed-
ical literature. Natural Language Processing–
IJCNLP 2005, pages 58–69.

David McClosky and Eugene Charniak. 2008.
Self-training for biomedical parsing. InPro-
ceedings of ACL-08: HLT, Short Papers, pages
101–104, Columbus, Ohio, June. Association
for Computational Linguistics.

D. McClosky, E. Charniak, and M. Johnson. 2006.
Reranking and self-training for parser adapta-
tion. In Proceedings of the 21st International
Conference on Computational Linguistics and
the 44th annual meeting of the Association for
Computational Linguistics, pages 337–344. As-
sociation for Computational Linguistics.

T. Morton and J. LaCivita. 2003. Wordfreak: an
open tool for linguistic annotation. InProceed-
ings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics on Human Language Tech-
nology: Demonstrations-Volume 4, pages 17–
18. Association for Computational Linguistics.

Slav Petrov and Dan Klein. 2007. Improved in-
ference for unlexicalized parsing. InHuman
Language Technologies 2007: The Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics; Proceed-
ings of the Main Conference, pages 404–411,
Rochester, New York, April. Association for
Computational Linguistics.

S. Petrov, P.C. Chang, M. Ringgaard, and H. Al-
shawi. 2010. Uptraining for accurate determin-
istic question parsing. InProceedings of the

41



2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 705–713. As-
sociation for Computational Linguistics.

Kenji Sagae. 2010. Self-training without rerank-
ing for parser domain adaptation and its impact
on semantic role labeling. InProceedings of the
2010 Workshop on Domain Adaptation for Nat-
ural Language Processing, pages 37–44, Upp-
sala, Sweden, July. Association for Computa-
tional Linguistics.

Benoît Sagot, Lionel Clément, Eric V.
de La Clergerie, and Pierre Boullier. 2006.
The lefff 2 syntactic lexicon for french: Archi-
tecture, acquisition, use.Proc. of LREC 06,
Genoa, Italy.

S. Sekine. 1997. The domain dependence of
parsing. InProceedings of the fifth confer-
ence on Applied natural language processing,
pages 96–102. Association for Computational
Linguistics.

M. Steedman, R. Hwa, S. Clark, M. Osborne,
A. Sarkar, J. Hockenmaier, P. Ruhlen, S. Baker,
and J. Crim. 2003. Example selection for boot-
strapping statistical parsers. InProceedings
of the 2003 Conference of the North American
Chapter of the Association for Computational
Linguistics on Human Language Technology-
Volume 1, pages 157–164. Association for
Computational Linguistics.

Jörg Tiedemann. 2009. News from OPUS -
A collection of multilingual parallel corpora
with tools and interfaces. In N. Nicolov,
K. Bontcheva, G. Angelova, and R. Mitkov,
editors,Recent Advances in Natural Language
Processing, volume V, pages 237–248. John
Benjamins, Amsterdam/Philadelphia, Borovets,
Bulgaria.

42



Proceedings of the 12th International Conference on Parsing Technologies, pages 43–47,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

Sentence-Level Instance-Weighting for Graph-Based
and Transition-Based Dependency Parsing

Anders Søgaard
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Martin Haulrich
ISV Computational Linguistics Group

Copenhagen Business School
mwh.isv@cbs.dk

Abstract

Instance-weighting has been shown to be
effective in statistical machine translation
(Foster et al., 2010), as well as cross-
language adaptation of dependency parsers
(Søgaard, 2011). This paper presents new
methods to do instance-weighting in state-
of-the-art dependency parsers. The meth-
ods are evaluated on Danish and English
data with consistent improvements over un-
adapted baselines.

1 Introduction

The default assumption in theoretical machine
learning is that training and test data are indepen-
dently and identically (iid) drawn from the same
distribution. If the distributions differ, we face
what is referred to as sample selection bias in the
statistical literature. Sample selection bias is typ-
ically ignored in machine learning, but it occurs
often in practice.

In natural language processing, the problem
shows up in almost any real-world application.
Machine translation systems are trained on large
amounts of parallel text, but typically this text
comes from a small set of sources or institutions,
e.g. the Europarl corpora of transcribed debates
from the European Parliament (Koehn, 2005).
Machine translation systems are used to translate
many different kinds of texts, however. In ma-
chine translation, which can be seen as a struc-
tured learning problem of predicting target sen-
tencey given a source sentencex, we typically
see a bias inP (y) andP (x), but not inP (y|x).
Statistical parsers for English are typically trained
on annotated text from the Wall Street Journal cor-
pus of newspaper articles (Marcus et al., 1993),
but are used to process many different kinds of
text. Since the problem of sample selection bias
in natural language processing is typically related
to differences in textual domains, computational

linguists typically refer to the problem as domain
adaptation.

Domain adaptation is one of the most funda-
mental yet-to-be-solved problems in natural lan-
guage processing. While statistical parsers have
accuracies of 90-92% parsing newspaper articles,
accuracy on transcribed telephone conversations
or child-directed speech often drop to 60-70%
(Nivre et al., 2007a). Domain adaptation is there-
fore also receiving more and more attention, and it
has recently been studied in the context of named
entity recognition (Daume III, 2007), sentiment
analysis (Blitzer et al., 2007), dependency pars-
ing (Sagae and Tsujii, 2007; Kawahara and Uchi-
moto, 2009), text classification (Chen et al., 2009),
context-free parsing (McClosky et al., 2010) and
machine translation (Foster et al., 2010).

Domain adaptation is the problem of learning a
target distribution from a labeled sample of source
data with a similar, but different distribution. The
problem comes in two variants; one where we also
have a small amount of labeled target domain data,
and one in which we only have labeled source do-
main data and must rely on unlabeled source and
target domain data to do the actual adaptation of
the model that can be learned from source domain
data. Much work in natural language processing
has assumed a small amount of labeled target do-
main data (Daume III, 2007; Foster et al., 2010),
but we consider the more difficult case where none
is available. This is sometimes referred to as un-
supervised domain adaptation.

How domain adaptation is tackled depends
much on the assumptions we may have about the
similarities and differences between the two distri-
butions. One line of approaches to domain adapta-
tion is to change the feature representation of the
source domain data, typically focusing on the fea-
tures that are also predictive in the target domain
(Ben-David et al., 2007). Such approaches assume
a bias inP (x), but may also try to deal with sce-
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narios where there is a bias inP (y|x). Others have
proposed using priors to encode knowledge about
one domain in a model induced from data in an-
other domain, or they have promoted frequent tar-
get domain classes if they were less frequent in the
source domain. Such approaches assume a bias in
P (y) and have become popular in word sense dis-
ambiguation (Zhu and Hovy, 2007), for example,
where a particular reading ofbank may be much
more frequent in some domains rather than others.
Classes can be promoted using instance weight-
ing, but instance weighting can also be used to
change the marginal distribution of data. The first
case is typically referred to as solving class im-
balance, while the second case is called covari-
ate shift (Shimodaira, 2000). We will, assuming
a bias inP (x), consider the covariate shift sce-
nario. A fourth line of research in domain adapta-
tion applies semi-supervised or transductive learn-
ing algorithms to domain adaptation problems, us-
ing unlabeled data from the target domain.

In dependency parsing, domain adaptation re-
ceived attention in the CoNLL 2007 Shared Task.
While semi-supervised learning and structural cor-
respondence learning were used by participants in
the CoNLL 2007 Shared Task, none of the par-
ticipants used instance-weighting techniques. In
this paper, we follow suggestions in the related
literature on learning under sample selection bias
to transform the density ratio estimation problem
in co-variate shift into a problem of predicting
whether an instance is from the source domain or
from the target domain (Zadrozny, 2004; Bickel
and Scheffer, 2007). We show how to do this
in the context of graph-based and transition-based
dependency parsing.

Related work includes Søgaard (2011) who
uses perplexity per word to select the source data
most similar to the target data, so a form of in-
stance weighting with weights 0 and 1, but ap-
plies the technique to cross-language adaptation of
dependency parsers; but also Plank and van No-
ord (2011) who in a similar fashion use topic sim-
ilarity measures to select articles rather than sen-
tences.

Our instance-weighted parsers are evaluated
primarily on a new data set, namely a partition-
ing of the Danish treebank (Buch-Kromann, 2003)
into four different textual domains. We do ex-
periments with all pair-wise combinations of the
four domain-specific treebanks. Our results are

supplemented by a subset of the CoNLL 2007
Shared Task data. It has been noted in several
places that there were annotation differences be-
tween the source and target data in the original
data which makes domain adaptation almost im-
possible (Dredze et al., 2007). Consequently, we
only use the three small target domain evalua-
tion datasets, which were annotated more consis-
tently, and do experiments with all pair-wise com-
binations of these datasets. Our experiments can
also be seen as transductive learning experiments,
since no target data other than the data used for
evaluation is used.

2 Sentence-Based Instance-Weighting in
Dependency Parsing

2.1 Using Text Classification for
Instance-Weighting

The source and target plain text corpora are first
extracted, and each sentence is assigned a label
saying whether the sentence was sampled from
source or target data. The idea is then to train a text
classifier on the data and use the probability that a
sentence comes from the target domain to weight
the source instances. This is also the approach to
learning under sample selection bias suggested by
Zadrozny (2004).

Our text classifier was a logistic regression clas-
sifier implemented in Mallet. It represents each
sentence by a vector representing occurrences of
n-grams in the sentence (n ≤ 3). No stop word
lists were used. The text classifier was used
to approximate the probability that each source
sentence was sampled from the target domain.
The weights are obtained using ten-fold cross-
validation. We store one weight for each sentence
in the labeled source data.

2.2 Graph-Based Dependency Parsing

Graph-based dependency parsing is a heteroge-
neous family of approaches to the dependency
parsing algorithms, each of which couples a learn-
ing algorithm and a parsing algorithm. Some
of these algorithms assume dependency trees are
projective (Eisner, 1996), while others allow for
non-projective dependency trees (McDonald et al.,
2005).

One approach to graph-based parsing of non-
projective dependency trees is applying minimum
spanning tree algorithms to matrices of weighted
head-dependent candidate pairs. The learning al-

44



Malt-bl Malt-sys MST-bl MST-sys
law-lit 63.55 64.22 62.57 65.31
law-magz 60.8 61.34 58.65 58.59
law-news 60.23 60.58 58.84 62.07
lit-laws 78.34 79.31 77.58 78.06
lit-magz 80.22 80.04 80.61 80.55
lit-news 77.31 77.6 79.79 80.14
magz-law 72.04 73.98 73.84 74.74
magz-lit 75.74 76.63 77.27 77.78
magz-news 73.73 73.42 74.42 73.91
news-law 77.85 79.65 80.69 82.7
news-lit 85.33 85.49 88.25 88.22
news-magz 84.93 85.65 87.81 87.81
AV 74.17 74.86 75.02 75.82

Table 1: Unlabeled attachment scores for Danish.

gorithm used in McDonald et al. (2005) and the
publicly available MSTParser1 to learn candidate
weights is MIRA (Crammer and Singer, 2003).
The MIRA algorithm considers one sentence at
each update of the weight vector, and the succes-
sive values of the vector are accumulated to later
produce an averaged weight vector in a way simi-
lar to using averaged perceptron. Unlike using av-
eraged perceptron, MIRA aggressively maximizes
the margin between the correct dependency struc-
ture and the parser’s prediction enforcing it to be
larger than the loss of that prediction.

In our experiments we weight the margin such
that a large margin between the correct and pre-
dicted structures is less aggressively enforced
when learning from distant data points. This is
achieved by weighting the loss of incorrect classi-
fications by the probability that the sentence was
sampled from the target domain.

2.3 Transition-Based Dependency Parsing

Transition-based parsing reduces the problem of
finding the most likely dependency tree for a sen-
tence to a series of classification problems by see-
ing parsing as transitions between configurations.
Parsing is incremental and left-to-right. A con-
figuration typically consists of the next couple of
words to be read, the first couple words on a stack
storing previously read words, and part of the de-
pendency structure already build. Each configura-
tion is a feature vector used to predict the parser’s
next transition. The guiding classifier is trained on
canonical derivations of the dependency trees in
the labeled training data.

1http://sourceforge.net/projects/mstparser/

The most widely used transition-based depen-
dency parser is the MaltParser (Nivre et al.,
2007b).2 The parser comes with several parsing
algorithms, but uses a projective and very efficient
algorithm by default. MaltParser is bundled with
LibSVM 2.91, implementing a wide range of sup-
port vector machine algorithms that are used to
learn classifiers to guide parsing. LibSVM 2.91
does not allow for instance weighting. However,
LibSVM 3.0 does. In our experiments with the
MaltParser, we use LibSVM 3.0 in conjunction
with the MaltParser providing it with sentence-
level instance weights from our Mallet text classi-
fier. This means that configuration-transition pairs
in the canonical derivations of a sentence with
weight w will have weightw when training the
support vector machine used by our parser.

3 Data

We evaluate our instance-weighted parsers on two
domain adaptation data sets from English and
Danish annotated corpora, one of which (Dan-
ish) has not previously been used in the literature.
The Danish corpus is a balanced corpus, annotated
building the Danish Dependency Treebank (DD
(Buch-Kromann, 2003) and used in the CoNLL-
X Shared Task (Buchholz and Marsi, 2006). The
DDT comes with metadata revealing the original
source of each sentence. This metadata was used
to split the DDT into four domains: law (77 sent.),
literature (lit; 984 sent.), magazines (magz; 190
sent.) and newspapers (news; 5052 sent.).

The second dataset was also used for the
CoNLL 2007 Shared Task on domain adaptation

2http://maltparser.org
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Malt-bl Malt-sys MST-bl MST-sys
childes-pbiotb 43.11 43.91 46.03 48.86
childes-pchemtb 38.01 39.69 44.89 44.41
pbiotb-childes 50.35 49.91 59.07 61.37
pbiotb-pchemtb 75.64 75.26 77.26 77.16
pchemtb-childes 49.63 50.69 60.89 60.91
pchemtb-pbiotb 75.28 75.06 76.39 76.73
AV 55.34 55.75 60.76 61.57

Table 2: Unlabeled attachment scores for English.

for dependency parsers (Nivre et al., 2007a). In
the shared task, the Penn-III treebank (Marcus et
al., 1993) was used as source domain, and test do-
mains were chemical and biomedical research ar-
ticles and transcribed child-directed speech. The
quality of the shared task data was questioned by
participants (Dredze et al., 2007), and there is
some consensus today that annotation styles were
too different for evaluation results to be useful. We
therefore use data from the target domains only:
biomedical literature (160 sent.), chemical litera-
ture (195 sent.) and child-directed speech (666
sent.). We consider all pairwise combinations of
datasets within the two languages.

4 Results

Our results for both Danish and English (see
Table 1 and 2), reporting unlabeled attachment
scores including punctuation, show rather consis-
tent improvements across all pairwise combina-
tions of datasets. Error reductions vary greatly
from dataset to dataset, however. The average er-
ror reduction on the Danish data is≥ 3% for the
instance-weighted MSTParser, and≥ 2.5% for the
instance-weighted MaltParser.

It is interesting to note that there were no signif-
icant improvements when English input data was
weighted by a text classifier trained on biomedical
and chemical literature. These two text types are
of course more similar to each other than to child-
directed speech. This is reflected in the text clas-
sification accuracy, which is as high as 98–99%
when comparing sentences sampled from techni-
cal literature and sentences sampled from child-
directed speech, but considerably lower (∼93.5%)
when trying to differentiate biomedical sentences
from chemical ones. Table 1 plots the correlation
between system improvements and text classifica-
tion accuracy for the Danish data. It is easy to
see that high text classification accuracy is nec-
essary for substantial improvements over the non-
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Figure 1: Correlation between text classification accu-
racy and system improvement (Danish).

weighted baseline system.
Finally we note that we did similar experiments

on the Penn-III treebank using the metadata also
used by Webber (2009), with less robust results
and smaller average improvements. The distri-
bution of text types is very skewed in the Wall
Street Journal, however, making text classification
on this data alone a difficult job.

5 Conclusion

We have presented ways of implementing
instance-weighting in transition-based and
graph-based dependency parsing based on text
classification and showed that this leads to con-
sistent improvements over non-adapted baselines
in domain adaptation scenarios, especially across
very different domains.
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Abstract 

This paper discusses the difficulties in Chinese 
deep parsing, by comparing the accuracy of a 
Chinese HPSG parser to the accuracy of an 
English HPSG parser and the commonly used 
Chinese syntactic parsers. Analysis reveals 
that deep parsing for Chinese is more chal-
lenging than for English, due to the shortage of 
syntactic constraints of Chinese verbs, the 
widespread pro-drop, and the large distribu-
tion of ambiguous constructions. Moreover, 
the inherent ambiguities caused by verbal co-
ordination and relative clauses make semantic 
analysis of Chinese more difficult than the 
syntactic analysis of Chinese.   

1 Introduction 

Syntactic parsing provides only the syntactic 
structure of text, while deep parsing offers richer 
information, such as the semantic roles. With the 
advancement of research in natural language 
processing, this rich information has become im-
portant for many applications, including statisti-
cal machine translation, information extraction, 
and question answering.  

Performing semantic role labeling (Marquez et 
al., 2009) with shallow parsing is one way to ful-
fill deep parsing. Another alternative to semantic 
role labeling is to perform deep parsing based on 
lexicalized grammar theories, such as Head-
Driven Phrase Structure Grammar (HPSG) (Pol-
lard and Sag, 1994), Lexical Functional Gram-
mar (LFG) (Dalrymple et al., 1995), 
Combinatory Categorial Grammar (CCG) 
(Steedman, 2000), and Lexicalized Tree Adjoin-
ing Grammar (LTAG) (O’Donovan et al., 2005). 

Many research projects have been done success-
fully in this way, such as is the case in parsing 
English with HPSG (Miyao and Tsujii, 2008; 
Matsuzaki et al., 2007), CCG (Clark and Curran, 
2004), and LFG (Kaplan et al., 2004).   

However, obtaining the deep analysis of Chi-
nese has proven to be more difficult. We evalu-
ated an existing HPSG parser, which has been 
used successfully for English deep parsing (Mi-
yao and Tsujii, 2008), on the Chinese HPSG 
Treebank constructed by Yu et al. (2010). The 
results indicated that compared to English, this 
parser obtained a 12.97% decrease in semantic 
F1-score on Chinese deep parsing.  

Therefore, this paper focuses on investigating 
the difficulties in Chinese deep parsing, by com-
paring the parsing results of this HPSG parser on 
both Chinese and English, with the parsing re-
sults from commonly used Chinese syntactic 
parsers. This is the first time that the difficulties 
in Chinese deep parsing were analyzed; the re-
sulting analysis provides insight into future re-
search for Chinese deep parsing.  

2 Linguistic Properties of Chinese 

As discussed in Guo (2009), Chinese has little 
inflectional morphology, compared with Indo-
European languages. There is no tense, case, and 
number marker in Chinese, and in sequence, 
there are fewer syntactic constraints; such as the 
case with the agreement in English. Therefore, in 
Chinese, word order plays an important role in 
determining the sentence meaning. 

吃/eat 过 苹果/apple 了 。 
((Somebody) has eaten the apple.) 

(a) A Chinese sentence with subject pro-drop 
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吃/eat 过 了 。 
((Somebody) has eaten (something).) 

(b) A Chinese sentence with both subject and 
object pro-drop 

Figure 1: Examples of pro-drop in Chinese 

The other significant linguistic property in 
Chinese is the frequent pro-drop phenomena. For 
example, Levy and Manning (2003) showed that 
unlike English, the subject pro-drop (the null 
realization of uncontrolled pronominal subjects) 
is widespread in Chinese; this is exemplified in 
Figure 1 (a). Huang (1989) further provided a 
detailed analysis to show that subjects as well as 
objects may drop from finite Chinese sentences 
(as shown in Figure 1 (b)).  

3 Chinese Deep Parsing based on HPSG 

3.1 Parsing Model 

In this paper, we used an HPSG parser - Enju1, 
which was successfully applied in English deep 
parsing, to obtain the deep analysis of Chinese. 
This HPSG parser uses the feature forest model 
proposed by Miyao and Tsujii (2008), which is a 
maximum entropy model that is defined over 
feature forests, as a parsing disambiguation 
model. The feature forest model provides a solu-
tion to the problem of probabilistic modeling of 
complex data structures. Moreover, in order to 
reduce the search space and further increase the 
parsing efficiency, in this parser, a supertagger 
(Matsuzaki et al. 2007) is applied before parsing. 
This supertager provides the maybe-parsable su-
pertag (i.e. lexical template) sequences to the 
parser. 

In short, in the HPSG parser, the probability, 
p(t|w), of producing a parse tree t for a given 
sentence w is defined by Equation 1. Here, Zw is 
a normalization constraint; p(l|w) is a maxent 
supertagging model in which l is the supertag 
sequence for sentence w; fi(t,l,w) is a feature 
function that represents the characteristics of t, l, 
and w; and λi is its weight. When performing 
Chinese HPSG parsing, the feature functions (i.e. 
fi(t,l,w)) were borrowed from the English parser 
without any change, but the weights (i.e. λi) were 
tuned by using the development data.  

  (1) 

                                                             
1 http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html 

The parsing procedure of this HPSG parser 
can be explained in the following way: 

 Given a segmented and pos-tagged input sen-
tence,  

(1) the supertagger offers all the maybe-
parsable supertag (i.e. lexical template) se-
quences with scores to the parser;  

(2) the feature forest model applies beam 
threshold on the scored supertag sequences, and 
then obtains a well-formed HPSG parse tree.  

Figure 2 shows a supertag sequence provided 
by the supertagger for a Chinese sentence, in 
which the supertag of the word ‘写(wrote)’ indi-
cates a lexical template for the transitive verb 
with an extracted object. Figure 3 illustrates the 
HPSG parse tree output from the parser with this 
supertag sequence. 

 
(I read the book that he wrote.) 

Figure 2: A supertag sequence provided by the 
supertagger 

 
(I read the book that he wrote.) 

Figure 3: The HPSG tree created from Figure 2 
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3.2 Training Data  

In order to apply the HPSG parser to Chinese 
deep parsing, we used the Chinese HPSG Tree-
bank developed by Yu et al. (2010) to train the 
parser.  

This Chinese HPSG Treebank is based on the 
Chinese HPSG grammar designed in (Yu et al., 
2010). 25,724 (95.66%) trees in the Penn Chi-
nese Treebank 6.0 were successfully converted 
into HPSG trees, with 97.24% accuracy (Yu et 
al., 2010). For the details concerning the con-
struction phase, please refer to (Yu et al., 2010). 

From the syntactic point-of-view, in addition 
to the phrase structure of the Penn Chinese Tree-
bank, this HPSG Treebank records the syntactic 
dependency relations, which are identified with 
the head rules similar to the head rules provided 
by Yuan Ding2.  

This treebank uses 51 types of predicate-
argument dependencies to represent the semantic 
structures among 13 classes of words. A predi-
cate-argument dependency is defined as <wp, wa, 
r, l>, where wp is the head word of the predicate 
and wa is the head word of the argument. r is the 
type of predicate-argument dependency between 
wp and wa. l is the argument label, such as ARG1 
and ARG2.  

3.3 Experimental Setting 

By using the Chinese HPSG Treebank described 
above, we re-trained the feature forest model and 
the supertagger, and built a Chinese HPSG 
parser. The treebank was split into development, 
testing, and training data sets, following the rec-
ommendation from the authors of the Penn Chi-
nese Treebank. The training data was used to 
train the HPSG parser, and the testing data was 
used for parsing evaluation; the development 
data was used for parameter tuning. Table 1 
shows the statistics that resulted from the differ-
ent data sets. 

Data 
Set 

# Total 
Tree 

# Success 
Tree # Word # Tem-

plate 
Train 22,224 21,186  557,447 2,185 
Test 2,635 2,530 71,921 863 
Dev 2,067 2,042 56,736 783 

Table 1: Statistics for the Chinese HPSG Tree-
bank 

In the experiments performed with for the 
HPSG parser, the gold-standard word boundaries 
and POS tags were supplied. 

                                                             
2 http://w3.msi.vxu.se/~nivre/research/chn_headrules.txt 

 
(I read the book that he wrote.) 

Figure 4: A predicate-argument dependency 
parse tree output by the Chinese HPSG parser 

The Chinese HPSG parser offers predicate-
argument dependencies as the output of semantic 
parsing. Figure 4 illustrates a parse tree with a 
predicate-argument dependency that has been 
built by the Chinese HPSG parser, in which the 
label of each dependency is the combination of r 
and l in a predicate-argument dependency <wp, 
wa, r, l>. As an example, the predicate-argument 
dependencies of the verb ‘写(writes)’ shown in 
Figure 4 indicates that the verb is a transitive 
verb (verb_arg12), and has a subject (ARG1) ‘他
(he)’, and an object (ARG2) ‘书(book)’. 

Therefore, we evaluated the performance of 
the Chinese HPSG parser on semantic parsing by 
analyzing the accuracy of the predicate-argument 
dependencies. Six evaluation metrics used by 
Miyao and Tsujii (2008) were selected for the 
evaluation. LP and LR refer to the labeled preci-
sion and recall of the predicate-argument de-
pendencies, while UP and UR refer to the 
unlabeled precision and recall, respectively. 
Sem.F1 is the semantic F1-score calculated based 
on LP and LR. Sent.acc. is the accuracy of the 
sentences with the correct predicate-argument 
dependencies.  

 
(I read the book that he wrote.) 

Figure 5: A syntactic dependency parse tree cor-
responding to Figure 4 

Besides of semantic analysis, the Chinese 
HPSG parser also provides the syntactic head for 
each branch in an HSPG parse tree and the 
schemas used to construct the branch, which can 
be used to extract the labeled syntactic depend-
ency as the output of syntactic parsing. In order 
to evaluate the syntactic analysis of the Chinese 
HPSG parser, we used the similar dependency 
labels as the CoNLL dependency labels (Nivre et 
al., 2007 (b)). Figure 5 shows the labeled syntac-
tic dependency tree output by the parser, in 
which the label SUB and OBJ refer to the subject 
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and object, respectively. The common metrics 
used in CoNLL-2007 shared task (Nivre et al., 
2007 (b)) were applied in the evaluation of the 
syntactic parsing. These metrics include the la-
beled attachment score (LAS), unlabeled attach-
ment score (UAS), and the complete sentence 
accuracy (COMP) with labeled dependency.  

3.4 Evaluation Results 

The accuracy of both syntactic parsing and se-
mantic parsing of the Chinese HPSG parser was 
83.75% LAS and 77.55% Sem.F1, and is listed in 
Table 2 and Table 3.  

To compare the performance of the Chinese 
HPSG parser on syntactic parsing with other re-
lated works, we evaluated two commonly used 
syntactic dependency parsers: MaltParser (Nivre 
et al., 2007 (a)) and MstParser (McDonald et al., 
2006); the same syntactic dependency converted 
from the Chinese HPSG Treebank was used. In 
this experiment, the MaltParser and MstParser 
used both the gold-standard word boundaries and 
gold-standard POS tags, like the HPSG parser. 
Table 2 displays the results. The Chinese HPSG 
parser achieved a comparable accuracy to the 
MaltParser and the MstParser with 1st order fea-
tures, but the Chinese HPSG parser’s accuracy 
was slightly lower than the accuracy of the 
MstParser with 2nd order features. 

Parser LAS UAS COMP 
Chinese HPSG  83.75% 85.57% 29.67% 

Malt 83.74% 84.17% 29.01% 
MST (1st order) 84.75% 85.22% 25.99% 
MST (2nd order) 86.44% 86.95% 30.54% 

Table 2: Accuracy of syntactic parsing 

LP LR UP UR 
77.14% 77.97% 81.82% 82.70% 

Sem.F1 Sentence acc. 
77.55% 23.84% 

Table 3: Accuracy of semantic parsing by the 
Chinese HPSG parser 

Parser Sem.F1 
(Bjorkelund et al., 2009) 78.60% 

(Meza-Ruiz and Riedel, 2009) 77.73% 
(Zhao et al., 2009) 77.72% 

Table 4: Accuracy of the top three systems in 
CoNLL-2009 Shared Task on Chinese Data 

Since there has been no previous work con-
ducted on the same Chinese HPSG formalism as 
used in the HPSG parser, comparing our seman-
tic parsing results against the results of the exist-

ing approaches would not be accurate. However, 
a closely related work on joint syntactic and se-
mantic parsing was done in the CoNLL-2009 
shared task (Hajic et al., 2009). In this shared 
task, the Penn Chinese Treebank and the Chinese 
Proposition Bank (Xue and Palmer, 2009) were 
merged to serve as the training and testing data, 
and a semantic labeled F1-score (Sem.F1) was 
applied to evaluate the performance of semantic 
role labeling (Hajic et al., 2009). While the 
CoNLL-2009 shared task only applied gold-
standard word boundaries, our experiment used 
both gold-standard word boundaries and gold-
standard POS tags.  

Table 4 lists the performance of the top three 
systems on the closed challenge for Chinese in 
the CoNLL-2009 shared task. Unfortunately, we 
cannot compare the result of the Chinese HPSG 
parser to the results of the top three systems in 
the CoNLL-2009 shared task, because of the dif-
ferent experimental settings. However, all the top 
systems in the shared task performed semantic 
role labeling after the syntactic parsing from the 
state-of-the-art parsers took place, whereas in our 
experiment, the Chinese HPSG parser applied a 
joint model that performed syntactic parsing and 
semantic parsing at the same time. 

4 Discussion Concerning the Difficulties 
in Chinese Deep Parsing 

4.1 Chinese Deep Parsing vs. English Deep 
Parsing 

The HPSG parser that we used for Chinese deep 
parsing was also applied for English deep pars-
ing (Miyao and Tsujii, 2008). Thus, we first 
compared the performance of the HPSG parser 
on parsing Chinese and English. In this experi-
ment, we applied the same supertagging model 
with the same definition of supertags and feature 
sets, and the same parsing disambiguation model 
with the same feature sets, to the two treebanks. 

To parse English, we used the English HPSG 
Treebank, which has been developed by Miyao 
et al. (2006), to train and evaluate the parser. The 
design of this treebank basically followed the 
definition in (Pollard and Sag, 1994). The HPSG 
trees converted from Sections 02-21 (39,832 sen-
tences) of the Penn Treebank were used for train-
ing. The HPSG trees transformed from Section 
23 (2,416 sentences) of the Penn Treebank were 
used for evaluation, and the HPSG trees con-
verted from Section 22 (2,067 sentences) were 
used to tune parameters.  
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Parser English Chinese 

HPSG 90.52% 77.55% 
(-12.97%) 

HPSG + gold supertag 95.66% 92.52% 
(-3.14%) 

Table 5: Sem.F1 of the HPSG parser on both 
English and Chinese, with different models 

We evaluated two different parsers in this ex-
periment: the HPSG parser introduced in Section 
3, and the HPSG parser with the gold-standard 
supertag sequence as input. Table 5 lists the 
evaluation results for both English and Chinese 
data. The results indicate that compared to Eng-
lish, the HPSG parser obtained 12.97% decrease 
in Sem.F1 when parsing Chinese. Furthermore, 
this result shows that when given the exact su-
pertag sequence of an input sentence, the HPSG 
parser still achieved a lower (3.14%) accuracy on 
Chinese than on English. 

Data # Ave. 
Parses 

# Ave. 
Words 

# Ave. 
Verbs 

Sentence 
Distribution 
(#Verb>3) 

Eng. 
Dev. 

10,988.
74 23.20 2.97 35.88% 

Chi. 
Dev. 

37,200,
740.79 26.37 4.66 59.36% 

Table 6: Average number of parses, words, and 
verbs per sentence in the English and Chinese 

development data 

Training data deficiency may account for the 
low accuracy when parsing Chinese. However, 
the learning curve shown in (Miyao and Tsujii, 
2008) indicates that even with half of the size of 
the full training data (i.e. 24,000 sentences), the 
HPSG parser obtained similar accuracy values on 
English deep parsing. Furthermore, we counted 
the average number of parses per sentence when 
given the exact supertag sequence for both Chi-
nese and English on the development data. The 
numbers (as listed in Table 6) indicate that the 
parsing disambiguation is more difficult for Chi-
nese than for English, because Chinese sentences 
have much more parses averagely than English 
sentences given the exact supertag sequence. A 
possible reason for the large average number of 
parses in Chinese is that Chinese sentences con-
tain more verbs than English (as shown in Table 
6). Due to the shortage of syntactic constraints of 
Chinese verbs, such as the agreement in English, 
it is easier for Chinese sentences with verbs to 
create ambiguous parses than for English. 

Moreover, the comparison of the overall su-
pertagging accuracy on Chinese and English (as 

shown in the left-most column in Figure 6) re-
veals that besides of the difficulty in Chinese 
parsing disambiguation, Chinese supertagging is 
also more difficult than for English. Following 
displays the possible reasons.  

 
Figure 6: Supertagging accuracy on both English 

and Chinese testing data  

(1) In comparison with English words, Chi-
nese words have a much larger averaged number 
of supertags, especially for verbs.  

Table 7 lists the total number of supertags and 
the average number of supertags per word in 
both the English HPSG Treebank and the Chi-
nese HPSG Treebank. These numbers reveal that 
with the same granularity of supertags, although 
the total number of supertags is similar for both 
English and Chinese, the Chinese words have 
almost twice the average number of supertags 
than English words have. This difference makes 
it difficult for the supertagger to assign correct 
supertags for Chinese sentences. 

Treebank # Total 
Supertag 

# Ave. 
Supertag for 

all words 

# Ave. 
Supertag for 

verb 
English 1,368 12.46 27.61 
Chinese 1,279 21.57 87.82 

Table 7: Statistics of the supertags in the English 
and Chinese HPSG Treebank 

In addition, the analysis indicates that com-
pared to other word types, the supertags of verbs 
in Chinese have more variations than verbs in 
English. As shown in Table 7, in the English 
HPSG Treebank, a verb has an average of 27.61 
different supertags. By contrast, in the Chinese 
HPSG Treebank, a verb has an average of 87.82 
different supertags. Table 8 lists the main reasons 
for the various verb supertags in Chinese and the 
sentence percentage with corresponding phe-
nomena in the Chinese HPSG Treebank, of 
which the widespread subject pro-drop is the 
most predominant. The restrictions of the modi-
fiee and topic in the supertag definition also 
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brings about a large variation to the verb su-
pertags. Changing the granularity of supertags of 
Chinese verbs is a possible way to solve this 
problem. Experimental results showed that by 
removing the restrictions of modifiee and topic 
in the definition of verb supertags, the Sem.F1 
could be improved by 0.3%.  

Reason Percentage 
Subject pro-drop 34.75% 

With/without modifiee 23.19% 
With/without Topic 10.51% 

Auxiliary verb 2.19% 
Non-local dependency 0.30% 

Table 8: Distribution of the main reasons for 
various verb supertags in Chinese 

 (2) The ambiguous constructions in supertag-
ging have a larger distribution in the Chinese 
HPSG Treebank than in the English HPSG Tree-
bank. 

The supertagger’s performance on different 
types of words, as shown in Figure 6, implicates 
that compared to English, Chinese verbs ob-
tained the largest decrease in the accuracy of su-
pertagging; 21.23% of the errors were related to 
the relative clause. Figure 6 also shows that in 
addition to verbs, coordination conjunctions de-
creased the accuracy of supertagging in Chinese.  

However, there is not much difference in the 
supertagging ambiguity of coordination and rela-
tive clause in the two languages. For example, 
for both Chinese and English, in the supertagging 
of a verb in the relative clause, there is ambiguity 
as to whether assigning extracted predicate-
argument dependency to this verb; the supertag-
ging of a comma between verb phrases, has am-
biguity in whether this comma will be treated as 
a coordination conjunction. Therefore, we further 
calculated the percentage of the sentences, in-
cluding the verbal coordination with a comma 
conjunction and the relative clause in the two 
treebanks. 

Treebank Relative 
clause 

Verbal Coordination 
with comma conj 

English 14.31% 9.31% 
Chinese 33.26% 52.95% 

Table 9: Distribution of constructions in the Eng-
lish and Chinese HPSG Treebank 

The statistics data is shown in Table 9. It re-
veals that in the Chinese HPSG Treebank, there 
are much more relative clauses than in the Eng-
lish HPSG Treebank. Moreover, the proportion 

of verbal coordination with comma conjunction 
in Chinese was also much larger than the propor-
tion in English. Therefore, although the su-
pertagging ambiguities of verbal coordination 
and relative clauses are similar for the two lan-
guages, the large distribution of these construc-
tions increased the difficulty of Chinese 
supertagging. 

4.2 Chinese Semantic Parsing vs. Chinese 
Syntactic Parsing 

In comparing the accuracy of both the semantic 
parsing and syntactic parsing, as shown in Table 
2 and Table 3, it is clear that although the per-
formance on the syntactic analysis of the parser 
still has room for further improvement, the accu-
racy of predicate-argument dependencies was 
significantly lower than the accuracy of syntactic 
dependencies. Therefore, in this section, we fo-
cus on this gap by comparing the syntactic and 
semantic parsing results from the Chinese HPSG 
parser.   

Error # Occur 
Subject of transitive verb 84 

Left conjunct in coordination 84 
Modifiee of punctuation 70 

Root of sentence 51 
Object of transitive verb 49 

Right conjunct in coordination 46 
Modifiee of noun 43 

Modifiee of adverb 41 
Subj. of intransitive verb 31 

Missed object of transitive verb 28 

Table 10: Occurrence of top 10 frequently occur-
ring errors 

We chose 93 sentences from the development 
data, which obtained a higher accuracy on syn-
tactic parsing (i.e. with more than 85% LAS) and 
lower accuracy on semantic parsing (i.e. with 
less than 75% Sem.F1); the detailed errors were 
analyzed. The top 10 frequently occurring errors 
with their occurrence were documented in Table 
10. The table indicates that there are two main 
difficulties in Chinese semantic parsing, in com-
parison to syntactic parsing. 

 Difficulty in Analyzing the Semantics of 
Parallel Verb Phrases 

As indicated in Table 10, the top nine errors were 
attachment errors; for a predicate-argument de-
pendency <wp, wa, r, l>, only wa is incorrect. 
There were 499 incorrect predicate-argument 
dependencies with the top nine errors. Of them, 
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59.12% of the errors were related to the semantic 
analysis of parallel verb phrases. 

When two verb phrases are parallel, there are 
two possible semantic analyses for them:  

(1) The two verb phrases are treated as coor-
dination, and consequently share the same sub-
ject. Figure 7 shows the predicate-argument 
dependency tree created by this analysis.  

 
(The product line is self-designed and self-developed by this com-

pany) 

Figure 7: The predicate-argument dependency 
tree when treating parallel VPs as coordination 

(2) Treating the second verb phrase as a modi-
fier of the first verb phrase. Figure 8 shows the 
corresponding predicate-argument dependency 
tree, in which the dependency verb_arg12/ARG1 
and verb_arg12/ARG2 for verb ‘开发(develop)’ 
are missed. 

 
(The product line is self-designed and self-developed by this com-

pany) 

Figure 8: The predicate-argument dependency 
tree when treating parallel VPs as modification  

However, the above such ambiguity in seman-
tic analysis does not exist in the syntactic analy-
sis of this type of construction. For example, no 
matter which type of semantic analysis the parser 
chooses, the syntactic dependency trees for the 
sentences shown in Figure 7 and Figure 8 are the 
same (as shown in Figure 9). 

 
(The product line is self-designed and self-developed by this com-

pany) 

Figure 9: The syntactic dependency tree corre-
sponding to Figure 7 and Figure 8 

 Difficulty in Analyzing the Semantics of 
Relative Clause 

The tenth error shown in Table 10 was a type of 
relation error, in which the parser failed to find 
the object for a transitive verb. The error analysis 
shows that among the 28 incorrect predicate-
argument dependencies with this type of error, 
71.43% of the incorrect predicate-argument de-
pendencies were from the incorrect semantic 
analysis of the relative clause. 

There are two possible ways to analyze the 
semantics of a relative clause. The first way is to 
analyze the extracted noun in a relative clause as 
a moved argument of the predicate. The second 
way is to treat the relative clause as an apposition 
of the following noun, such that the extracted 
noun has no semantic relation with the predicate. 
For example, among the relative clauses in the 
Chinese HPSG Treebank, about 81% of the 
clauses were analyzed in the first way, and the 
remaining 19% were analyzed in the second way.  

In reference to the relative clauses shown be-
low, for the relative clause ‘写书的人(the person 
who wrote the book)’, the semantics should be 
created by the first analysis (as shown in Figure 
10), in which there is a predicate-argument de-
pendency verb_arg12/ARG1 between ‘ 写
(wrote)’ and ‘人(person)’. However, for another 
relative clause ‘写书的原因 (the reason that 
someone wrote the book)’, the clause should be 
analyzed as an apposition (as shown in Figure 
11). This is because the head noun ‘原因
(reason)’ has no predicate-argument relation with 
the verb ‘写(wrote)’. 

 
(the person who wrote the book) 

Figure 10: The predicate-argument dependency 
tree when analyzing a relative clause with ex-

tracted argument  

 
(the reason that someone wrote the book) 

Figure 11: The predicate-argument dependency 
tree when treating a relative clause as an apposi-

tion 
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(the person who wrote the book) 

Figure 12: The syntactic dependency tree corre-
sponding to Figure 10 

 
(the reason that someone wrote the book) 

Figure 13: The syntactic dependency tree corre-
sponding to Figure 11  

However, since the syntactic analysis does not 
consider predicate-argument dependencies, such 
an ambiguity in semantic parsing does not exist 
in syntactic parsing. For instance, for both the 
two semantic analyses listed in Figure 10 and 
Figure 11, the syntactic dependencies are similar, 
as shown in Figure 12 and Figure 13. 

5 Related Works  

One related work was done by Levy and Man-
ning (2003) on analyzing the difficulties in Chi-
nese PCFG parsing. In this work, the authors 
applied a factored-model statistical parser on 
both the Penn Treebank (Marcus et al., 1994) and 
the Penn Chinese Treebank (Xue et al., 2005), 
and investigated the major sources of syntactic 
parsing errors and the corresponding causes in 
the two treebanks. The authors found that among 
the major error types in Chinese PCFG parsing, 
the coordination scope errors with verbal con-
junct and the adjunction errors into IP are special 
for Chinese, due to the subject pro-drop. Guo 
(2009) presented the other related work; Guo 
discussed the language-specific properties of 
Chinese, including the shortage of syntactic con-
straints, the pronoun-dropping and the topic-
prominence.  

In our work, we focused on the difficulties 
faced in Chinese deep parsing, and drew similar 
conclusions to the previous two related works. 
We revealed that the following three aspects 
brought difficulties to Chinese deep parsing: (1) 
the large distribution of Chinese verbs and their 
shortage of syntactic constraints; (2) the large 
variety of supertags for Chinese verbs, for which 
the subject pro-drop was considered to be the 
main reason; (3) the large numbers of relative 

clauses and verbal coordination in Chinese, and 
the ambiguity in their analysis.  

In addition to analyzing the parsing difficulty 
in Chinese deep parsing, some researchers fo-
cused on developing Chinese deep parsers. 

Guo et al. (2007) built an LFG-based parser 
using wide-coverage LFG approximations in-
duced from the Penn Chinese Treebank. This is 
the only previous work that had been conducted 
on Chinese deep parsing based on lexicalized 
grammars, although many related works had 
been done on English. Instead of training a 
parser based on the obtained LFG resources, Guo 
used an external PCFG parser to create c-
structure trees, and then mapped the c-structure 
trees into f-structures using their annotation rules 
(Guo, 2009).  

Besides of Guo’s work, some researchers 
worked on joint dependency parsing and seman-
tic role labeling to fulfill Chinese deep parsing 
(Li et al., 2010; Morante et al., 2009; Gesmundo 
et al., 2009; Dai et al., 2009;  Lluis et al., 2009);  
other researchers focused on performing seman-
tic role labeling after syntactic parsing (Fung et 
al., 2007; Sun and Jurafsky, 2004; Bjorkelund et 
al., 2009; Meza-Ruiz and Riedel, 2009; Zhao et 
al., 2009).  

There were also some previous works that fo-
cused on building the language resources with 
lexicalized grammars, but not parsing with these 
resources. With the hand-crafted conversion 
rules, Yu et al. (2010) built a Chinese HPSG 
Treebank semi-automatically from the Penn Chi-
nese Treebank. Guo (2009) also used rules to 
convert the Penn Chinese Treebank into LFG 
resources. Moreover, Tse and Curran (2010) 
built a Chinese CCGbank, which was also auto-
matically induced from the Penn Chinese Tree-
bank. 

6 Conclusion and Future Work 

In this paper, we discussed the prevalent difficul-
ties in Chinese deep parsing, based on a lexical-
ized grammar theory – HPSG. All of the 
discussions were based on the analysis of a Chi-
nese HPSG parser, which was trained on a Chi-
nese HPSG Treebank, developed from the Penn 
Chinese Treebank. The analysis shows that since 
in Chinese, verbs have less syntactic constraints; 
the subject pro-drop appears frequently; fur-
thermore, there is a larger distribution of am-
biguous constructions, such as the relative clause 
and verbal coordination, deep parsing on Chinese 
is more difficult than on English. In addition, 
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compared with Chinese syntactic parsing, Chi-
nese semantic parsing is more difficult, because 
of the inherent ambiguities caused by both verbal 
coordination and relative clauses.  

To our current knowledge, it is the first work 
that makes a detailed analysis of the difficulty in 
Chinese deep parsing based on lexicalized 
grammars. The conclusions drawn in this work 
will be useful to other related works on Chinese 
deep parsing, by providing the possible future 
research directions. Moreover, the conclusions 
will also help us to improve the performance of 
the Chinese HPSG parser, by enhancing coordi-
nation disambiguation with the method proposed 
in (Kurohashi and Nagao, 1994); reducing the 
granularity of verb supertags, and so on. In addi-
tion, the Chinese HPSG parser, which had been 
applied in this work for comparison, will also be 
released this year. 
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Abstract

We investigate the question whether an ex-
plicit feature representation for morpholog-
ical features is necessary when parsing Ger-
man with a fully lexicalized, statistical de-
pendency parser. We use two morphosyn-
tactic phenomena of German to show that
while lexicalization does indeed suffice to
a large extent when recovering the internal
structure of noun phrases, an accurate ex-
plicit representation can support the correct
selection of its grammatical function.

1 Introduction

German is usually considered a border case be-
tween morphologically rich languages like Czech
and morphologically poor languages like English.
It does show phenomena that are typical for mor-
phologically rich languages, e. g. a rich nominal
and verbal inflection system and hence a relatively
free word order. However, compared to Czech
or other morphologically rich languages, the mor-
phological system is less elaborate and character-
ized by a large amount of form syncretism, which
introduces a lot of ambiguity.

A lot of work investigated the best way to uti-
lize morphological information in statistical PCFG
parsers for German, mostly by transforming the
treebank making morphological information more
accessible (Schiehlen, 2004; Dubey, 2005). Lexi-
calization of PCFGs has been a controversial sub-
ject of research in German, where some found
no effect (Dubey and Keller, 2003) while others
did (Kübler et al., 2006; Rafferty and Manning,
2008). However, this work concentrated on con-
stituent parsing. While there are many parsing re-
sults of dependency parsers on German (Buchholz
and Marsi, 2006; Kübler, 2008; Hajič et al., 2009),
the investigation of morphological representations
and their interplay with dependency parsing algo-
rithms has been started only recently (cf. Tsarfaty

et al. (2010)). In this paper, we pursue the ques-
tion of how important it is to mark morphological
information explicitly for a data-driven lexicalized
dependency parser when applied to German. We
therefore investigate the performance of the parser
on two morphosyntactic phenomena of German,
namely the agreement within a noun phrase1 and
the recognition of the grammatical function of a
noun that is marked by its case value.

2 Morphology of German Noun Phrases

Three morphological categories participate in the
agreement of a German noun phrase: gender,
number, and case.2 Number and gender values are
governed by the noun, and the case value is de-
termined by the grammatical function of the noun.
The dependents of a noun (determiners, adjectives,
attributive pronouns) need to agree with their head
noun in these three categories.

(1) die
ART+nom/acc.sg.fem
the

Öl
NN+acc.sg.neut
oil

verarbeitende
ADJ+nom/acc.sg.fem
processing

Industrie
NN+nom/acc.sg.fem
industry

’the oil processing industry’

Example 1 shows a German noun phrase con-
sisting of a determiner (die), an adjective (verar-
beitende), and a noun (Industrie). Additionally,
the noun Öl is an argument of the adjective. With-
out morphological information we might in prin-
ciple be dealing with two separate noun phrases
here, which just happen to appear in adjacent po-
sition. However, agreement tells us that the deter-
miner is not depending on the first noun because
morphologically it marks either singular feminine

1We use the term noun phrase to denote a noun and all
its direct dependents although strictly speaking there are no
phrases in dependency syntax.

2German has three gender values, two number values, and
four case values.
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or plural for all genders, but it cannot mark singu-
lar neuter. It is thus morphologically incompatible
with the first noun.

According to Eisenberg (2006, 142), the in-
flectional paradigms of the parts of the German
noun phrase have developed such that they mark
morphological information with diverging explic-
itness. The declension patterns of nouns tend
to use different forms to mark number but show
form syncretism in marking case while determin-
ers (and adjectives) show more form syncretism
for marking number than for marking case. Eisen-
berg therefore argues for what he calls function
sharing (Funktionsteilung) in the German noun
phrase. In Example 1, the determiner by itself can
mark nominative or accusative case for feminine
singular nouns, or for plural nouns of every gen-
der. The second noun, to which the determiner
is attached, is ambiguous for all four cases but
cannot be plural. This shows the importance of
the agreement relation because only by agreement,
determiner and noun disambiguate each other for
nominative or accusative feminine singular.

Example 1 also demonstrates an inherent prob-
lem of the German nominal paradigms as a whole.
Because of the vast amount of syncretism in the
system, there are some ambiguities that can never
be resolved by formal means, but need to be dis-
ambiguated by their semantic context. This affects
the distinction between nominative and accusative
for all feminine, neuter, and plural nouns as well
as the distinction between genitive and dative case
for feminine singular nouns. In Example 1, we
therefore cannot tell without further context which
one of the two possible case values is correct.

(2) den Löwen
OBJ+acc
the lion

sieht

see

der Hund
SUBJ+nom
the dog

’the dog sees the lion’

While morphological information by agreement
helps us recover the internal structure of a noun
phrase, it also plays a role when determining the
grammatical function of the whole phrase. Ger-
man uses its four case values to mark the argu-
ments of verbs, adpositions, and adjectives. Ex-
ample 2 shows a transitive sentence where the sub-
ject is marked by nominative case and the object
is marked by accusative case. In German, the sub-
ject of a sentence will always be in the nomina-
tive case, while the structural object receives ac-
cusative case. In ditransitive sentences, the direct

object gets accusative case while the indirect ob-
ject receives dative case.3

The relation between a case system and the
grammatical functions in a language is usually
not a one-to-one mapping (Blake, 2001, 48ff). In
German, nominative encodes subjects and predi-
cates, accusative mostly marks objects and some
adjuncts, dative also marks objects, and genitive
mostly marks possessive constructions but can
also mark objects and some adjuncts. Since the
mapping is not one-to-one, a certain amount of
ambiguity remains (e. g. both subject and predi-
cate are marked by nominative case), but it also
restricts the choice for a lot of nouns. A noun in
accusative case cannot end up being subject and a
noun in dative case cannot mark a possessor.

To summarize, we deal with three kinds of am-
biguity: the first one is the diverging explicit-
ness of feature marking in different nominal in-
flectional paradigms, as discussed for determin-
ers and nouns. This ambiguity can often be re-
solved by taking agreement into account, which
then leads to mutual disambiguation. The second
kind of ambiguity is inherent to the morphological
system and affects all paradigms alike. I. e. certain
distinctions simply cannot be made in the system,
e. g. the distinction between genitive and dative
feminine singular. The third ambiguity concerns
the mapping between case values and grammatical
functions. Since a particular case value can signal
more than one grammatical function, the final de-
cision between those functions must be made us-
ing non-morphological information.

Figure 1: A prepositional phrase in the CoNLL 2009
data and in our version for the phrase mit dem kleinen
Hund (with the little dog)

3 Data

For our experiments, we use the CoNLL 2009
Shared Task data (Hajič et al., 2009), which
has been derived automatically from the German
TiGer treebank (Brants et al., 2002). In order to

3However, a big group of transitive verbs assigns lexical
dative or genitive case to its direct object.
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get more consistent data we semi-automatically
changed the annotation of prepositional phrases:
in the original treebank, prepositional phrases
have been analysed as flat structures without an
embedded noun phrase. We introduced additional
structure as shown in Figure 1 to achieve a consis-
tent annotation for all noun phrases where agree-
ment is represented by direct links labelled by NK
(noun kernel element). This excludes any effects
caused by the otherwise inconsistent annotation of
noun phrases and we can evaluate the agreement
relation more directly.

4 Evaluation

We evaluate the data-driven dependency parser
described in Bohnet (2010), a state-of-the-art
second-order maximum spanning tree parser per-
forming second on German in the CoNLL 2009
Shared Task. The parser uses a rich feature model
(Bohnet, 2009) and is fully lexicalized. We used
statistical tools4 to automatically lemmatize, part-
of-speech tag, and morphologically annotate the
training section (36k sentences) of the data by us-
ing ten-fold cross annotation. We parsed the whole
corpus creating three different models: one using
the gold morphology, one using predicted mor-
phology, and one using no explicit morphology.
Morphological information was represented as in
the CoNLL 2009 Shared Task.

In the following two experiments we test,
whether the parser does need explicit morpholog-
ical information to correctly recover noun phrases
and their grammatical function. Since the parser is
fully lexicalized, we expect the parser to learn at
least some morphological information even when
it is not explicitly given.

4.1 Agreement
In order to evaluate how well the parser learns the
agreement between a noun and its dependents, we
measure the number of times, a parser correctly es-
tablishes all links labelled by NK between a noun
(NN) and its dependent determiners (ART), ad-
jectives (ADJA), and attributive pronouns (PDAT,
PIAT, PPOSAT). The total number of these edges
is 115,136, the total number of words involved is
206,026. The accuracy of the morphological tag-
ger on gender, number, and case values of these
words is 92.79%. Table 1 shows the results in
terms of precision, recall, and f-score.

4http://code.google.com/p/mate-tools/

All three models perform very well and close to
each other. Even the model without any explicit
morphology achieves an f-score of over 99%. We
conclude that lexicalization and configurational
information seem to suffice to a large extent for a
second-order parser when recovering the internal
structure of noun phrases. However, all the dif-
ferences in f-score between the three models turn
out to be statistically significant,5 so there seems
to be a small number of cases where morphology
can help in disambiguation. Noun phrases like in
Example 1 illustrate these cases where, in princi-
ple, arbitrarily many phrases can appear between
the determiner and the head noun.

prec rec f1
gold-morph 99.34 99.78 99.56
pred-morph 98.83 99.66 99.24
no-morph 98.77 99.62 99.19

Table 1: Evaluation of NK-edges between ART, ADJA,
PIAT, PDAT, PPOSAT, and NN, which represent the
agreement relation inside a noun phrase.

4.2 Case – Function Mapping
The second phenomenon we evaluate is the ability
of the parser to learn the case – function mapping
of German. If the parser is able to learn it, we
expect it to only make errors that are related to ei-
ther the inherent syncretism of the morphological
system or to mapping ambiguities between a case
value and the functions that it signals.

We evaluate nouns, proper nouns, adjectives,
and substituting pronouns (marked for case) for
f-score on the functions related to case.6

Table 2 shows a clear ranking of the three mod-
els:7 the model using gold morphology outper-
forms the one using predicted morphology which
itself outperforms the third model that uses no ex-
plicit morphology. The good performance of the
gold morphology model can to a big extent be ex-
plained by the fact that in the gold morphology
even those ambiguities are resolved that are inher-
ent to the case system of German (see discussion
above) and would normally need syntactic or se-
mantic information to be resolved. The biggest
difference between the model without morphology
and the one using predicted morphology appears
for DA and OG. These two functions are indicated
by dative and genitive case respectively. For the

5measured on sentence level with a sign test, α = 0.001
6SB – subject, PD – predicate, OA – accusative object,

DA – dative obj., OG – genitive obj., AG – genitive adjunct
7All differences are statistically significant except for PD,

and between pred-m and no-m for OG, test see Footnote 5
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other functions, the difference in performance is
not as high.

gold-m pred-m no-m
SB 95.85 90.85 89.36
PD 76.51 75.40 74.73
OA 94.63 85.22 83.04
DA 88.55 71.59 62.79
OG 58.40 40.98 36.54
AG 96.36 94.05 91.94
total 94.73 88.80 86.82

Table 2: Evaluation of grammatical function assign-
ment to case marked elements (nouns, proper nouns,
adjectives, and pronouns) in terms of f-score.

One ambiguity the parser has to deal with is that
the same case value can be mapped to two or more
different functions. This happens with nominative
case, which can be mapped to either SB or PD, and
with genitive case, which can be mapped either
to OG or AG. We expect this ambiguity to pose
problems to all models, especially for the one that
uses gold morphology. Table 3 shows the fraction
of the recall errors for one function where it has
been confused with the other possible one. Here
we get an interesting picture: while PD and OG
most of the time get confused with their counter-
part, the effect is less strong the other way around.
Knowing, that PD and OG are much less frequent
than their counterparts may explain the results and
gives us a first hint that the mapping learnt by the
parser is probably skewed by frequency effects.

SB – PD 23.77 PD – SB 71.55
OG – AG 51.95 AG – OG 2.11

Table 3: Confusion of ambiguous case mappings (in
percent) for the model using gold morphology.

The inherent ambiguity of the case system is re-
solved in the model using gold morphology. We
would however expect the model using predicted
morphology to additionally have problems to tell
apart SB/PD (nominative) from OA (accusative),
and DA (dative) from OG/AG (genitive).

Table 4 shows the top three functions that the
model using predicted morphology confused a
function with. For SB and OA we get the expected
picture: without the oracle disambiguation of case,
the parser makes the expected errors. For DA on
the other hand, the parser seems to have problems
to recognize the dative as such and so confuses
it with SB and OA, both functions that cannot be
marked by dative case. We used a finite state mor-

phology (Schiller, 1994) to annotate every case-
bearing word (nouns, determiners, adjectives, pro-
nouns, proper nouns, determined by the automati-
cally assigned part-of-speech tag) with every pos-
sible gender, number, and case value that this word
form might have. We then disambiguated this an-
notation further by taking intra-noun phrase agree-
ment into account and found out that 19.63% of
the errors could have been fully disambiguated to
dative case. This shows that the parser does not
learn the mapping between dative case and the la-
bel DA well enough. A likely reason for that is the
lower frequency of DA, which occurs 8 times less
than OA. For OG, Table 4 shows a frequent con-
fusion with AG and DA, which is predicted by the
case syncretism in the system.

1. 2. 3.
SB OA 45.86 NK 11.57 PD 9.76
OA SB 56.82 NK 10.36 CJ 5.17
DA SB 28.98 OA 20.30 AG 11.88
OG AG 33.03 DA 21.10 OA 13.76

Table 4: Top three functions that a function has been
confused with (in percent) by the model using predicted
morphology.

5 Discussion

Recovering the internal structure of a German
noun phrase does not seem to pose a big prob-
lem for the parser. For most cases, lexicalization
and configurational information seem to suffice,
although a small portion of the noun phrases can
be better disambiguated when explicit feature rep-
resentations are given.

Good accuracy on the noun phrase’s internal
structure should then provide a good basis for de-
termining its grammatical function in a broader
sentential context because a second-order parser
has all the information even though it is distributed
on different parts of the phrase (function sharing).
However, our second experiment indicates prob-
lems for the parser that exceed those caused by
inherent ambiguities. A clear sign is the DA func-
tion, which should only appear with dative case
but is frequently confused with other functions
that cannot be marked by dative. The low fre-
quency of DA might explain the confusion with
e.g. SB and OA, which occur much more often.

Our next steps will include determining an up-
per bound on gold morphology that is not disam-
biguated for its inherent syncretism and investigat-
ing verbal frames, which may contribute indepen-
dent information to function selection.
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Abstract
This paper proposes a framework which
unifies graphical model theory and formal
language theory through automata theory.
Specifically, we propose Bayesian Network
Automata (BNAs) as a formal framework
for specifying graphical models of arbitrar-
ily large structures, or equivalently, spec-
ifying probabilistic grammars in terms of
graphical models. BNAs use a formal au-
tomaton to specify how to construct an arbi-
trarily large Bayesian Network by connect-
ing multiple copies of a bounded Bayesian
Network. Using a combination of results
from graphical models and formal language
theory, we show that, for a large class of au-
tomata, the complexity of inference with a
BNA is bounded by the complexity of in-
ference in the bounded Bayesian Network
times the complexity of inference for the
equivalent stochastic automaton. This il-
lustrates that BNAs provide a useful frame-
work for developing and analysing models
and algorithms for structure prediction.

1 Introduction

Work in Computational Linguistics has devel-
oped increasingly sophisticated probabilistic mod-
els of language. For example, Latent Probabilistic
Context-Free Grammars (LPCFGs) (Matsuzaki et
al., 2005) have been developed with latent head
labels (Prescher, 2005), multiple latent variables
decorating each nonterminal (Musillo and Merlo,
2008), and a hierarchy of latent nonterminal sub-
categories (Liang et al., 2007). In this paper we
propose a general framework which facilitates the
specification and parsing of such complex mod-
els by exploiting graphical models to express local
bounded statistical relationships, while still allow-
ing the use of grammar formalisms to express the
unbounded nature of natural language.

Graphical models were developed as a unifica-
tion of probability theory and graph theory. They

have proved a powerful framework for specifying
and reasoning about probabilistic models. Dy-
namic Bayesian Networks (Ghahramani, 1998)
extend this framework to models which describe
arbitrarily long sequences. There has been work
applying ideas from graphical models to more
complex unbounded structures, such as natural
language parse trees (e.g. (Henderson and Titov,
2010)), but the power of the architectures pro-
posed for such extensions have not been formally
characterised.

The formal power of systems for specifying ar-
bitrarily large structures has been studied exten-
sively in the area of formal language theory. For-
mal language theory has proved a wide range of
equivalences and subsumptions between grammar
formalisms, the most well known example be-
ing the Chomsky hierarchy (i.e. finite languages
< regular languages < context-free languages <
context-sensitive languages < recursively enumer-
able languages). It has also demonstrated the
equivalence between formal grammars and for-
mal automata (e.g. finite state automata gener-
ate regular languages, push-down automata gener-
ate context-free languages, Turing machines gen-
erate recursively enumerable languages). While
grammar formalisms are generally more readable
than automata, they appear in a wide variety of
notational variants, whereas automata provide a
relatively consistent framework in which differ-
ent grammar formalisms can be compared. Au-
tomata also provide a clearer connection to Dy-
namic Bayesian Networks. For these reasons, this
paper uses automata theory rather than grammars,
although many of the ideas are trivially transfer-
able to grammars.

We propose Bayesian Network Automata
(BNAs) as a framework for specifying stochastic
automata which generate arbitrarily large (i.e. un-
bounded) structures. A BNA is a standard stochas-
tic automaton, but uses a Bayesian Network (BN)
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to specify its stochastic transition function. For ex-
ample, the specification of a stochastic push-down
automaton (PDA) requires a specification of the
conditional probability distribution over push(X)
and pop actions given the current state, input sym-
bol, and top stack symbol. This distribution can be
specified in a BN. While not changing the theoreti-
cal properties of the stochastic automaton, this use
of BNs allows us to merge algorithms and theoret-
ical results from BNs with those for the stochastic
automaton, and thereby with those for the equiva-
lent probabilistic grammar formalism. In the PDA
example, the algorithm discussed in section 5.2 al-
lows us to sum over all possible values for X in
push(X) while at the same time summing over all
possible parse tree structures, as is used in unsu-
pervised grammar induction. We argue that this
merging with graphical model theory simplifies
the specification of more complex stochastic tran-
sition functions or grammar rules (e.g. (Musillo
and Merlo, 2008)), and reduces the need for ad-
hoc solutions to such inference problems.

BNAs can also be seen as a generalisation of
Dynamic Bayesian Networks to more complex un-
bounded structures. BNAs simplify the specifica-
tion and analysis of these more complex BNs by
drawing a distinction between a finite set of statis-
tical relationships, represented in a Bayesian Net-
work, and the recursive nature of the unbounded
structures, represented by the control mechanisms
of the automaton. To illustrate the usefulness of
this framework, we exploit the separation between
the automaton and the Bayesian Network to pro-
vide bounds on the complexity of inference in
some classes of BNAs. In particular, for a large
class of grammar formalisms, the complexity of
marginalising over variables in the Bayesian Net-
work and the complexity of marginalising over
structures from the automaton are independent
factors in the complexity of inference with the
BNA. We also exploit results from formal lan-
guage theory to characterise the power of previ-
ously proposed models in terms of the generative
capacity of their automata.

In the rest of this paper, we first define the
framework of Bayesian Network Automata, and
discuss its key properties. This provides the for-
mal mechanisms we need to compare various
Bayesian Network architectures that have been
previously proposed. We then provide results on
the efficiency of inference in BNAs.

2 Bayesian Network Automata

Bayesian Network Automata is a framework for
specifying stochastic automata which generate un-
bounded structures. Formally, a BNA is simply
an alternative notation for its equivalent stochastic
automaton. In this section, we provide a formal
definition of BNAs, without limiting ourselves to
any specific class of automata.

2.1 Generating Unbounded Structures with
BNAs

The purpose of a BNA is to specify a probabil-
ity distribution over an infinite set of unbound-
edly large structures. It does this by specifying an
equivalent stochastic automaton. Each complete
run of the automaton generates a single structure,
which is derived from the semantics of the opera-
tions performed by the automaton. The sequence
of operations performed in a complete run of the
automaton is called a derivation for its associated
structure. Typically automata are designed so that
derivations are isomorphic to structures, but even
if multiple derivations map to the same structure,
to specify a probability distribution over structures
it is enough to specify a probability distribution
over derivations. Stochastic automata do this in
terms of a generative process for derivations, gen-
erating each operation incrementally conditioned
on the derivation prefix of preceding operations.

Standard specifications of stochastic automata
include specific operations acting over specific
data structures. These data structures are used to
represent each state of the automaton (called the
configuration) as it proceeds through the compu-
tation. For example, the configuration of a finite
state machine is a single state symbol, and the con-
figuration of a push-down automaton is a single
state symbol plus an arbitrarily deep stack of stack
symbols.1 Here we do not want to restrict attention
to any specific class of automata, so the operations
and data structures of BNAs are necessarily ab-
stract (see the top half of table 1 below). For con-
creteness, we will illustrate the definitions with the
example of push-down automata for Probabilis-
tic Context-Free Grammars (PCFGs), illustrated

1Normally the configuration of an automaton includes an
input tape, whose string is either accepted or rejected by the
automaton. Because we are using stochastic automata as a
generative process, this string is considered part of the au-
tomaton’s output and therefore is not included in the config-
uration.
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in figure 1. The left side of figure 1(a) illustrates
the data structures used in a PDA’s configuration.

Standard non-stochastic automata specify how
to choose which operation to apply in a given con-
figuration using a nondeterministic mapping spec-
ified in a finite transition table. The symbols input
to this mapping are determined by pointers into
the configuration, called read-heads.2 Stochas-
tic automata simply add a probability distribu-
tion over each nondeterministic choice of opera-
tion given read-head values. Thus, the probabilis-
tic transition table defines the conditional distribu-
tion over operations used in each step of generat-
ing a derivation.

The central difference between BNAs and
stochastic automata is that a BNA specifies its
probabilistic transition table in a Bayesian Net-
work (BN) (T in table 1). Such a BN is illus-
trated on the right side of figure 1(a), discussed
below. To determine the probability distribution
to be used for generating the next operation, the
values for the BN’s input variables must be set
to the values pointed to by the associated read-
heads in the automaton’s current configuration.
Since these values were themselves determined
by previous operations, setting the input variable
values is equivalent to equating the input vari-
ables with the relevant previous output variables
from these previous operations. The resulting
compound Bayesian network is illustrated in fig-
ure 1(b) as the graph of circles and arrows.

2.2 BNA Configurations
The configurations of BNAs make use of this com-
pound BN in specifying the intermediate states of
derivations. Each configuration includes a com-
pound BN that has been constructed by instantiat-
ing copies of the transition table BN T and equat-
ing their input variables with the appropriate pre-
vious output variables. To be more precise, this
compound BN gt is iteratively constructed by tak-
ing the BN gt−1 from the previous configuration,
setting the values 〈bt−1, wt−1, v1t−1, . . . , vkt−1〉
chosen in the previous operation, adding a new in-
stantiation of the transition table BN T , and equat-
ing its input variables with the appropriate vari-
ables from gt−1. This construction process is per-
formed by the inst function in table 1. In the exam-
ple in figure 1, the BN in (b) includes four copies

2For consistency, we generalise the notion of read-head
to include all inputs to the transition function, including the
state.
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Figure 1: Illustrations of (a) a BNA specification and
(b) its configuration after generating a partial tree

of the BN in (a). It includes all the instances of
variables needed to specify the generation of the
portion of tree shown on the right of figure 1(b),
plus one set for choosing the next operation. The
actions are “s-1” for popping one symbol from the
stack and “s-1+2” for popping one and pushing
two symbols. The pattern of edges reflects which
variable instance was pointed to by the top of the
stack at the time when each copy of the BN in (a)
was added to the configuration’s BN.

To determine which variables from gt−1 should
be equated with each input variable in the new
instantiation of T , BNA configurations include a
second component that records information for the
read-heads. This structural component ct is equiv-
alent to the data structures employed in standard
automata, such as the stack of a PDA. The differ-
ence is that, instead of including symbols directly,
these data structures include indices of variables
in the compound BN gt. The values of these vari-
ables are the symbols of the equivalent configura-
tion in a standard automaton. This structural com-
ponent is illustrated at the top of figure 1(b), where
the indices are shown as dashed arrows. The read-
heads R read indexes from ct−1 and pass them to
the function inst so that it knows where to equate
the associated variables from the new instantiation
of T .

After constructing a new compound BN gt, we
can use it to determine the distribution over the
possible next operations by looking at the output
variables in the new instantiation of T . For book-
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Table 1: Bayesian Network Automata specifications

Γ a finite set of symbols
Σ a subset of Γ which are output symbols
B a finite set of actions
f a halt action, f ∈ B
O a finite set of operations
〈b, w, v1, . . . , vk〉, s.t. b ∈ B, w ∈ Σ∗,
vi ∈ Γ ∪ {∅}

sc a start configuration structure
trans a mapping from configuration-

structure,action,Ik+2 triples to con-
figuration structures

R a mapping from configurations to read-
head vectors of indices Ir

sg a start configuration BN spec-
ifying P (b, w, v1, . . . , vk), s.t.
〈b, w, v1, . . . , vk〉 ∈ O

sI The k+2 indices in sg of the variables
b, w, v1, . . . , vk

T a Bayesian Network specifying
P (b, w, v1, . . . , vk|u1, . . . , ur), s.t.
〈b, w, v1, . . . , vk〉 ∈ O and ui ∈ Γ ∪ {∅}

inst a mapping from BN,BN,Ir,Ik+2 quadru-
ples to BNs, where inst(T, g,H, I) in-
stantiates T in g with u1, . . . , ur in-
dexed by H and b, w, v1, . . . , vk indexed
by I

keeping purposes, the indices It of these output
variables are stored in a third component of a BNA
configuration. These variables are shown in fig-
ure 1(b) as bold circles.

In summary, a BNA configuration consists of
three components 〈ct, gt, It〉, the structure ct, the
BN gt, and the next operation variables It in gt.

2.3 BNA Specifications

A formal definition of the generative process for
BNA derivations is given in figure 2, according
to the definitions given in table 1. The step of
stochastically generating an operation of the au-
tomaton is given in line 3, which chooses a com-
pletely specified operation from the finite set of
operations, O, which the equivalent stochastic au-
tomaton can perform. These operations specify
the basic action b (e.g. push or pop), any argu-
ments to that action v1, . . . , vk, and any string w
which should be concatenated to the output of the
automaton.3 The semantics of operations is de-

3In addition to generating the elements of a standard au-
tomaton’s “input tape”, this specification is notationally dif-

〈c0, g0, I0〉 ← 〈sc, sg, sI〉
For t = 0, 1, 2, . . .

Stochastically generate an operation
〈bt, wt, v1t, . . . , vkt〉 from distribution
defined by variables It in gt

Write wt to the output
If bt = f , then halt
ct+1 ← trans(ct, bt, It)

Deterministically generate unique It+1 ∈
Ik+2

gt+1 ← inst(T, gt, R(ct+1), It+1)

Set the values of variables It in gt+1 to
〈bt, wt, v1t, . . . , vkt〉

Figure 2: Pseudo-code for generating BNA derivations

fined by the function trans. As indicated in fig-
ure 2, trans(ct, bt, It) computes the next configu-
ration structure ct+1 given the previous configu-
ration structure ct, the operation’s action bt, and
the indices It of the variables bt, wt, v1t, . . . , vkt

which select the action and its arguments. Any
complete sequence of allowable operations is a
derivation.

When choosing the next operation to perform,
the stochastic automaton’s transition function can
only look at those symbols pointed to by its read-
heads, specified in R in table 1. For example,
the read-heads for a PDA identify the top of the
stack and the state. In a BNA, this transition
function is specified in the BN T , which has as
many input variables as there are read-heads (r),
and as many output variables as there are terms in
an operation (k + 2). Conditioning on the vari-
ables pointed to by the automaton’s read-heads is
achieved by the inst function. As indicated in fig-
ure 2, inst(T, gt, R(ct+1), It+1) computes the next
configuration BN gt+1 by adding to the previous
configuration BN gt an instance of T , such that
the input variables of T are equated with the vari-
ables R(ct+1) in gt pointed to by the read-heads,
and the output variables of T are assigned the new
unique indices It+1. Any other variables in T are
also assigned new unique indices.

The BN T is required to have no edges whose

ferent from standard ones in that there is a distinction between
the action b and the arguments to that action v1, . . . , vk.
As discussed below, this is to distinguish between decisions
which change the structure of statistical dependencies (the
actions) and decisions which only change the labels which
decorate that structure (the arguments).
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destination is one of the input variables, so as
to prevent edges whose direction conflicts with
the temporal order of the automaton’s operations.
This property is important for efficient inference
in BNAs, as will be discussed in the next section.

3 Bounded Versus Unbounded
Generalisations

Bayesian networks capture generalisations by us-
ing the same parameters for more than one pattern
of variable values. By specifying how parameters
are reused across different cases, they specify how
to generalise from data on one pattern to previ-
ously unseen patterns. This specification is done
in the BN’s model structure. Because this model
structure is finite, BN’s can only express generali-
sations over a bounded number of cases.

In contrast, formal language theory captures
generalisations with formalisms that can handle
an infinite number of patterns. By proving that a
formalism can handle an infinite number of cases
for some variation, one proves that the formalism
must be capable of generalising across that varia-
tion. For example, we know that regular grammars
and finite state automata can generalise across po-
sitions in a string, because they can generate arbi-
trarily large strings despite having a finite specifi-
cation. They can model a finite number of specific
string positions, but there will always be a larger
string position for which they have no special case,
and therefore they must treat it in the same way as
some other smaller string position. Proofs of this
form are called pumping lemmas. Context-Free
Grammars and push-down automata generalise to
arbitrarily long dependencies within a string, us-
ing arbitrarily deep tree structures. Tree Adjoining
Grammars generalise to arbitrarily long dependen-
cies within these trees, using arbitrarily deep trees
which themselves generate trees.

3.1 Conditionally Bounded Models

Previous work has developed formalisms for spec-
ifying graphical models that generalise to an in-
finite number of cases. Dynamic Bayesian Net-
works (DBNs) (Ghahramani, 1998), such as Hid-
den Markov Models, and linear-chain Conditional
Random Fields (Lafferty et al., 2001) generalise to
unbounded string lengths. These models specify
both a template model structure which is used for
each position in the string, and the model struc-
ture which connects two adjacent position in the

string (or any finite window of contiguous posi-
tions). In addition, the strings are padded with
start and stop symbols, with the constraint that no
positions can exist beyond these symbols. These
symbols act like the halt action for BNAs, and
are used to ensure a proper probability distribution
over sequence lengths. Given a string of a specific
length, it is possible to construct the entire relevant
model structure for that string, and then apply nor-
mal graphical model inference techniques to this
constructed model.

If you are given the string length, it is some-
times possible to take this approach even for
more complex models, such as Probabilistic Con-
text Free Grammars. It is common practice with
PCFGs to transform them into a form where the
depth of the tree is bounded by the length of
the string. This transformation (such as binari-
sation, or Chomsky normal form) does not gen-
erate the same tree structures, but it does gener-
ate the same strings. With the transformed PCFG,
given the string length, it is possible to construct
the whole relevant bounded-depth model structure
for that string, for example using case-factor di-
agrams (McAllester et al., 2004), or sum-product
networks (Poon and Domingos, 2011). Inference
can then be done, for example, using belief propa-
gation (Smith and Eisner, 2008).

However, this approach is limited to infer-
ence problems where the string length is known,
which in turn limits the potential training methods.
We cannot necessarily use this pre-construction
method if we want to take a generative approach,
where the string length is determined by a genera-
tive process, or if we want to do incremental inter-
pretation, where we want to do inference on pre-
fixes of the string without knowing to total string
length. In this situation, we might need to con-
sider an infinite amount of model structure, for all
the possible string lengths. In particular, this is
true for undirected graphical models, such as Con-
ditional Random Fields, which are globally nor-
malised (c.f. (Rohanimanesh et al., 2009)).

3.2 Model Structure Prediction

BNAs allow us to do generative, incremental infer-
ence because they use directed graphical models,
in particular Bayesian Networks. Because BNs are
locally normalised, it is possible to solve some in-
ference problems independently of the infinite un-
constrained portion of the model structure. For ex-
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ample, a Hidden Markov Model can be applied to
any string prefix to infer the probability distribu-
tion over the following element of the string, with-
out needing to know the length of the total string.
In general, an inference can be done independently
of the unconstrained portion of the model structure
provided there are no edges directed from the un-
constrained portion to the portion where informa-
tion is given. More precisely, consider the set G
of complete model structures consistent with the
given visible variables V , and let G be the inter-
section of all the G′ ∈ G. If for all G′ ∈ G, for
all h ∈ (G′ − G), and for all v ∈ V , there is no
directed path from h to v, then for all G′ ∈ G,
P (V |G′) = P (V |G). This follows directly from
well known properties of BNs, which rely on the
fact that normalising P (V |G) can be done locally
to G. Thus

∑
G′ P (G′)P (V |G′) = P (V |G), and

therefore we can do inference looking only at the
known portion G of the model structure.4

For BNAs, this means that, given a prefix of
an automaton’s derivation, we can determine a
unique model structure which is sufficient to com-
pute the probability distribution for the automa-
ton’s next operation. There is no need to consider
all possible future derivations.

Interestingly, not all variables in the derivation
prefix must be given in order to determine a finite
specification of the model structure. In some for-
malisms, it is sufficient to know the length of the
string generated by the derivation prefix. But this
approach may not take full advantage of existing
algorithms for doing inference with grammars or
automata. On the other extreme, the approach we
took in section 2 of completely specifying all vari-
ables does not take full advantage of existing algo-
rithms for doing inference in graphical models. As
we will see in section 5.2, BNAs provide a frame-
work where these two types of algorithms can be
combined in a conceptually and computationally
modular way.

More specifically, BNA derivations make a dis-
tinction between variables bt which specify the ac-
tion and variables wt, v1t, . . . , vkt which specify
the arguments to the action. The action (e.g. push
versus pop) must be sufficient to determine the
structure ct of the configuration. The configura-

4This argument for directed models was recognised pre-
viously in (Titov and Henderson, 2007). Garg and Hender-
son (2011) proposes a model which mixes directed and undi-
rected edges, but which still has this property because undi-
rected edges are all local to individual derivation steps.

tion structure in turn determines the placement of
the read-heads R(ct), which determines the model
structure of the configuration’s BN gt. Therefore,
the sequence of derivation actions b0, . . . bn is suf-
ficient to uniquely determine the model structure
of the final configuration’s BN gn+1.

In BNA derivations, the arguments (e.g.
push(A) versus push(B)) only affect the labels
in the configuration’s BN gt. We can exploit this
fact by only choosing specific values for the action
variables, and leaving the argument variables un-
specified. The constructed BN gt will then specify
a distribution over values for the argument vari-
ables. For example, a BNA configuration for a
PDA must specify a specific depth for the stack,
but could specify a distribution over the symbols
in each position on a stack of that depth.

To illustrate this distinction between actions and
arguments, consider an alternative two-pass gen-
erative process for BNA derivations. In the first
pass of the generative process, it chooses the se-
quence of actions b0, . . . bn for a derivation, which
predicts the model structure of the final configura-
tion’s BN gn+1. The probability distributions for
generating this sequence is defined by marginal-
ising out the values for the argument variables.
The probability distribution over argument vari-
ables defined by the final configuration’s BN gn+1

then defines a distribution over argument variable
values. In the second pass of the generative pro-
cess, the argument values are chosen according to
this distribution. This two-pass generative process
will generate the same distributions over deriva-
tions as the characterisation in section 2.3.

4 Related Architectures and Grammars

In this section we discuss how BNAs are related to
some previous proposals for the probabilistic mod-
elling of unbounded structures.

Dynamic Bayesian Networks extend BNs to
arbitrarily long sequences. A DBN specifies a
bounded BN that models one position in the se-
quence, including input and output variables. A
new instance of this BN is created for each po-
sition in the given sequence, with the outputs for
one position’s BN equated with the inputs of the
subsequent position’s BN. DBNs are equivalent to
BNAs with finite state automata. The bounded
BN of the DBN corresponds to the T of the BNA.
The DBN has no need for an explicit representa-
tion of the BNA’s configuration structure because
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the configuration of a finite state automaton con-
sists only of a state variable with a bounded num-
ber of values, so all information about the config-
uration can be encoded in the bounded BN. The
only structure-modifying actions which are neces-
sary are continue versus stop, which are used to
generate the length of the sequence.

Switching DBNs (Ghahramani, 1998; Murphy,
2002) are DBNs which include variables that
switch between multiple BN models during each
position in the sequence. They are also covered
by finite state BNAs, by the same argument. Al-
though different BN models may be chosen for
different positions, there are only a bounded num-
ber of possible BNs, so they can all be included
in a single T . The switching decisions must be
encoded in the structure-modifying actions.

The previous work on graphical models which
is closest to our proposal is Incremental Sigmoid
Belief Networks (ISBNs) (Henderson and Titov,
2010). Sigmoid Belief Networks (SBNs) (Neal,
1992) are a type of Bayesian Network, and IS-
BNs use the same technique as here for modelling
arbitrarily large structures, namely incrementally
constructing an SBN that generates the deriva-
tion of the structure. Henderson and Titov (2010)
used this framework to reinterpret previous work
on neural network parsing (Henderson, 2003) as
an approximation to inference in ISBNs, and pro-
posed another approximate inference method for
natural language parsing. However, the control
mechanism needed to construct an SBN for a
derivation was not formalised.

Without any formal specification of how to con-
struct an SBN for a derivation, it is hard to deter-
mine the power of the ISBN architecture. The spe-
cific ISBN models developed for natural language
parsing cannot be expressed with a finite state con-
troller, and thus they are not DBNs. They re-
quire at least a push-down automaton. The deriva-
tions modelled in (Henderson and Titov, 2010)
are predictive LR derivations, which are equiva-
lent in power to context-free derivations. How-
ever, the statistical dependencies which are speci-
fied as edges in their constructed SBN are not re-
stricted to the context-free structure of the deriva-
tions. Edges may refer to any “structurally local”
variables decorating the derived tree, even if they
are not immediately local (such as the leftmost sib-
ling). To translate such a model into a BNA, the
read-head R would have to have access to symbols

which are not on the top of the stack, and there-
fore the derivation structure would not be context-
free. Given the restriction of locality, it is probably
possible to devise chains of variables which pass
the necessary information through the context-free
structure of the tree. But without such a transfor-
mation, our analysis of inference algorithms in the
next section suggests that it would be difficult to
devise efficient algorithms for exact inference with
this model. Henderson and Titov (2010) avoid this
question by only considering approximate infer-
ence methods, since inference in the bounded SBN
of their model is already intractable even before
combining it with a parsing algorithm.

Koller et al. (1997) propose a framework for
specifying complex recursive probabilistic models
in terms of a stochastic functional programming
language. As with BNAs, these models are lo-
cally normalised. They propose an inference al-
gorithm for this framework, and discuss Bayesian
networks and context-free grammars as examples
of what can be implemented in it. The use of a
functional programming language suggests a close
relationship to the context-free derivation struc-
tures discussed in the next section.

From the grammar formalism side, the model
that is closest to our proposal is Latent Probabilis-
tic Context-Free Grammars (LPCFGs) (Matsuzaki
et al., 2005). LPCFGs are PCFGs where the non-
terminal labels are augmented with a latent vari-
able. There has been much work recently on dif-
ferent training methods and different restrictions
to the pattern of values which the latent variables
are allowed to take (e.g. (Matsuzaki et al., 2005;
Prescher, 2005; Petrov et al., 2006; Musillo and
Merlo, 2008)). LPCFGs can be modelled as BNAs
with push-down automata. The bounded BN of
the equivalent BNA includes both a variable for
the visible nonterminal label of the LPCFG and
a variable for the latent extension of the nonter-
minal label. As a more specific example, the la-
tent head labels of (Prescher, 2005) could be spec-
ified using a BN with a switching variable that
selects which child’s head variable is propagated
to the head variable of the parent. Musillo and
Merlo (2008) extend LPCFGs to include multiple
latent variables decorating each nonterminal, with
linguistically motivated constraints on how they
can be related to each other. The BN of BNAs
would provide a more perspicuous method to ex-
press these constraints.
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5 Inference in Bayesian Network
Automata

To illustrate the usefulness of the BNA framework,
we look at algorithms for exact inference in BNAs.
The way in which BNAs allow us to separate is-
sues of structure from issues of labelling greatly
facilitates the analysis and design of algorithms for
calculating probabilities and exploring the space
of derivations. In many important cases, previ-
ous algorithms for grammars can be combined di-
rectly with previous algorithms for Bayesian Net-
works, and the resulting algorithm has a complex-
ity where the complexity of its two components
are independent factors.

A BNA is a specification of a generative proba-
bilistic model, and as such can be used to answer
many questions about the probability distributions
for some variables given others. We might want
to find the most probable derivation given some
sequence of output symbols (as in statistical pars-
ing, or decoding), to marginalise over the deriva-
tions (as in language modelling), or to find the
most probable values for a subset of the variables
while marginalising over others (as in latent vari-
able models of parsing). Although in some ways
the most interesting, this last class of problems is
in general NP-hard. Even for models based on fi-
nite state automata (e.g. HMMs), mixing the max-
imisation of some probabilities with the sum over
others results is an NP-hard problem (Lyngsø and
Pedersen, 2002). Because for reasons of space we
are limiting our discussion to exact inference, we
therefore also limit our discussion to the first two
types of problems. However, the arguments given
in section 5.2 for marginalising over all the un-
known variables can also be applied to many ap-
proximations to latent variable models of parsing.

5.1 Fully-Specified BN Computation

The first case we consider is when the space of in-
puts and operations of the BN T is small enough
that it is feasible to compute the complete condi-
tional probability distribution of all possible op-
erations given each possible input. In this case,
the conditional probability distribution can be pre-
computed and used to fill the transition table for
the equivalent stochastic automaton. Then any
standard algorithm for the stochastic automaton
can be applied. Under this assumption, if the
complexity of inferring the complete conditional
probability distribution for T is O(FB), and the

complexity of the standard algorithm is O(FA),
then the complexity of the complete problem is
O(FB + FA). In other words, computation time
is dominated by whichever of these complexities
is worse. For most previously proposed statistical
parsing models, the parsing complexity does dom-
inate and this pre-compilation strategy is in effect
adopted. However, the interest of the BNA frame-
work is in allowing the specification of more com-
plicated models, where inference in the BN T is
not so simple.

The second case we consider also uses any stan-
dard algorithm for the stochastic automaton, but
computes probabilities with the BN T on-line dur-
ing the running of the algorithm. This strategy
may require forward inference of the distribution
over operations given a specific input, or backward
inference of the distribution over inputs given a
specific operation, but in general it avoids the need
to compute the complete joint distribution over
both. In this case, if the complexity of the nec-
essary inference in T is O(F ′B), and the complex-
ity of the standard algorithm is O(FA), then the
complexity of the complete problem is O(F ′BFA).
This is a good strategy if O(F ′B) is much smaller
than O(FB) from the previous case, as might be
the case for lexicalised models, where O(FB) is a
function of the vocabulary size but O(F ′B) is only
a function of the number of words in the sentence.

5.2 Marginalisation in the BN

Both of the above cases require computing prob-
abilities given completely-specified values for all
the inputs and/or all the outputs of the BN T . To
fully exploit previous work on inference in BNs,
we would like to develop inference algorithms
which work directly with probability distributions
over values for both the inputs and outputs of T .
A full treatment of such algorithms is beyond the
scope of this paper, but here we provide some re-
sults on cases where inference algorithms for BNs
can be extended to BNAs. In particular, we look
at what classes of automata can be combined with
belief propagation (Pearl, 1988).

Belief propagation is a general method for
efficiently computing marginal probabilities in
Bayesian Networks (i.e. summing over latent vari-
ables). Provided that the BN has a tree struc-
ture (ignoring the directionality of the edges), this
algorithm is guaranteed to stop with the exact
marginal probability in time linear in the size of
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the BN. Therefore, if we can guarantee that the
configuration BN gt constructed by a BNA is al-
ways a tree, then we can apply belief propagation
to inference in gt, or in any sub-graph of gt.

The structure of gt reflects the structure of con-
ditioning allowed by the derivations of the au-
tomaton. In formal language theory, this is called
the derivation structure. If necessary, we can ab-
stract away from any undirected cycles that might
be introduced by the specific form of the BN T by
collapsing all the non-input non-action variables
in T into a single variable. By using this collapsed
version of T to construct gt, the structure of gt

becomes isomorphic to the derivation structure.5

Thus, we can guarantee that (a version of) gt will
have a tree structure if the derivation structures of
the automaton are trees, or more precisely, if the
automaton has context-free derivation structures.

The most important class of grammar for-
malisms which have context-free derivation struc-
tures is Linear Context-Free Rewriting Systems
(LCFRS) (Weir, 1988). In addition to Context-
Free Grammars, popular examples of LCFRS in-
clude Synchronous Context-Free Grammars and
Tree Adjoining Grammars (Joshi, 1987). This lat-
ter grammar formalism can specify classes of lan-
guages much larger than context-free languages,
and Synchronous CFGs express languages over
pairs of strings. For our purposes, the observations
can be of any form and the formalism can have
any method for combining the observations gen-
erated by sub-derivations, provided the derivation
structures are context-free and there exists an algo-
rithm for marginalising over the derivation struc-
tures given an observation.

Given an automaton whose derivations have a
context-free tree structure, we can apply belief
propagation to compute the marginal probability
for any derivation generated by that automaton
(if necessary collapsing the non-input non-action
variables in T into a single variable). This will
be feasible if it is feasible to propagate beliefs
through one instance of T . This requirement is
different from the one in the previous subsection in
that the given information is a probability distribu-
tion (the belief), whereas above it was assumed to

5Note that all action variables bt′ in gt will have known
values, because this is necessary in order to know the model
structure. Thus, the concern here is the structure of the
interdependencies between the possibly-unknown variables
wt′ , v1t′ , . . . , vkt′ in gt, because these are the variables we
need to marginalise over using belief propagation.

In(i− 1, i, a) = P (a⇒wi|a)
In(i, k, a) =

k−1∑
j=i+1

∑
b,c

P (a⇒bc|a)In(i, j, b)In(j, k, c)

Out(0, |w|, c) = 1 if c = S; 0 otherwise
Out(i, k, c) =

i−1∑
j=0

∑
a,b

Out(j, k, a)In(j, i, b)P (a⇒bc|a) +

|w|∑
j=k+1

∑
a,b

Out(i, j, a)P (a⇒cb|a)In(k, j, b)

Figure 3: The Inside-Outside algorithm for PCFGs,
where a, b, c are symbols, i, j, k are indices in string
w, and a⇒bc, a⇒wi are CFG rules

be completely specified values. So, assuming that
it is feasible to propagate beliefs through T and
given an automaton with context-free derivations,
we can feasibly compute the marginal probability
of any derivation using belief propagation.

So far in this subsection we have only con-
sidered inference for a given derivation structure.
In general, inference in BNAs requires marginal-
ising both over labellings and over the struc-
ture itself, as is commonly required for unsu-
pervised or partially-supervised grammar induc-
tion. Marginalising over structures can be done
with the inside-outside algorithm for Context-Free
Grammars (Baker, 1979) (given in figure 3) or
the inside-outside algorithm for Tree-Adjoining
Grammars (Schabes, 1992). These are dynamic
programming algorithms. The inside calculations
are very similar to bottom-up parsing algorithms
such as CKY (Younger, 1967), except they com-
pute sums of probabilities instead of taking the
maximum probability. The outside calculations
are also done in a single pass, but top-down.

Both inside and outside calculations work by
incrementally considering equivalence classes of
increasingly large sub-graphs of the derivation
structure. For example in the equations in fig-
ure 3, each step computes a sum over the vari-
ous ways that an operation can be used to con-
struct a larger sub-derivation out of smaller ones,
such that they all have the same start i, end k
and label. As discussed at the end of section 3.2,
with BNAs we can easily represent In(i, k, ·) and
Out(i, k, ·) as distributions over labels, i.e. the
beliefs. The sums over symbols in these equa-
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tions (
∑

b,c P (a⇒ bc|a)In(i, j, b)In(j, k, c) and∑
a,b Out(i, j, a)P (a⇒cb|a)In(k, j, b)) can then

be done using belief propagation through the BN
representation of P (a⇒cb|a).

If the configuration BN gt is a tree, then any
connected sub-graph of gt will also be a tree, so we
can apply belief propagation to the sub-graph of gt

for any of the sub-derivations. In addition, belief
propagation can be applied either forward or back-
ward through the edges of gt, so the probability
distribution for any node in a sub-graph of gt can
be computed in a single pass over the sub-graph
by propagating beliefs towards the desired node.
This allows belief propagation to be integrated into
an inside-outside algorithm; whenever the inside-
outside algorithm considers building larger sub-
derivations out of smaller ones, belief propaga-
tion is applied to continue the propagation of be-
liefs out of the smaller sub-derivations’ graphs and
into the instance of T for the operation used in the
combination. This belief propagation can then be
interleaved with the sums over structural alterna-
tives (the sums over j in figure 3).

Because each use of an operation considered
by the inside-outside algorithm corresponds to be-
lief propagation through a single instance of T ,
the time complexity of performing belief propaga-
tion through T is a constant factor in the complex-
ity of the entire algorithm. For the inside part of
the algorithms, only backward inference through
T is required, and then for the outside computa-
tions forward inference is required. Thus, given
an O(FA) inside-outside inference algorithm and
an O(F ′′B) inference algorithm for propagating be-
liefs (forward or backward) through T , the com-
plexity of parsing will be O(F ′′BFA). As with
the results from the previous subsection, this com-
plexity result factors the two components of the
algorithm.

6 Conclusions

In this article we have proposed a framework
for specifying and reasoning with complex prob-
abilistic models of unbounded structures, called
Bayesian Network Automata. The BNA frame-
work combines the theory of graphical models
with automata theory and formal language theory.
It uses Bayesian Networks to provide a perspic-
uous representation of local statistical generalisa-
tions. It uses automata to provide a precise spec-
ification of how to generalise to arbitrarily large

model structures, even when the model structure
must be predicted during inference. Together they
provide a precise and perspicuous representation
of probability distributions over unbounded struc-
tures.

Using this framework, we have clarified the
power of various previously proposed probabilis-
tic models of unbounded structures. Without any
additional control structure, Dynamic Bayesian
Networks are equivalent to BNAs with finite state
automata. This limited power also applies to
switching DBNs. Incremental Sigmoid Belief
Networks potentially have greater power, but pre-
vious work did not formally characterise the na-
ture of the additional control structure which they
employ. The model of parsing which has been pro-
posed for ISBNs appears to be a BNA with a push-
down automaton, but the nature of the BN used
prevents direct application of the efficient parsing
methods we have discussed.

We have also used this framework to explore
how the complexity of inference with the bounded
Bayesian Network interacts with the complexity
of inference with the automaton. We have shown
that for a large class of automata (which can gen-
erate more than just context-free languages), the
complexity of inference with a BNA is simply the
multiplication of the complexity of inference in
the Bayesian Network times the complexity of in-
ference with the automaton.

BNAs have the potential to greatly expand the
class of problems which we can effectively model
with graphical models, through their simple mech-
anism for increasing the power of these models
and the large body of existing theory and algo-
rithms that help us limit this power in ways that
retain tractability. They provide a useful frame-
work for future work on many issues, includ-
ing approximate inference methods that interface
well with parsing algorithms. We believe that the
BNA framework will be most useful with large
Bayesian Networks where only approximate infer-
ence methods are tractable.
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Abstract

In this paper, we present a model-theoretic
description of Property Grammar (PG) with
features. Our approach is based on previ-
ous work of Duchier et al. (2009), and ex-
tends it by giving a model-theoretic account
of feature-based properties, which was lack-
ing in the description of Duchier et al.

On top of providing a formal definition of
the semantics of feature-based PG, this pa-
per also discusses the various possible in-
terpretations of features (e.g., within the re-
quirement and agreement properties), and
show how these interpretations are repre-
sented in our framework. This work opens
the way for a constraint-based implementa-
tion of a parser for PG with features.

1 Introduction

Many formal descriptions of natural language syn-
tax rely on rewriting systems (e.g., Tree-Adjoining
Grammar). They specify how to generate the syn-
tactic structures (hence the strings) belonging to
a given (natural) language, by applying succes-
sive derivations (rewritings). Such syntactic de-
scriptions are called generative-enumerative syn-
tax. They provide a procedural view of language
that naturally leads to the development of pars-
ing algorithms. Nonetheless, as advocated by Pul-
lum and Scholz (2001), such descriptions fail in
accounting for ungrammatical sentences, such as
those regularly produced by humans.

An alternative description of syntax, called
model-theoretic syntax, focuses on syntactic prop-
erties that the structures (and strings) of a language
are supposed to follow (e.g., Property Gram-
mar).In other terms, such descriptions do not give
any information about how to produce these struc-
tures, they “simply” give a declarative specifica-
tion of them. The grammar can thus be seen as a

set of constraints, and syntactic structures as mod-
els satisfying these constraints. If one allows for
the violation of some specific constraints, it then
becomes possible to account for ungrammatical
sentences, that is, to build quasi-models that are
linguistically motivated and formally computed.1

Duchier et al. (2009) proposed a model-
theoretic semantics of Property Grammar (PG),
where models are trees labeled with syntactic cat-
egories. Their formalization was then converted
into a constraint optimization problem to imple-
ment a parser for PG (Duchier et al., 2010). In
their formalization, the authors did not account
for features, thus omitted some properties such
as agreement2. In this paper, we propose to fill
this gap, by giving a model-theoretic semantics of
feature-based PG. This semantics makes it possi-
ble to implement a constraint-based parser for the
full class of PG in a similar way to that of Duchier
et al. (2010).

The paper is organized as follows. In section 2,
we introduce (feature-based) PG. Then, in sec-
tion 3, we present our logical specification of PG.
Finally, in section 4, we discuss the different in-
terpretations of feature-based properties and their
representations in our specification.

2 Property Grammar

As mentioned above, Property Grammar (Blache,
2000) is a formalism belonging to model-theoretic
syntax. It describes the relations between syn-
tactic constituents in terms of local constraints
(the so-called properties). These properties come
from linguistic observations (e.g., order between
words, co-occurrence, facultativity, etc). In

1This ability to describe ungrammatical sentences by
means of violable constraints is also present in Optimality
Theory (Prince and Smolensky, 1997).

2In her PhD thesis, Guénot (2006) proposed to replace de-
pendency (as introduced in Blache (2000)) with a more spe-
cialized property named agreement.
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a first approximation, these properties can be
seen as local constraints on categories labeling
syntactic trees. A property A : ψ specifies, for
a given node labeled A, the constraint ψ to be
applied on the categories of A’s daughter nodes
(writtenB,C hereafter). ψ is one of the following:

Obligation A : 4B at least one B
Uniqueness A : B! at most one B
Linearity A : B ≺ C B precedes C
Requirement A : B ⇒ C if ∃ B, then ∃ C
Exclusion A : B 6⇔ C not both B and C
Constituency A : S? all children ∈ S
Agreement A : B ; C feat. constraints

As mentioned above, in PG, properties are not re-
stricted to syntactic categories, they actually han-
dle feature structures. That is, the above properties
do not only constrain atomic categories labeling
syntactic nodes, but feature-based labels. In order
to give a logical specification of PG, we first need
to formally define these feature-based properties.

Let F be a finite set of features {f1, . . . , fn},
where each feature fi takes its values in a finite
upper semilattice Di. We write >i for Di’s great-
est element (>i will be used in our specification to
refer to features that do not apply within a given
property). Since the syntactic category has a spe-
cial status (it is mandatory within properties), we
suppose that among the features fi, there is one
called cat to encode the category. Attribute-value
matrices (AVM) of typeM = [f1:D1, . . . , fn:Dn]
also form a finite upper semilattice, equipped with
the usual “product order” (writtenv). This will al-
lows us to compare AVM values. We writeM↓ for
the minimal elements ofM. Within AVM values,
we omit fi if its value is>i. We also use AVM ex-
pressions, where features can be associated with
variables (thus allowing for coreferences).3 If S
is an AVM expression, then Sv is the correspond-
ing value obtained by replacing any occurrence of
fi:X by fi:>i because fi’s value is constrained
only by coreference equations. If S0, S1, S2 are
AVM expressions, then E(S0, S1, S2) is the set of
coreference equations (i, f)

.
= (j, g) for all f :X

in Si and g:X in Sj .
We can now define properties as being either

of the form S0:r(S1) or S0:r(S1, S2), where
S0, S1, S2 are AVM expressions, and r one of the
relations introduced above (4,⇒, . . . ). That is,

3In our PG specification, coreferences are only allowed
within agreement properties.

property literals are formed in one of the follow-
ing ways (s1 refers to a set of AVM expressions):
S0 : 4S1, S0 : S1!, S0 : S1 ≺ S2, S0 : S1 ⇒ S2,
S0 : S1 6⇔ S2, S0 : s1?, S0 : S1 ; S2. We write
P for the set of all possible property literals
over F . LetW be a set of elements called words.
A lexicon is a subset of W ×M (that is, a lex-
icon maps words with AVM types). A property
grammar G is a pair (PG, LG) where PG is a set
of properties (i.e., a subset of P) and LG a lexicon.

When describing natural language, the proper-
ties of PG are encapsulated within linguistic con-
structions, which typically describe syntactic con-
stituents. As an illustration, consider Fig. 1 con-
taining an extract of the PG for French of (Prost,
2008). In this figure, the NP construction describes
noun phrases. It can be read as follows. In a
noun phrase, there must be either a noun or a pro-
noun. If there is a determiner, a noun, a preposi-
tional phrase or a pronoun, it must be unique. The
determiner (if any) precedes the noun, pronoun,
prepositional and adjective phrase (if any). A noun
must come with a determiner, so does an adjective
phrase with a noun. There cannot be both a noun
and a pronoun. There must be gender and number
agreements between the noun and the determiner.

3 Model-Theoretic Semantics

We will now extend the logical specification of PG
of Duchier et al. (2009) using the above definition
of feature-based properties.
Class of models. Following (Duchier et al., 2009),
the strong semantics (i.e., no property violation is
allowed) of property grammars is given by inter-
pretation over the class of syntactic trees τ . We
write N0 for N\{0}. A tree domain D is a finite
subset of N∗0 which is closed for prefixes and left-
siblings; in other words, ∀π, π′ ∈ N∗0, ∀i, j ∈ N0 :

ππ′ ∈ D ⇒ π ∈ D
i < j ∧ πj ∈ D ⇒ πi ∈ D

A syntax tree τ = (Dτ , Lτ , Rτ ) consists of a tree
domain Dτ , a labeling function Lτ : Dτ → M↓
assigning a minimal AVM value (w.r.t. v) to each
node, and a function Rτ : Dτ →W∗ assigning to
each node its surface realization.

For convenience, we define the arity function
Aτ : Dτ → N as follows, ∀π ∈ Dτ :
Aτ (π) = max {0} ∪ {i ∈ N0 | πi ∈ Dτ}

Instances. Following (Duchier et al., 2009), a
property instance is a pair of a property and a tuple
of nodes (paths) to which it is applied (see Fig. 2).
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NP (Noun Phrase)
obligation :4(N t Pro)

uniqueness : D!
: N!
: PP!
: Pro!

linearity : D ≺ N
: D ≺ Pro
: D ≺ AP
: N ≺ PP

requirement : N⇒ D
: AP⇒ N

exclusion : N 6⇔ Pro
agreement : N[

gend 1

num 2

]; D[
gend 1

num 2

]

VP (Verb Phrase)
obligation :4V

uniqueness : V[mode:past-part]!
: NP!
: PP!

linearity : V ≺ NP
: V ≺ Adv
: V ≺ PP

requirement : V[mode:past-part] ⇒ V[aux:+]
exclusion : Pro[case:acc] 6⇔ NP

Figure 1: Extract of a Property Grammar for French

Iτ [[G]] = ∪{Iτ [[p]] | ∀p ∈ PG}
Iτ [[S0 : S1 ≺ S2]] = {(S0 : S1 ≺ S2)@〈π, πi, πj〉 | ∀π, πi, πj ∈ Dτ , i 6= j}
Iτ [[S0 : 4S1]] = {(S0 : 4S1)@〈π〉 | ∀π ∈ Dτ}
Iτ [[S0 : S1!]] = {(S0 : S1!)@〈π, πi, πj〉 | ∀π, πi, πj ∈ Dτ , i 6= j}

Iτ [[S0 : S1 ⇒ S2]] = {(S0 : S1 ⇒ S2)@〈π, πi〉 | ∀π, πi ∈ Dτ}
Iτ [[S0 : S1 6⇔ S2]] = {(S0 : S1 6⇔ S2)@〈π, πi, πj〉 | ∀π, πi, πj ∈ Dτ , i 6= j}

Iτ [[S0 : s1?]] = {(S0 : s1?)@〈π, πi〉 | ∀π, πi ∈ Dτ}
Iτ [[S0 : S1 ; S2]] = {(S0 : S1 ; S2)@〈π, πi, πj〉 | ∀π, πi, πj ∈ Dτ , i 6= j}

Figure 2: Property instances of a grammar G on a syntactic tree τ

Pertinence. Since we created instances of all
properties in PG for all nodes in τ , we must dis-
tinguish properties which are truly pertinent at a
node from those which are not. For this purpose,
we define the predicate Pτ over instances as in
Fig. 3. This evaluation of property pertinence ex-
tends (Duchier et al., 2009) by comparing AVM
expressions.
Satisfaction. When an instance is pertinent, it
should also (preferably) be satisfied. For this pur-
pose, we extend the predicate Sτ over instances
of (Duchier et al., 2009) as in Fig. 4. For agree-
ment, satisfaction relies on satisfaction of coref-
erence equations, defined as follows. We say
that the triple of values M0,M1,M2 satisfies the
coreference equations of expressions S0, S1, S2,
and write M0,M1,M2 |= E(S0, S1, S2), iff
Mi.f=Mj .g for all (i, f)

.
=(j, g) inE(S0, S1, S2).

As in (Duchier et al., 2009), we write I0
G,τ for the

set of pertinent instances, I+
G,τ for its subset that is

satisfied, and I−G,τ for its subset that is violated:

I0
G,τ = {r ∈ Iτ [[G]] | Pτ (r)}
I+
G,τ = {r ∈ I0

G,τ | Sτ (r)}
I−G,τ = {r ∈ I0

G,τ | ¬Sτ (r)}

Admissibility. A syntax tree τ is admissible as a
candidate model for grammar G iff it satisfies the
projection property, i.e. ∀π ∈ Dτ :

Aτ (π) = 0 (leaf node) ⇒ 〈Lτ (π), Rτ (π)〉 ∈ LG
Aτ (π) 6= 0 (inner node)⇒Rτ (π) =

∑i=Aτ (π)
i=1 Rτ (πi)

where
∑

represents the concatenation of se-
quences. In other words, leaf nodes must conform
to the lexicon, and inner nodes pass upward the
ordered realizations of their daughters.
Strong and loose models. The definition of strong
and loose models stated by Duchier et al. (2009)
are applied directly in this extension. A syntax tree
τ is a strong model of a property grammar G iff it
is admissible and I−G,τ = ∅. A syntax tree τ is a
loose model of G iff it is admissible and it maxi-
mizes the ratio FG,τ defined as FG,τ = I+

G,τ/I
0
G,τ .

4 About the Interpretation of Features

Let us now discuss the model-theoretic semantics
of feature-based PG introduced above, by looking
at some examples. In particular, let us see what
is the meaning of features and how do these affect
property pertinence and satisfaction. Let us first
consider the requirement property of VP in Fig. 1.
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Pτ ((S0 : S1 ≺ S2)@〈π, πi, πj〉) ≡ (Lτ (π) v Sv0 ) ∧ (Lτ (πi) v Sv1 ) ∧ (Lτ (πj) v Sv2 )

Pτ ((S0 : 4S1)@〈π〉) ≡ Lτ (π) v Sv0
Pτ ((S0 : S1!)@〈π, πi, πj〉) ≡ (Lτ (π) v Sv0 ) ∧ (Lτ (πi) v Sv1 ) ∧ (Lτ (πj) v Sv1 )

Pτ ((S0 : S1 ⇒ S2)@〈π, πi〉) ≡ (Lτ (π) v Sv0 ) ∧ (Lτ (πi) v Sv1 )

Pτ ((S0 : S1 6⇔ S2)@〈π, πi, πj〉) ≡ (Lτ (π) v Sv0 ) ∧ ((Lτ (πi) v Sv1 ) ∨ (Lτ (πj) v Sv2 ))

Pτ ((S0 : s1?)@〈π, πi〉) ≡ Lτ (π) v Sv0
Pτ ((S0 : S1 ; S2)@〈π, πi, πj〉) ≡ (Lτ (π) v Sv0 ) ∧ (Lτ (πi) v Sv1 ) ∧ (Lτ (πj) v Sv2 )

Figure 3: Property pertinence on a syntactic tree τ

Sτ ((S0 : S1 ≺ S2)@〈π, πi, πj〉) ≡ i < j

Sτ ((S0 : 4S1)@〈π〉) ≡ ∨{(Lτ (πi) v Sv1 ) | 1 ≤ i ≤ Aτ (π)}
Sτ ((S0 : S1!)@〈π, πi, πj〉) ≡ i = j

Sτ ((S0 : S1 ⇒ S2)@〈π, πi〉) ≡ ∨{(Lτ (πj) v Sv2 ) | 1 ≤ j ≤ Aτ (π)}
Sτ ((S0 : S1 6⇔ S2)@〈π, πi, πj〉) ≡ (Lτ (πi) 6v Sv1 ) ∨ (Lτ (πj) 6v Sv2 )

Sτ ((S0 : s1?)@〈π, πi〉) ≡ Lτ (πi) v x for some x in s1
Sτ ((S0 : S1 ; S2)@〈π, πi, πj〉) ≡ Lτ (π), Lτ (πi), Lτ (πj) |= E(S0, S1, S2)

Figure 4: Property satisfaction on a syntactic tree τ

This property states that, within a verb phrase, a
past-participle requires an auxiliary. That is, in a
model, a V node labeled with [mode:past-part] must
come with a sister V node labeled with [aux:+]. As
shown in Fig. 3, for this property to be pertinent
for a couple of nodes 〈π, πi〉 with π the mother
node of πi, these need to have category VP and
V respectively, and πi needs to be labeled with
[mode:past-part] (Lτ (πi) v Sv1 ). For this property
to be satisfied, a sister node of πi, say πj, needs to
be labeled with [aux:+] (Lτ (πj) v Sv2 ), as shown
in Fig. 4. In other words, the cat and mode fea-
tures affect pertinence and aux satisfaction.

Let us now consider the agreement property of
NP in Fig. 1. Such a property ensures that, within
a noun phrase, there are gender and number agree-
ments between the determiner and the noun. For
this property to be pertinent, we only consider
the categories of the triple of nodes 〈π, πi, πj〉
(i.e., omitting variables), see Fig. 3. For it to
be satisfied, one need the coreferences to hold
(Lτ (π), Lτ (πi), Lτ (πj) |= E(S0, S1, S2)). Here,
all but the cat feature affect satisfaction.

Let us finally consider the following property:
VP : V


mode past-part
gend 1

num 2

pers 3


; Pro


case acc
gend 1

num 2

pers 3


which constrains the gender, number and person

agreements between a past-participle and an ac-
cusative pronoun (e.g., je l’ai aimée / I loved her).
For this property to be pertinent at a triple of nodes
〈π, πi, πj〉, one needs (a) π to have category VP
(Lτ (π) v Sv0 ), (b) πi to have category V and to
be labeled with [mode:past-part] (Lτ (πi) v Sv1 ),
and (c) πj to have category Pro and to be la-
beled with [case:acc] (Lτ (πj) v Sv2 ). For it to be
satisfied, one needs the additional constraint that
the coreferences hold (Lτ (π), Lτ (πi), Lτ (πj) |=
E(S0, S1, S2)). In this example, the property
mixes features affecting pertinence (cat, mode,
case) and features affecting satisfaction (gend,
num, pers). Thanks to our definition of AVM,
and of v only checking for ground values, and |=
checking for coreferences, our representation sup-
ports the various interpretations of features.

5 Conclusion

We presented a model-theoretic semantics of PG
that supports the various interpretations of fea-
tures. Forthcoming work concerns the implemen-
tation of a PG parser by converting this semantics
into a constraint optimization problem following
Duchier et al. (2010). The motivation behind this
is to provide the linguist with a device to imple-
ment her/his theories and check the logicial con-
sequences of these on syntactic analyzes.
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Abstract

Using semi-supervised EM, we learn fine-
grained but sparse lexical parameters of a
generative parsing model (a PCFG) initially
estimated over the Penn Treebank. Our lex-
ical parameters employ supertags, which
encode complex structural information at
the pre-terminal level, and are particularly
sparse in labeled data – our goal is to learn
these for words that are unseen or rare in
the labeled data. In order to guide esti-
mation from unlabeled data, we incorporate
both structural and lexical priors from the
labeled data. We get a large error reduction
in parsing ambiguous structures associated
with unseen verbs, the most important case
of learning lexico-structural dependencies.
We also obtain a statistically significant im-
provement in labeled bracketing score of
the treebank PCFG, the first successful im-
provement via semi-supervised EM of a
generative structured model already trained
over large labeled data.

1 Introduction

Computational models of natural language trained
on labeled data contain many parameters that are
not estimated accurately, due to the data spar-
sity inherent in labeled data. This is especially
true of complex structured models like parsers,
which contain a large number of parameters, and
where labeled training data is expensive to cre-
ate.These models employ various forms of param-
eter smoothing to deal with overfitting and with
unknown or low-frequency words. However, it is
desirable, and in many cases necessary, to aug-
ment supervised models using readily available
unlabeled data, such as raw news-wire or from the
web. Semi-supervised methods have therefore re-
ceived a lot of attention in recent years.

In this paper, we present a method for semi-
supervised training of a large-scale structured

model (a Penn Treebank PCFG) using the Expec-
tation Maximization algorithm (Dempster et al.,
1977). We focus on learning only those parame-
ters of the model that are particularly difficult or
impossible to obtain from labeled data, namely
parameters related to low-frequency and unseen
words (the Zipfian tail). Words are important de-
terminers of structural information for parsers; for
instance, verb subcategorization information im-
proved the Collins’ parser (Collins, 1997). How-
ever, this data is very sparse in even the largest
labeled dataset available today, i.e., the Penn Tree-
bank (Marcus et al., 1993). To illustrate the sever-
ity of the problem, consider the fact that close to
40% of verb types in the training sections of the
Penn Treebank have occurred only once therein.
Thus, modelling the structural properties of these
verbs that may be useful for disambiguation in
a parser (such as subcategorization properties) is
simply not possible from labeled data, and one has
to look to unlabeled data.

From the machine learning point of view,
semi-supervised learning in general, and semi-
supervised EM in particular, has been successful
for classification-based NLP tasks (e.g. Nigam
et al. (1998), Blum and Mitchell (1998), Yarowsky
(1995)). For more structured tasks such as part-
of-speech tagging and grammar learning, semi-
supervised learning has worked largely in the case
where the labeled data is small in size (Klein
and Manning, 2004; Steedman et al., 2003; Druck
et al., 2009a; Ganchev et al., 2010; Reichart and
Rappoport, 2007). There have been some in-
stances of successful large-scale semi-supervised
learning for structured models (McClosky et al.,
2006; Deoskar, 2008; Koo et al., 2008; Bansal and
Klein, 2011), where a grammar model trained on a
large amount of labeled data such as the full Penn
Treebank has shown further improvement from
unlabeled data. These methods have typically de-
pended on the complementarity of multiple views
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of the data (a discriminative reranking model over
a generative model as in (McClosky et al., 2006)),
and/or complex or heuristic objective functions (as
in Deoskar (2008); Koo et al. (2008)) or simply by
incorporating surface counts from unlabeled data
(as in a recent paper by Bansal and Klein (2011)).
A contribution of this paper is that we show that
using EM in a semi-supervised manner with a sim-
ple objective function can improve a parser, con-
trary to common belief in the field.

The PCFG model used in this paper is trained
on the Penn Treebank. It contains fine-grained
structural information marked on pre-terminal cat-
egories, making them similar in spirit to supertags
for strongly lexicalised formalisms like LTAG
(Bangalore and Joshi, 1999) and CCG (Steedman,
2000). A supertag encodes structure that is dis-
tributed over the tree and localises it onto a sin-
gle parameter of the model. Our learning prob-
lem is cast very simply as estimating the parame-
ters p(w|τ) (where w is a word and τ a supertag)
from labeled and unlabeled data. The problem is,
however, more complex than a sequence labeling
task because these supertags are highly ambiguous
and encode argument-adjunct distinctions as well
as long-distance dependencies (illustrated later in
examples). Semi-supervised EM is known to of-
ten give models that are worse than the supervised
model (Merialdo, 1994; Charniak, 1993; Ng and
Cardie, 2003). To address this, we incorporate
probabilistic constraints on unsupervised estima-
tion by using labeled data to derive prior knowl-
edge at two levels: (a) structural constraints in
the form of higher PCFG rules (b) preferences
over the distributions p(w|τ) themselves. We ob-
tain large improvements in assigning correct struc-
tures to unseen verbs, and also a statistically sig-
nificant improvement in labeled bracketing over a
smoothed supervised model.

The rest of the paper is structured as follows:
a description of the Treebank PCFG model and
its smoothing is in §2. §3 describes the semi-
supervised method, the constraints derived from
labeled data, and their theoretical interpretation.
§4 contains experiments and §5 evaluations. A dis-
cussion of related literature is in §6. §7 concludes.

2 The PCFG Model

We work with a probabilistic context-free gram-
mar (PCFG) model, since it is easy to analyse
and most other more sophisticated parsing mod-

VP

VB.n-p

add

NP

four more Boeings

PP-TMP

by 1994

PP-CLR

to the two units.

1

(a) An NP PP subcategorization frame on the verb ‘add’.

VP

VB.s.e.to

want

S.e.to

*NP* VP.to

TO

to

VP

communicate...

1

(b) An S frame on the verb ‘want’
(*NP* is the empty subject)

NP

NP

the many new
home-owners

SBAR

WHNP

that

S

NP-SBJ

Mrs. Thatcher’s
new policies

VP

VBD

had

VP

VBD.n

created

*T-NP*

1

(c) Long-distance. (*T-NP* is the trace of NP)

Figure 1: Some verbal supertags.

els can be understood as refinements of it (Char-
niak, 1997). The Penn Treebank PCFG used in
this work is based on Deoskar and Rooth (2008)
and Deoskar (2009) . It has pre-terminal cate-
gories that are complex and fine-grained, espe-
cially for open-class words. The PCFG is ob-
tained by a process that effectively results in node-
relabelling transformations of Penn Treebank II
trees (Johnson, 1998), and counting relative fre-
quencies of context-free rules in the transformed
trees. We illustrate the nature of complex pre-
terminal categories in the grammar with some ex-
amples below. These complex categories are in-
tended to encode structure selected by/associated
with a word onto the preterminal-tag of the word.
Fig. 1 shows fragments of Penn Treebank (hence-
forth, PTB) sentences along with their annotation
(empty categories are slightly simplified). In (a),
the verb add has two arguments – an NP four more
Boeings and a PP-CLR to the two units. The -
CLR label indicates that the PP is an argument.
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These arguments are encoded in the supertag on
the verb as n-p giving the new pre-terminal cat-
egory‘VB.n-p’, made of the original PTB POS-
tag VB, followed after a dot by its refinement
n-p indicating the NP and PP-CLR arguments.
The temporal PP (PP-TMP) is considered an ad-
junct and is not included in the supertag. Fig.
1(b) shows a more complex supertag on the verb
want – this supertag encodes the complement S
as s, the empty subject of the S as e and the
TO further down the tree as to, together forming
s.e.to. The e serves to distinguish this struc-
ture from others like expect them to communicate,
while the to distinguishes it from finite sub-
ordinate clauses like set the economy moving or
help meet increasing demand. The final example
in 1(c) shows an object relative clause. The verb
of interest is ‘created’, which has a transitive su-
pertag n indicating an NP complement. Notice
that this verb is assigned the transitive supertag
even though the complement NP is quite far re-
moved from its original position (indicated by *T-
NP*), thus capturing a long-distance dependency
between the verb created and the NP the many new
home-owners.

Our supertags are quite fine-grained – there are
81 sub-categories for verbs1. The additional mark-
ing on the original PTB POS tag is determined au-
tomatically and unambiguously by (solely) using
information available in the treebank tree, such as
the structure of the tree and functional tag mark-
ing. As seen above, these supertags distinguish ar-
guments from adjuncts and localise onto a single
parameter, long distance information that may be
spread across different levels of the tree.

For space reasons, we do not describe aspects of
the PCFG that are not directly relevant to this work
(but see Deoskar (2009)). Importantly, the PCFG
does not contain lexicalisation at higher levels of
the tree, except for function words such as preposi-
tions and determiners (as in (Klein and Manning,
2003)). As far as content-words (non-functional
words) are concerned, word or head-word infor-
mation is not part of any parameter of the PCFG
except pre-terminal rules. Thus the unlexicalised
PCFG has a clean division between complex lexi-
cal parameters (pre-terminal rules) and non-lexical
ones (the rest). We exploit this in our semi-

1This number holds for the case when lexicalized prepo-
sitions are not projected into the supertag. The complete list
is available in Deoskar (2009) (Appendix D).

supervised method to constrain unsupervised es-
timation (§3). Another consideration in using an
unlexicalised PCFG for this work is that it would
be significantly more computationally expensive
to use a lexicalized one, due to the larger number
of parameters.

The (smoothed) PCFG performs close to the
best reported results for a simple unlexicalised
Treebank PCFG (without splitting and merging of
categories as in Petrov and Klein (2007)), with a
labeled bracketing f-score of 87.4% (< 40 words)
and 86.5% (all sentences) on Section 23 of the
PTB. While this is not the highest-performing
grammar trained on the Penn Treebank (Petrov
and Klein, 2007; Charniak and Johnson, 2005),
note that it is trained on PTB trees that retain
all functional categories as well as empty cate-
gories originally present in the PTB. Most tree-
bank parsers remove functional tags and empty
categories, thereby reducing sparsity and improv-
ing scores. Including functional categories and
traces enables our PCFG to make finer distinc-
tions and recover traces, but makes our training
data much sparser than usual. Empty category re-
covery of the PCFG is 84%, at par with the state-
of-the-art (Schmid, 2006). Functional tag recov-
ery is comparable to Blaheta and Charniak (2000);
Blaheta (2004) (the only other reported results that
use all functional tags in the PTB 2). Our non-null
f-scores for the categories described in Blaheta’s
work are as follows (with the best scores from
Blaheta and Charniak (2000) or Blaheta (2004) in
brackets) – Grammatical: 94.78 (95.55), Seman-
tic: 77.96 (78.63), Topicalization: 96.26 (95.28),
Miscellaneous: 61.97 (58.99).

2.1 Smoothing the treebank PCFG based on
POS tagging: creating a baseline.

Most treebank parsers are required to smooth their
estimates to deal with over-fitting and with un-
known words. This is usually done by backing off
from a more articulated level (such as words) to
a less articulated one (such as POS-tags), or by
interpolating between the two. In the case of fine-
grained lexical categories (supertags), the problem
of smoothing becomes more severe. In some other
generative models containing fine-grained lexical
categories, such as CCG, smoothing is done by re-
placing unseen words and words below a cut-off

2Merlo and Musillo (2005)’s work uses a subset of the
functional tags in the PTB, and hence their results are not
comparable to ours.
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frequency with POS tags. This cut-off frequency
is in fact very high – for instance, Hockenmaier
and Steedman (2002) find that the optimal cut-
off is 30 for their generative parser. In our work,
such a method is not an option: we are interested
precisely in learning supertags for low frequency
and unseen words from the unlabeled corpus. Sec-
ondly, POS tags are not a parameter of the PCFG,
only supertags are.

We adopt a smoothing method first described in
Deoskar (2008), that specifically aims at introduc-
ing parameters for unseen words from the unla-
beled corpus into the PCFG3. In this method, ev-
ery word from the unlabeled corpus is assigned
with all those supertags that have been seen in
the labeled corpus with the POS tag of the word.
Thus, each verb is assigned all supertags that are
associated with verbs in the labeled corpus. This
applies both to words that are seen and unseen
in the labeled data, thus taking care of the case
where a word may have been seen in the labeled
data, but may not have been seen with all rele-
vant categories (an issue when dealing with fine-
grained categories). A small probability mass is
taken from the supervised distribution and redis-
tributed amongst the newly introduced parameters.
Equations and more details are in Deoskar (2008).

The unlabeled corpus is first POS-tagged by an
off-the-shelf POS tagger to give counts of words
and POS-tags. The count of a (word, POS-tag)
pair from the unlabeled corpus is divided amongst
all supertags (for that POS-tag) based on the ratio
of supertags in the labeled data. For unseen words,
this gives an initial estimate that is informed by
marginal counts, counted over all words (with the
given POS tag) in the labeled data. For instance,
in the case of an unseen verb, the method will
result, say, in the transitive supertag being more
common than a ditransitive one, since transitive
supertags are overall more common than ditransi-
tive ones across all verbs in the labeled data. This
model thus gives us an informed baseline to eval-
uate models learnt from the semi-supervised pro-
cess, a baseline that is more informed than back-
ing off to the part-of-speech of the word. This
smoothed model also forms the initial model for
the EM estimation described in the section below.

3It is important for unsupervised estimation that the PCFG
contain non-zero lexical parameters for all words in the un-
labeled corpus. If not, sentences with unseen words will not
get an analysis and parameters for those words will never be
induced.

3 Semi-Supervised Learning of Lexical
Parameters

3.1 The Learning Problem
EM is notoriously fickle for learning struc-
tured models in semi-supervised settings, need-
ing tricky initialisation and careful constraining
(Mann and McCallum, 2010) (e.g. Charniak
(1993) for parsing, Merialdo (1994) for POS-
tagging). In our case, the initial model is a highly-
accurate, smoothed model obtained from labeled
data (§2.1). Our task is to retrieve an estimate
from the joint corpus of labelled and unlabeled
data that performs better than a smoothed esti-
mate from labeled data alone. In our unlexicalised
PCFG, grammatical parameters (i.e., non-lexical
rules) from the labeled data are fairly accurate 4.
We do not re-estimate these from unlabeled data
(following Deoskar (2008)). Instead, we solely
re-estimate lexical parameters, which are com-
plex and contain a lot of structural information lo-
calised onto the pre-terminal level of the tree (re-
call the examples in Fig. 1). This allows us to learn
syntactic information, while keeping the learning
problem adjacent to the lexical surface.

In the following sections, we describe two ways
in which we use the labeled data to constrain our
latent variable (preterminal supertag sequences):
structural constraints in the form of non-lexical
rules, and distributions over lexical parameters
p(w|τ) themselves. These constraints are included
in a well-founded manner: a structural probabilis-
tic prior over supertag sequences, and Dirichlet
priors over conditional distributions p(w|τ) (as
seen later in §3.5, by interpreting the learning pro-
cess as a maximum a posteriori unsupervised es-
timator). These priors direct the estimator to-
wards more promising parameter spaces, creating
a strong learning environment with a clear objec-
tive function.

3.2 A Prior Over Supertag Sequences
Notation:

w : terminal (word) TB : labeled corpus
τ : pre-terminal UC : unlabeled corpus
w : sequence of terminals
τ : sequence of pre-terminals
p(τ ) : distribution over τ
p̂(τ ) : relative frequency estimate of p(τ )

4This assumption is justified to a large extent in the case of
an unlexicalised grammar; however, grammar rules are also
subject to sparsity and may benefit from re-estimation.
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τ := 〈T, ι〉 consists of a POS-tag T and a se-
quence of features ι.

A PCFG, apart from defining a language and
distribution over terminal strings, also does so for
strings of pre-terminal symbols 5. If we consider
derivations down to the level of pre-terminals, the
(syntactic part of the) PCFG provides a distribu-
tion p(τ ) over sequences of pre-terminals τ . If
T (τ ) is the set of trees with τ as their leaves, then
p(τ ) is the sum of probabilities of all such trees
p(τ ) =

∑
T ∈T (τ ) p(T ).

We are concerned with estimating the condi-
tional probabilities p(w|τ), i.e., the parameters of
the conditional model p(w|τ ). We use Maximum-
Likelihood Estimation (MLE) for this purpose.
For the labeled part of the data TB, MLE boils
down to simply getting the relative-frequency es-
timate. For the unlabeled data UC however, we
need to marginalise over all plausible pre-terminal
sequences τ . As a consequence, p(τ ) directly
emerges as a prior over the latent variable τ . The
likelihood of the concatenation of the two corpora
can then be written as follows, with θ the set of
lexical parameters p(w|τ):

L(TB,UC; θ, p(τ )) =
∏

〈w,τ〉∈TB

p(w|τ ; θ)p(τ ) ∗

∏
w∈UC

∑
τ

p(w|τ ; θ)p(τ ) (1)

In general, this approach allows semi-
supervised MLE training of a model conditioning
on a latent variable, by introducing a prior
over the latent variable which can be directly
estimated from the labeled part of the training
data. For our model, after computing a PCFG
relative-frequency estimate for the parameters
p̂(τ ) on TB, we can shift our focus away from
the syntactical analyses in TB and effectively
treat this part of the data as a corpus of sentences
labeled with pre-terminal sequences.

3.3 MLE with Semi-Supervised EM
We estimate the parameter set θ of the conditional
model p(w|τ ) by maximising the likelihood of the
concatenation of the labeled and unlabeled cor-
pus. During the estimation we employ the esti-
mate p̂(τ ) that we retrieve from the labeled corpus

5Most PCFGs used in parsing employ pre-terminals, i.e.,
non-terminals which are the only ones which expand to ter-
minal symbols and only terminal symbols. Even if a PCFG
does not satisfy this requirement, it can be converted to an
equivalent Chomsky Normal Form grammar which does so.
Without loss of generality, we will here confine ourselves to
a grammar making use of pre-terminals.

Initialise θ0

for i = 1 to N iterations do
E-step {Find expected complete-data log-
likelihood, given current estimate}
Q(θ|θi−1) =
E[log(L(TB, 〈UC,UCτ 〉; θ, p̂(τ )))|TB,UC, θi−1]

M-step {Maximise Q in respect to θ}
θi = arg max

θ
Q(θ|θi−1)

end for
Figure 2: The EM algorithm for the semi-supervised
learning of p(w|τ)

TB as a prior over τ , i.e., its parameters are not a
subject of the estimation process and remain con-
stant. On the contrary, p̂(τ ) guides the estimation
process, showing a strong preference towards su-
pertag sequences which are syntactically justified.

Since τ is a latent variable for the unla-
beled corpus UC, arg maxθ L(TB,UC; θ, p̂(τ ))
cannot be found analytically. Instead, we use
the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977). We start with an initial-
isation point θ0, which, since we have labeled data
available, is the (smoothed) relative-frequency es-
timate of these parameters on TB.

E-step In the Expectation step, we find the ex-
pected value Q(θ|θi−1) of the complete data log-
likelihood (with UC completed with missing pre-
terminal sequences UCτ ) with respect to the miss-
ing data (pre-terminal sequences), given the ob-
served data (sentences in UC, 〈w, τ 〉 pairs in TB)
and the current estimate of the parameters θi−1.
Since the sentences in TB already have supertags,
in practice this step relates only to UC.

M-step In the Maximization step, the new esti-
mate θi is retrieved by maximising the expectation
of the E-step. The M-step under the constraints∑

w p(w|τ) = 1 can be performed analytically.
This involves computing the expected counts of
word-supertag pairs ci−1(w, τ) over the combined
corpus of labeled and unlabeled data, given θi−1.
This is equivalent to adding the observed word-
supertag counts from the labeled data to the ex-
pected counts from the unlabeled part, which can
be efficiently computed using the Inside-Outside
algorithm (Lari and Young, 1990). The update rule
for the parameters of the new estimate θi are:

θi(w|τ) =
cUCi−1(w, τ) + cTBi−1(w, τ)∑
w′ cUCi−1(w′, τ) + cTBi−1(w′, τ)

(2)
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3.4 Corpora Scaling Factors and Additional
Constraints

The impact of the labeled part of the data can be
fine-tuned as follows: since the training data is
seen as a concatenation of the labeled and unla-
beled part, we can scale them before concatenat-
ing them, i.e., take a ‘copies’ of the unlabeled data
together with b ‘copies’ of the labeled data. This
operation can be understood as merely altering the
input training corpus and has no effect on the exist-
ing analysis. In the new update formula, the scal-
ing factors of the corpora trickle down as scaling
factors of the (expected) counts:

θi(w|τ) =
a ∗ cUCi−1(w, τ) + b ∗ cTBi−1(w, τ)∑
w′ a ∗ cUCi−1(w′, τ) + b ∗ cTBi−1(w′, τ)

(3)
Secondly, we might also want to constrain the

estimation objective by limiting the number of
parameters of the conditional model p(w|τ ) to
be estimated. Many lexical parameters are es-
timated accurately from the treebank (for exam-
ple, those related to function words and other
high-frequency words), and estimation from unla-
beled data might hurt them. For each distribution
p(w|τ), we choose to retain values from TB for
some of the parameters which we assume are less
affected by sparsity issues (i.e., we keep these pa-
rameters fixed) while estimating the rest. Under
the same analysis as above, we end up with a sim-
ilar update formula as before. For each conditional
distribution given τ , if πfixed is the sum of the fixed
probability values and W τ

free the set of words for
which we wish to estimate p(w|τ), the remaining
(i.e., not fixed) probability mass is (1−πfixed) and
is distributed to the free parameters in proportion
to the related (expected) counts c(w, τ). We skip
the proof due to space limitations.

θi(w|τ) =

(1−πfixed)
a ∗ cUCi−1(w, τ) + b ∗ cTBi−1(w, τ)∑

w′∈W τ
free

a ∗ cUCi−1(w
′, τ) + b ∗ cTBi−1(w

′, τ)

(4)

3.5 Semi-Supervised Learning as Maximum
A Posteriori Estimation

In this subsection, we discuss an interpretation of
our learning method (i.e. maximum-likelihood of
the concatenated labeled and unlabeled corpora)
as Maximum a Posteriori (MAP) estimation solely
on the unlabeled corpus employing a prior p(θ)
over the parameter set θ. This is useful in order to
understand the role that the labeled data plays in
guiding estimation from unlabeled data. For each
of the multinomials p(w|τ ), consider a Dirichlet

conjugate prior with hyper-parameters α provid-
ing a distribution over the possible multinomial
parameter sets.

p(w, τ ; θ) = p(w|τ ; θ)p(τ )p(θ) (5)

The hyper-parameters α of the Dirichlet can be
interpreted as prior counts of the events that the
multinomial tracks, with each ατw corresponding
to word w emitted by pre-terminal τ . We take
advantage of this feature6 to introduce relevant
counts from the labeled corpus in the Dirichlet
hyper-parameters, setting each ατw = cTB(w, τ)+
1.

Dempster et al. (1977) show that EM can also
be used under MAP to climb towards the poste-
rior mode of the parameter space θ. Due to the
Dirichlet being conjugate to the multinomial dis-
tribution, it is easy to show that the new quantity
that we wish to maximise has the same functional
form as Q(θ|θi−1). Interestingly, for the Dirich-
let priors in Eq. (5), MAP estimation boils down
to the same update formula as in (2), establishing
an equivalent interpretation of the estimation pro-
cess which clarifies how the labeled training data
‘guide’ EM estimation on the unlabeled part of the
corpus at two distinct levels: (a) a structural prior
p(τ ) preferring syntactically correct pre-terminal
sequences, considering the interdependencies be-
tween pre-terminals in a sentence and (b) priors
over the parameter space itself p(θ), considering
lexical choice for each pre-terminal separately.

4 Experiments

We report experiments using a treebank PCFG
trained on approximately 36,000 sentences from
sections 0-22 of the Wall Street Journal (WSJ) por-
tion of the PTB, with about 5000 sentences held-
out for testing and development. Semi-supervised
training is carried out using 4, 8, 12 and 16 mil-
lion words of unlabeled WSJ data, after limiting
sentence length to <25 words. Inside-outside esti-
mation is implemented in Bitpar (Schmid, 2004).
The corpus scaling factor for labeled data is set to
8 (i.e., a = 1 and b = 8 in Eq. 3; this value makes
our labeled data ( 1 million words) weigh about
twice as much as our smallest unlabeled corpus of
4 million words. We experimented with setting the
scaling factor to 4, making the labeled corpus of 1

6Starting from an uninformed Dirichlet prior p(θ) with
ατw = 1 for all w, τ , the posterior p(θ|TB) after observing
the labeled data TB also takes the form of a Dirichlet distri-
bution with updated hyper-parameters ατw = cTB(w, τ) + 1.
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4M 8M 12M 16M
tsmooth 29.86 29.86 29.86 29.86
tparse 27.80 27.82 27.80 27.80

It 1 28.44 28.12 27.16 27.64
2 27.72 27.08 26.13 25.73
3 27.40 26.53 25.89 25.34
4 27.40 26.21 25.97 25.18
5 27.24 25.89 25.66 24.7
6 27.08 26.05 25.81 24.78
7 27.08 26.05 25.50 24.7
8 - - 25.42 24.62
9 - - 25.42 24.62
10 - - 25.18 -
11 - - 25.42 -

% Err.reduc 9.31 12.76 15.67 17.5

Table 1: Supertag error for unseen verbs in test Viterbi
parses, for different sizes of unlabeled training data

million words effectively equal in size to the unla-
beled corpus of 4 million words; however, a value
of 8 gives better results, and we report only these.

5 Evaluations

Learning lexico-syntactic information
We evaluate the learning of lexico-syntactic de-
pendencies by measuring the accuracy of supertag
assignment in Viterbi (maximum-probability)
parses of test sentences. We report this num-
ber for verbs, since they are the most important
lexical determiners of structure in a sentence, as
well as the most ambiguous. To evaluate unseen
verbs, we created a separate testset of 1200 sen-
tences with about 1250 token occurrences of un-
seen verbs (about 110 types), by holding out all
sentences with occurrences of these verbs from the
labeled data. These verbs have a wide variety of
ambiguous subcategorization frames and are thus
representative of typical verbs in the lexicon of
a language. This evaluation is a parsing-based
evaluation and gives us a focused way of measur-
ing the learning of syntactic structures associated
with unseen words (verbs in this case). Note that
each supertag is associated with a local or non-
local structure, and hence counting supertag accu-
racy in effect measures the accuracy of getting this
subtree-structure right. Since these supertags en-
code empty categories and functional tags, it is not
possible to compare other standard state-of-the-art
parsers on this metric, since they do not contain
either in their output. Table 1 shows the error in
identifying the correct supertag for these unseen
verbs in Viterbi parses of test sentences, for unla-
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Figure 3: Supertag error for unseen verbs in Viterbi
parses, for different sizes of unlabeled training data.

beled training data of sizes 4, 8, 12 and 16 mil-
lion words. The baseline model is the smoothed
treebank PCFG tsmooth (§2.1), with an error of
29.86%. This model does not contain lexical in-
formation specific to these verbs (being unseen).
Thus, in about 70% of the cases the parser as-
signs a correct supertag without verb-specific in-
formation. We create a second baseline by pars-
ing the unlabeled corpus with the model tsmooth
and obtaining Viterbi parses – this parsed corpus
is merged with the labeled data, keeping corpus
scaling factors same as before, and a PCFG tparse
extracted from it. This model is thus a self-trained
model – it improves the supertag error over tsmooth
to 27.8%, and does not change subsequently.

Semi-supervised EM training improves the er-
ror rate over tsmooth in the first iteration, and tparse
in the second. This improvement is already signif-
icant (p < 0.01, using McNemar’s test). The error
rate goes on to further improve in subsequent itera-
tions. The error rate also improves with increasing
sizes of unlabeled data. The best obtained error is
24.62% with 16M words (p < 0.0001), a substan-
tial error reduction of 17.5% over the smoothed
supervised model. Since these verbs have not oc-
curred in the labeled data, the improvements are
solely the result of learning from unlabeled data.
We also evaluated seen but low-frequency verbs
(frequency 1 to 5 in the training corpus). We see
a benefit for these as well, with an error reduction
of 8.97% (from 23.51 for the baseline tsmooth to
21.40 for 16M words of unlabeled data).

Figure 3 shows the learning curves for differ-
ent sizes of unlabeled data. The distance between
the 12M and 16M curves suggests that further im-
provements may be obtained by adding even more
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tsmooth It 1 2 3 4 5 6 7 8
Recall 86.49 86.74 ***86.83 86.79 86.79 86.78 86.80 86.79 86.79

Precision 86.84 86.84 **86.90 **86.90 86.83 86.86 86.88 86.88 86.87
f-score 86.56 86.79 **86.87 86.83 86.82 86.82 86.82 86.84 86.83

Table 2: Labeled bracketing f-scores on Sec. 23 of PTB (4M words, f < 5). *** p<0.001, ** p<0.01

unlabeled data.

Labeled bracketing
The PARSEVAL metric is not the best metric for
evaluating the lexico-syntactic learning that is the
focus of this paper, for two reasons. Firstly, it
is a coarse metric, known to be insensitive to
lexico-syntactic (i.e. subcategorization) informa-
tion (Briscoe et al., 1998), in addition to not count-
ing argument/adjunct distinctions, functional tags
or empty categories. Secondly, and more impor-
tantly, our method is targeted towards the learning
of rare/low-frequency events, which do not have
enough of a token count in Section 23 to make a
big impact. However, we do see a statistically sig-
nificant improvement in labeled bracketing scores
on Section 23 of the PTB (Table 2) (statistical sig-
nificance calculated using a randomised version of
the paired-sample t-test).

The improvements are not large, however they
are the first improvements to be obtained using
semi-supervised EM for a large-scale Penn Tree-
bank grammar. This is the result solely of learning
lexical parameters of low-frequency words (f <
5). It is not surprising that the improvements are
small – the total token count of words that our
method impacts (i.e., words with a frequency less
than 5 in the training data) constitute only 6.1%
tokens in Section 23 (excluding numbers, but in-
cluding proper nouns, for which it is not useful to
learn structural dependencies). However, they cor-
respond to about 34.2% types, relevant for a ob-
taining a broad-coverage lexicon, but not relevant
for a token-based evaluation like labelled bracket-
ing. It should be noted that while models in later
iterations are not better than the baseline, nor are
they significantly worse.

Another important point is that the f-score on
Section 23 remains stable when the value of the
cut-off frequency f is increased, and when unla-
beled data size is increased to 16M words (not
shown in table). Thus, although we obtain large
improvements in learning about unseen words (as
shown in the previous evaluation), the overall
quality of the models, as measured by labeled
bracketing does not degrade. This is an important
consideration for semi-supervised learning, since

It f < 5 f < 10 f < 20 f < 50 f < 1000

tsmooth 18.13 18.13 18.13 18.13 18.13
1 17.78 17.82 17.79 17.68 17.65
2 18.14 17.63 17.63 17.65 17.65
3 18.43 17.65 17.70 17.67 17.65
4 18.14 17.74 17.75 17.67 17.70
5 17.53 17.72 17.74 17.81 17.68
6 17.65 17.81 17.84 17.79 17.75
7 17.68 17.81 17.87 17.84 17.84

Table 3: Overall verbal supertag error, 4M words unla-
beled data. (It=iteration)

adding large amounts of unlabeled data tends to
have a negative impact on the supervised model.

Making more parameters free
We experimented with making more and more lex-
ical parameters free, by changing the cut-off fre-
quency f7. Surprisingly, this does not affect the
learning process much. The best model is ob-
tained with f < 5, in terms of labeled bracketing
scores, supertag accuracy for unseen verbs, as well
as overall supertag accuracy for verbs (seen and
unseen). Table 3 shows the overall supertag error
for all verbs (seen and unseen) for different values
of f . When high-frequency parameters are sub-
ject to unsupervised estimation, the error rate de-
grades by a small amount, but not much, even for
f < 1000. Thus, the structural constraints plus the
current corpus scaling factor (of eight) that scales
up the size of labeled data are together sufficient to
keep these estimates in the right ballpark, with the
cut-off frequency not playing much of a role. This
will be relevant to future work since it opens up the
possibility of learning even mid-to-high frequency
lexical items using this methodology.

5.1 Analysis

We present some examples of incorrect parses by
the baseline model tsmooth, and corresponding im-
proved parses by a semi-supervised EM-trained
model (10 iterations, 12M words unlabeled data).
These examples also serve to illustrate exactly
what is captured by measuring supertag accuracy
(our main evaluation). Fig. 4 shows improve-

7f is the occurrence freq. of words in TB above which
parameters are fixed i.e. estimates from unlabeled data are
not used.
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VP

VBG.n-p

exceeding

NP

its goals

PP-CLR

for getting back into operation
(a) Incorrect parse from baseline model

VP

VBG.n

exceeding

NP

NP

its goals

PP

for getting back into operation
(b) Correct parse from EM-estimated model

Figure 4: Improvement in PP attachment.

VP

VBZ.d

aims

PP-DIR

to profit

PP-MNR

by selling borrowed shares
(a) Incorrect parse from baseline model

VP

VBZ.s.e.to

aims

S

*NP* VP

TO

to

VP

VB.z

profit

PP-MNR

by selling borrowed shares
(b) Correct parse from EM-estimated model

Figure 5: Detection of an S structure for aims

ments in a common PP attachment case (some cat-
egories are simplified for clarity). This improve-
ment is due to learning a distribution for the un-
seen verb exceeding that represents its subcatego-
rization preference for ‘NP’ rather than ‘NP PP’
(VBG.n supertag in (b) as opposed to VBG.n-p
in (a)). Fig. 5 shows the improvement in assign-
ing a more complex supertag. In (a), to profit
is incorrectly parsed as a directional PP, and the
verb aims is assigned an incorrect supertag VBZ.d
(directional complement). The EM-trained gram-
mar gives the correct parse – the correct supertag
VBZ.s.e.to is assigned to aims, with the asso-
ciated structure of an S with a empty subject *NP*
and an infinitival (to) VP. Additionally, profit is
now correctly detected as a verb and assigned an
intransitive supertag (VB.z in our notation).

6 Related Work

We compare our work to prior research along sev-
eral dimensions: for instance, the use of semi-
supervised EM for a complex structured model,
the aspect of using labeled data to constrain or
guide estimation from unlabeled data, and the use
of unlabeled data to improve an already accurate,
high baseline treebank parser.

Semi-supervised learning for a generative
model employing the EM-algorithm was already
introduced in (Miller and Uyar, 1996). It has been
applied to text classification before (Nigam et al.,
1998, 2006) (we derive our inspiration from this
work), but has not been successful with more com-
plex NLP tasks such as parsing. In contrast to text
classification, where the latent variable is the doc-
ument class (amongst a few tens of classes), our
latent variable (pre-terminal supertag sequences)
is much richer in nature and takes an unbounded
number of values. While in Nigam et al. (2006)
a simple multinomial prior over document classes
is part of the joint model and is itself trained, we
have a rich structural prior obtained from labeled
data which is kept fixed. In addition, Nigam et al.
(2006) make use of a uniform Dirichlet prior over
the model parameters. Instead, we utilise the la-
beled corpus to impose an informed Dirichlet prior
over model parameters with a preference for con-
figurations closer to the relative-frequency esti-
mate of the labeled data.

Recently, there has been a lot of focus on semi-
supervised methods that can incorporate con-
straints on latent variables based on prior knowl-
edge, either in the form of labeled data or by
other forms of indirect supervision. Ganchev
et al. (2010); Graca et al. (2007) present the Pos-
terior Regularization framework, which incorpo-
rates data-dependent constraints encoded as model
posteriors on the observed data. The Generalized
Expectation criteria (Mann and McCallum, 2010,
2007) incorporates weakly labeled data or ‘side-
information’ such as marginal label distributions
to inform estimation from unlabeled data. These
methods have been shown to work for some struc-
tured tasks but have not been applied to a large
scale grammar yet, and whether they can be used
to improve a high baseline model is an open ques-
tion.

There is also a substantial body of work on su-
pertagging (Bangalore and Joshi (1999); Clark and
Curran (2004), amongst several others), but their
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focus has been on improving parsing efficiency.
Some other work focuses on unsupervised learn-
ing, but not for high-baseline supervised models
(for instance, Dridan and Baldwin (2010); Ravi
et al. (2010)).

The current work is most similar to Deoskar
(2008) who used a treebank PCFG with Inside-
outside to obtain ML estimates from an unlabeled
corpus with an intention similar to ours: to learn
lexico-syntactic dependencies. Their method gave
improved results, with error reductions of up to
31.6% on the supertag detection task (we are not
able to compare absolute numbers, since their tree-
bank model is different from ours). Their ap-
proach was based on frequency transformations of
inside-outside counts at each iteration: these trans-
formations ensured that unsupervised estimates
did not diverge far from the original treebank esti-
mates, playing the same role as our priors. Their
method did not have an interpretation in terms of a
well-understood objective function; it is therefore
not clear whether it has general applicability, or
will extend to larger unlabeled data. The current
work, although it shows somewhat more modest
improvements, overcomes these shortcomings.

McClosky et al. (2006) enhance the perfor-
mance of a state-of-the-art parser-reranker combi-
nation by self-training on large amounts of unla-
beled data. Much of the improvement in their case
comes from the ability of an external maximum-
entropy Parse Reranker (Charniak and Johnson,
2005) to select parses from the parser’s output for
the unannotated sentences. Our work differs from
McClosky et al. (2006) in that, firstly, they employ
a fully lexicalized parser, whereas our parser is un-
lexicalised with supertags as pre-terminals. We
are thus isolating lexico-syntactic dependencies,
rather than word-word dependencies. All our im-
provements come from enhancing the lexical com-
ponent of the PCFG. They find in their analysis
that lexical learning does not play a large role in
the improvements they obtain. Secondly, in con-
trast with their somewhat complex self-training
objective, we retrain the parser under a well known
and simple Maximum-likelihood objective. Koo
et al. (2008) improved a dependency parser by us-
ing word clusters learnt from unlabeled data (an
idea similar in some ways to learning supertag-
word dependencies, since supertags form finer
classes of words that POS tags do, but coarser than
words), showing the utility of learning such statis-

tics from unlabeled data. Most recently, Bansal
and Klein (2011) improved the Berkeley parser
(Petrov and Klein, 2007) by using surface counts
from Google n-grams. The method proved very
useful for some cases of parser disambiguation,
but it is unlikely that surface counts alone can be
used to learn long-distance or complex structural
properties.

7 Conclusions

We have used semi-supervised EM to learn com-
plex, ambiguous lexico-structural dependencies,
obtaining large improvements for the hardest case
of unseen verbs, as well as low-frequency verbs.
We used a parser that uses all the information in
the Penn Treebank, viz functional tags and empty
categories. Learning such information is crucial
for semantic analysis, besides being useful for
syntactic disambiguation, but falls in the long Zip-
fian tail of linguistic events for which unlabeled
data is the only learning source. We used labeled
data to derive priors that guided estimation from
unlabeled data to both the structural and lexical
level in a principled manner. Our structural prior
took the form of a PCFG; however it may be re-
placed by alternative, more complex models em-
ploying a different view on the labeled data.

This is the first instance of semi-supervised EM
improving a complex structured model, and we be-
lieve the success is due to tightly constraining esti-
mation from unlabeled data, as well as due to our
complex lexical parameters that isolate structural
information spread across a tree onto localised pa-
rameters of the model. The method has direct ap-
plicability to statistical grammars for strongly lex-
icalised formalisms like CCG and LTAG, of which
statistical models suffer from severe sparsity and
have not been successfully trained using semi-
supervised methods. Another area of future work
will be to incorporate supertags that encode other
forms of lexico-structural dependencies, such as
noun subcategorization or adverb attachment.
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Abstract 

In this paper, we describe and compare two 
statistical parsing approaches for the hybrid 
dependency-constituency syntactic repre-
sentation used in the Quranic Arabic Tree-
bank (Dukes and Buckwalter, 2010). In our 
first approach, we apply a multi-step pro-
cess in which we use a shift-reduce algo-
rithm trained on a pure dependency prepro-
cessed version of the treebank. After pars-
ing, the dependency output is converted into 
the hybrid representation.  This is compared 
to a novel one-step parser that is able to 
learn the hybrid representation without pre-
processing. We define an extended labelled 
attachment score (ELAS) as our perfor-
mance metric for hybrid parsing, and report 
87.47% (F1 score) for the multi-step ap-
proach, and 89.03% (F1 score) for the one-
step integrated algorithm. We also consider 
the effect of using different sets of morpho-
logical features for parsing the Quran, com-
paring our results to recent work on Modern 
Standard Arabic. 

1 Introduction 

Research into statistical parsing for English has 
resulted in over a decade of high-performance 
results (Collins, 1999; Charniak, 2000), with 
most work focusing on the Penn English Tree-
bank (Marcus et al., 1993). However, adapting 
these parsing models to other languages has been 
less successful. Results from the CoNLL-X 
shared task on multilingual dependency parsing 
showed that Arabic is one of the most challeng-
ing languages to parse, due to its rich morpholo-
gy and relatively free word order (Nivre et al., 
2007b). 

In this paper we consider statistical parsing for 
Classical Arabic, the direct ancestor of Modern 
Standard Arabic (MSA). As a training and test 

data source, we use the online Quranic Arabic 
Corpus (http://corpus.quran.com). This 
website is a useful study aid for understanding 
the Quran through grammatical annotation, and 
is used by 100,000 people monthly. In contrast to 
other recent annotation efforts for MSA 
(Maamouri et al., 2004; Habash and Roth, 2009), 
Quranic Treebank annotators have cross-checked 
their analyses against historical works based on 
the traditional Arabic grammar known as i’rāb  
 Salih, 2007; Dukes et al., 2011; Dukes) (إإعراابب)
and Buckwalter, 2010). To provide annotation 
that closely follows traditional grammar, the 
treebank creators used a hybrid representation 
that supports relations between morphemes, as 
well as between phrases, clauses and sentences. 
The treebank also includes empty nodes for pro-
drop and for semantic elision. 

This representation presents several challenges 
to statistical parsing. Possible pipeline approach-
es include converting to pure constituency or to 
pure dependency as a preprocessing step. The 
alternative we pursue is using an integrated mod-
el to parse the hybrid representation. For other 
parsing tasks, integrated models have been 
shown to out-perform pipeline approaches, e.g., 
Goldberg and Tsarfaty (2008) integrate morpho-
logical and syntactic disambiguation for Hebrew, 
and report improved parsing performance. 

In the next section, we review the Treebank. 
In Section 3, we survey related work. Section 4 
describes our parsing algorithm. We present our 
parsing approaches and evaluate in Sections 5 
and 6, respectively. 

2 The Quranic Arabic Treebank 

For our parsing experiments we use version 0.5 
of the Quranic Treebank, containing 37,578 
word-forms (~ 49% of the full Quranic text), 
segmented into 47,220 tokens (Dukes and 
Buckwalter, 2010). A common scheme for en-
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coding dependency treebanks is the CoNLL-X 
format (Nivre et al., 2007b). The Quranic Tree-
bank uses an extension of this to support phrases 
and elided words. Figure 1 shows an example 
sentence illustrating common tags used in the 
treebank. The extended format adds two new 
columns: TYPE indicates the different types of 
nodes, and EXTENT defines a phrase by specify-
ing start and end terminal nodes. Head nodes, 
dependency labels, and morphological features 
are shown in separate columns. On the tree-
bank’s website, this information is represented 
visually using dependency graphs (Figure 2). 
Read from right-to-left, this graph uses a conven-
tion that dependent nodes point towards their 
heads, and edges are labelled with roles in Ara-
bic. The second Arabic word in parenthesis is an 
implied elided subject pronoun that has been 
syntactically annotated, and is not in the original 
Quranic verse. The last word on the left has been 
segmented into two tokens, resulting in a total of 
five terminal nodes in the graph. 

This hybrid representation is based on the tra-
ditional i’rāb analysis found in Salih (2007), a 
12-volume work collating previous historical 
analyses, e.g., the analysis for Figure 2 states: 

 
In this verse, ‘said’ is a perfective verb, 
whose subject is an elided pronoun of the 
form ‘he’. The noun ‘lord’ is in the nomina-
tive case and is the predicate of the demon-
strative pronoun ‘this’. The suffixed pronoun 
‘my’ attached to the noun is a possessive clit-
ic. The nominal sentence, headed by the 
demonstrative pronoun, acts as the object of 
the verb ‘said’.  

 
The example sentence shown in Figures 1 and 

2 illustrates several linguistic aspects of the 
Quranic Treebank which make it challenging for 
statistical parsing: rich morphology, phrase struc-
ture, and elision. We discuss various aspects of 
the Treebank next. 

Dependency: Although traditional Arabic 
grammar developed independently from modern 
European linguistics, it uses the concepts of 
heads (āmil) and dependents (ma’mūl fī-hi). 
Along with Panini’s grammar for Classical San-
skrit, it is considered to be one of the origins of 
modern dependency grammar (Owens, 1988; 
Bohas et al., 1990). 

Morphemes: The basic unit of analysis in tra-
ditional Arabic grammar is the morphological 
segment. Compound word-forms in Classical 
Arabic are tokenized into independent grammati-
cal units. This agrees with other recent treebank-
ing efforts for MSA such as the Columbia Arabic 
Treebank (Habash and Roth, 2009), the Prague 
Arabic Dependency Treebank (Smrž, et al., 
2008), and the Penn Arabic Treebank (Maamouri 
et al., 2004). This also compares with recent 
parsing work for other morphological rich lan-
guages. For example, Eryiğit et al. (2008) show 
that for Turkish using groups of morphemes as 

Node Type Extent Form Tag Head Dep Features 
1 T _ qaAla V _ _ PERF|LEM:qaAla|ROOT:qwl|3MS 
2 E _ Huwa PRON 1 subj _ 
3 T _ ha`*aA DEM _ _ LEM:ha`*aA|MS 
4 T _ rab~i N 3 pred LEM:rab~|ROOT:rbb|M|NOM 
5 T _ Y PRON 4 poss PRON:1S|SUFFIX 
6 P 3-5 _ NS 1 obj _ 

 
Figure 1: Example hybrid graph in extended CoNLL-X format. Node types: T = Terminal node, E = Elided word / 

Empty category, P = Phrase node; Tags: V = Verb, PRON = Pronoun, DEM = Demonstrative, N = Noun, NS = 
Nominal Sentence; Dependencies: subj = subject, pred = predicate, poss = possessive construction, obj = object. 

 (6:76:9) 
rabbī 

(is) my Lord.’ 

(6:76:8) 
hādhā 
‘This 

(6:76:7) 
qāla 

(He) said, 
 

 

Figure 2: Hybrid graph in presentation form for the 
annotated example: He said, ‘This is my Lord.’ 
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the basic unit instead of words improves parsing 
accuracy. 

However, in contrast to other Arabic treebanks 
that define their own segmentation schemes, 
morphological annotation in the Quranic Tree-
bank closely follows segmentation rules from 
i’rāb (Dukes and Habash, 2010). In addition to  
part-of-speech, the grammar describes multiple 
features for each morpheme, including person, 
gender, number, verb mood, noun case and state. 
The treebank also includes roots and lemmas. A 
root is a sequence of three or four radicals that 
are used to group words with related derivational 
morphology. The lemma is a further subdivision 
that groups forms varying only in inflectional 
morphology (Habash, 2010). In our experiments, 
we consider how different combinations of these 
rich morphological features affect the accuracy 
of statistical parsing. 

Phrases: Most dependencies in the treebank 
relate morphological segments. The treebank 
also includes dependencies between these units 
and phrases, and between pairs of phrases. In 
accordance with traditional Arabic grammar, the 
Quranic Treebank annotates five phrase types: 
nominal sentences (جملة ااسمیية), verbal sentences 
 preposition ,(جملة شرططیية) conditionals ,(جملة فعلیية)
phrases (جارر وومجروورر) and subordinate clauses ( تأوویيل
 There are simple rules for distinguishing .(مصدرر
between these phrase types in the grammar. 

Phrase nodes are used to model constituency 
structure. In a pure dependency representation, 
the grammatical relationship between a pair of 
phrases is implicit in the edge that connects the 
head words of the two phrases. In the traditional 
Arabic grammar of the Quran, phrase-level rela-
tions such as conjunction and apposition are 
made explicit in syntactic analysis. Since the 
grammatical rules that determine these phrase 
structures allow recursion, the Quranic Treebank 
includes hybrid graphs that contain multiple lev-
els of nested consistency structure. 

Elision: In the Penn English Treebank, empty 
categories are used for constructions such as null 
complementizers: ‘The man (0) I saw’, and for 
wh-movement: ‘What1 do you want (NP *T*-
1)?’. The Quranic Treebank distinguishes be-
tween morphological, syntactic and semantic 
elision. Like MSA, Classical Arabic is a pro-
drop language. A verb’s dropped subject pro-
noun is implied through its morphology. Syntac-
tic elision arises in order to satisfy constraints in 
the grammar. For example, in certain cases prep-
osition phrases are attached to nouns via an elid-
ed adjective. Semantic elision involves elided 

words, used to explain the reason for case mark-
ers in certain verses of the Quran. Dukes, Atwell 
and Sharaf (2010) provide a more detailed de-
scription of elision in the Quranic Treebank. In 
our parsing experiments in this paper, we handle 
the three types of elision separately as they form 
different edge patterns in dependency graphs. 

3 Previous Related Work 

Related computational work includes statistical 
parsing for other morphologically rich languages, 
as well as recent parsing work for hybrid repre-
sentations, and for recovering elision.  

Hebrew, another Semitic language, faces a 
similar set of challenges in comparison to pars-
ing Arabic. Both feature relatively free word or-
der and require morphological disambiguation 
for syntactic parsing. For dependency grammar, 
Goldberg and Elhadad (2010), apply a pipeline 
approach by disambiguating morphology and 
syntax in two separate steps. They report a 
84.2% labelled attachment score using gold mor-
phological disambiguation, and 76.2% when us-
ing automatic morphological analysis. 

For Arabic, Kulick et al. (2006) discuss pars-
ing the Penn Arabic Treebank using phrase struc-
ture grammar. One conclusion that can be drawn 
from their results is that parsing using a constitu-
ency representation leads to lower accuracy for 
Arabic in comparison to English. They report a 
Parseval F1-score of 74% for version 1 of the 
Penn Arabic treebank, and 88% for English using 
a similar sized corpus, trained using Bikel's par-
ser (Bikel, 2004). 

More recent work for Modern Arabic has fo-
cused on dependency grammar. Marton et al. 
(2010) use MaltParser for parsing the CATiB 
treebank, and experiment with different combi-
nations of rich morphological features. Like the 
Quranic Arabic Treebank, CATiB is also based 
on traditional Arabic grammar, although it uses a 
subset of the full traditional syntactic roles and 
only six POS tags. Another related Arabic tree-
bank that uses a dependency representation is the 
Prague Arabic Dependency Treebank (Smrž, et 
al., 2008). Hall et al. (2007) use MaltParser to 
parse ten different languages, including data 
from the Prague Arabic Treebank. They compare 
this to an ensemble system that combines six 
different strategies to boost parsing performance.  

In addition to parsing Arabic, MaltParser is 
ideally suited to parsing morphologically rich 
languages, due to its integration of flexible fea-
ture sets during training (Nivre, et al., 2007a). 
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For example, Bengoetxea and Gojenola (2010) 
use MaltParser for version 2 of Basque Depend-
ency Treebank, although to simplify the syntactic 
representation this latest version no longer in-
cludes empty nodes for ellipsis and coordination. 
Most statistical parsers do not handle elision. 
However, Gabbard et al. (2006) show that it is 
possible to fully recover Penn Treebank-style 
trees for English including empty categories, by 
training a cascade of statistical classifiers. 

For parsing hybrid representations, Hall and 
Nivre (2008) adapt MaltParser to the German 
TIGER and TüBa-D/Z treebanks, reporting a 
labelled attachment score close to 90%. Similar-
ly, Hall et al. (2007) adapt MaltParser for hybrid 
constituency-dependency parsing of the Swedish 
Talbanken05 treebank. These treebanks are hy-
brid in a different sense to the Quranic Treebank. 
For each sentence, they include dual annotation 
in both constituency and dependency grammar, 
in contrast to combining these into a single rep-
resentation. A related example is the Hindi/Urdu 
multi-representational treebank (Bhatt et al., 
2009). For the baseline experiment that we de-
scribe in section 5, we use a dependency-based 
encoding similar to the scheme Hall et al. (2007) 
use for parsing the hybrid German and Swedish 
treebanks.  

4 Hybrid Statistical Parser 

In this section we describe the Hybrid Statistical 
Parser (HSP) that we use for our parsing experi-
ments. Instead of using MaltParser, we imple-
mented a new parser in Java using a similar algo-
rithm, along with a new graphical user interface 
(Figure 3). We made this decision to allow us to 
extend the parsing architecture, and created the 
user interface to help debug the parser. As with 
previous work that uses MaltParser for other 
morphologically rich languages, we assume that 
input sentences to HSP have been tokenized and 
already annotated with part-of-speech tags and 
features. We use gold-standard tokenization and 
POS tags. 

HSP outputs both pure and hybrid dependency 
graphs. Each of these have a formal definition. 
Let (t1, ..., tn) be an input sentence that has been 
morphologically tokenized, and let R denote the 
set of dependency relations. A pure dependency 
graph is defined as G = (V, E, L), where V = {t1, 
..., tn} are the vertices formed from the input to-
kens, E ⊆ V × V are the graph’s edges, and L : E 
→ R are the edge labels. For hybrid graphs, we 
extend the set of vertices to include phrase 
nodes. Let pij = (ti, tj) denote the phrase that 
spans the tokens from ti to tj inclusively, and let 
P denote the set of all possible phrases. We de-

 
 

Figure 3: Custom Java application for HSP showing the steps in an example parsing program for Arabic. 
The various operations on the left panel are described in Section 4.1. 
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fine a hybrid dependency graph as G' = (V', E', 
L') where V' = {t1, ..., tn} ⋃ P' and P' ⊆  P. As 
before, the edges are E' ⊆ V' × V' with labels L' : 
E' → R. For elision, we further extend the set of 
vertices to include empty categories as additional 
terminal nodes. 

4.1 Parsing Algorithm 

HSP uses a shift-reduce algorithm similar to 
Nivre’s. Two data structures are used for parsing: 
a stack S for temporary storage and a queue Q to 
buffer input. In its initial configuration, the par-
ser has all input tokens placed onto the queue 
with the stack empty: Q = (t1, …, tn) and S = ∅.  
The   parser   reads from the queue and finishes 
when the queue and stack are both empty (Q = ∅  
∧   S = ∅). To construct a dependency graph, a 
sequence of operations are executed by the par-
ser, analogous to the instructions in a computer 
program. Figure 3 shows the operations used to 
parse the example sentence used previously in 
Figures 1 and 2. 

In contrast to MaltParser, HSP uses an extend-
ed instruction set. To define these operations, let 
Q = (q1, …, qA) and S = (s1, …, sB) be the state of 
the parser at an intermediate stage of the pro-
gram, and Q' and S' be the state after executing 
the next instruction. The operations are: 

 
1. SHIFT reads the next token from the queue and 

moves this to the top of the stack: Q' = (q2, 
…, qA) and S' = (q1, s1, …, sB). 
 

2. REDUCE pops the stack: S' = (s2, …, sB). 
 
3. LEFT adds an edge to the graph, with s1 as the 

head node and s2 as the dependent node. 
 
4. RIGHT adds an edge to the graph, with s2 as 

the head node and s1 as the dependent node. 
 
5. REDUCE2 pops the second node on the stack: 

S' = (s1, s3, …, sB). 
 
6. EMPTY adds an empty node e to the graph 

after s1. The elided node e is pushed onto the 
stack: S' = (e, s1, …, sB). 

 
7. SUBJECT is only applicable if s1 is a verb. An 

elided pronoun e is inserted after s1, and a 
subj edge is added with s1 as the head node, 
and e as the dependent node. e is pushed onto 
the stack: S' = (e, s1, …, sB). 

 

8. SUBGRAPH adds a phrase node p to the graph 
spanning the terminal nodes from s1 to the 
end of the subgraph with root s1. p is pushed 
onto the stack: S' = (p, s1, …, sB). 

 
Three of these instructions are parameterized. 

LEFT and RIGHT take an edge relation r ∈ R, and 
EMPTY takes a part-of-speech as a parameter. 
The last four instructions are extensions com-
pared to MaltParser. EMPTY is used to add elided 
nodes with a specific part-of-speech. SUBJECT is 
similar to the combination EMPTY then LEFT , but 
takes into consideration the morphology of the 
verb to produce a correctly inflected subject pro-
noun. REDUCE2 is useful in the situation where 
an edge should be formed between the first and 
third elements of the stack, so that the second 
element can be easily discarded. After a SUB-
GRAPH operation, it is possible to use REDUCE2 
to discard the head of the subgraph, which would 
now be at the second element of the stack. See 
the parsing run in Figure 3 for an example of 
this. Only the first four instructions listed above 
are used for pure dependency graphs. In hybrid 
mode, the parser uses all eight instructions. 

4.2 Machine Learning 

Like MaltParser, HSP uses supervised learning 
during training. For each graph in the training 
data, an oracle driven by a small set of rules is 
used to deduce the sequence of actions required 
to construct the graph. For machine learning, we 
use support vector machines, implemented by the 
Java version of LIBSVM (Chang and Lin, 2001). 
For each step in the parsing programs, a collec-
tion of SVM classifiers learn to predict the next 
operation, given the feature vector associated 
with the first few nodes at the top of the queue 
and stack. Feature selection is described in more 
detail in the next section. 

We apply the standard technique of binariza-
tion of input features in the training data, so that 
a single symbolic feature is represented using 
many binary predicates (Yamada and Matsumo-
to, 2003). To reduce learning time, the training 
set is partitioned using the part-of-speech at the 
top of the stack, and one statistical classifier is 
trained for each part-of-speech. We use the same 
LIBSVM settings that Hall and Nivre (2008) use 
for parsing the German TIGER and TüBa-D/Z 
treebanks: γ = 0.2 and r = 0 for kernel parame-
ters, C = 0.5 for penalty and ε = 1 for termina-
tion. We also use the same quadratic kernel:  

 
K(xi, xj) = (γxi

Txj + r)2. 
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5 Parsing Experiments 

We compare two approaches to parsing the tree-
bank. First, we use HSP in pure dependency 
mode and recover the hybrid representation 
through a post-processing step. The second ex-
periment uses an integrated approach that builds 
phrase structure and elided nodes during parsing. 
Both of these experiments are repeated using 
different sets of morphological features. 

5.1 Multi-step Parsing 

In our first experiment, we perform the following 
steps: 
 
1. The training data is converted to pure de-

pendency by encoding additional information 
using new complex edge labels. 

 
2. In the learning phase, we restrict HSP to using 

only the four operations that are required for 
pure dependency parsing: SHIFT, REDUCE, 
LEFT and RIGHT. 

 
3. The parser’s output is pure dependency. We 

recover the hybrid representation by reversing 
the transformations in step 1. 

 
The size of the unconverted dataset is 50,955 

tokens, including 3,775 empty categories. The 
dependency graphs in the treebank contain 9,847 
phrase nodes and 38,642 edges. After conver-
sion, all phrase nodes and empty categories were 
removed, resulting in 47,220 tokens and a total 
of 34,849 edges. The number of edges dropped 
due to collapsing edges between empty catego-
ries. 

For conversion, we use a similar process to 
Hall et al. (2007, 2008)'s approach for German 
and Swedish, but adapt this to the representation 
used for traditional Arabic grammar. During the 
conversion process, we apply graph transfor-
mations to encode information about phrase 
structure and elision: 

Phrases: Let p = (ti, tj) be a phrase node in the 
hybrid graph covering the terminal nodes from ti 
to tj inclusively. The conversion for the phrase 
node p is based on the observation that the 
phrase covers a subgraph with root ω0. If p is a 
dependent node with edge E, head h, and de-
pendency relation r, we remove E and p and add 
a new edge E' with dependent ω0, head h, and 
label +r. Similarly, if p is a head node, we add a 
new edge with label r+. For the inverse trans-
formation, +r and r+ denote expanding the 

edge’s dependent or head into a subgraph respec-
tively. The label +r+ indicates that both head and 
dependent nodes for that edge should be expand-
ed, to produce an edge between a pair of phrases. 
Figure 4 illustrates this conversion process. As 
with the dependency graphs displayed on the 
treebank's website, the convention in these dia-
grams is that dependents point towards heads. 

Elision: For verbs with elided subject pro-
nouns, we simply remove these from the con-
verted graph as they are easily recovered through 
the verb's rich morphology. To keep the trans-
formation rules simple, for syntactic elision we 
consider only the most common case where two 

 
 

Figure 4: Conversion of phrase structure. 

 

Figure 5: Conversion of syntactic elision. 
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tokens are connected via an empty category 
(Figure 5). If a depends on an elided node e with 
part-of-speech pos and relation r1, and e depends 
on b with relation r2, we remove e and the two 
edges. We add a new edge with dependent a, 
head b and complex label r1 | pos | r2. 

As we discuss in the evaluation section, the 
performance of the baseline approach to parsing 
is affected by the coverage of the conversion 
process. However, the small set of rules above 
for phrases and elision allow us to correctly re-
cover nearly all edges in the hybrid graphs 
through this process. 

5.2 Integrated Parsing 

The integrated approach is simpler because there 
are no conversion steps. We train HSP using the 
treebank’s full hybrid representation without 
preprocessing. In this experiment, we add to the 
instruction set the four parser actions that are 
required to build hybrid graphs: REDUCE2, EMP-
TY, SUBJECT and SUBGRAPH. Although in both 
cases the same set of features are available dur-
ing the training phase, the two approaches lead to 
different machine learning problems. In the first 
experiment, the parser has to learn more complex 
edge labels. In the second experiment, there are 
fewer classes for classification, and phrase struc-
ture and elision are integrated directly into the 
parsing process. 

5.3 Feature Selection 

The parser uses graph features as well as mor-
phological features, taken from the top three 
nodes on the stack and the top from the queue. 
The graph features are DEPREL, IS ROOT and IS 
EDGE. The first of these is a compound feature: 
For each relation r ∈ R, a binary predicate is set 
if the node has a dependent with that relation. IS 
ROOT is set if the node is the root of a well-
formed subgraph, and IS EDGE is set if s1 and s2 
form a previously parsed edge. 

After initial work using a subset of the data, 
we decided to use five different sets of morpho-
logical features, which we grouped together to 
simplify the number of parsing experiments 
(Figure 6). A more detailed description of these 
features is given in the treebank’s annotation 
guidelines (Dukes, Atwell and Sharaf, 2010). 
Each feature set also includes the same graph 
features. For our parsing experiments, we use 
gold-standard morphological data for the parser’s 
input. 

 

In comparison, Marton et al. (2010) show that 
for modern Arabic using predicted features or 
gold-standard morphological features for parsing 
achieves similar results. Our different feature 
sets are described below: 

POS: This baseline feature set includes the 
part-of-speech and phrase tags for the selected 
nodes. 

MORPH6: This set adds the core morphologi-
cal features that might help with parsing, based 
on domain knowledge of traditional Arabic 
grammar: VOICE, MOOD, CASE and STATE. State 
is either not-specified, definite (for the Arabic 
definite article al- prefix) or indefinite (for tan-
ween). 

MORPH9: Adds a further three morphological 
features. PRONTYPE marks a pronoun clitic as 
either an object pronoun or subject pronoun. Due 
to Arabic’s rich morphology, these different 
types of clitics are common, and they form either 
subject or object dependency relations when at-
tached to verbs. The feature SEGTYPE indicates if 
a token is a prefix, stem or suffix. The COPULA 
feature is used for a subset of copular verbs 
known as kāna wa akhwātaha (كانن ووااخوااتھها). Alt-
hough assigned the same part-of-speech tag as 
normal verbs, in traditional Arabic grammar the-
se words form subject and predicate relations 
instead of subject and object. 

LEMMA: To test the effect of lexicalization on 
the parser, this feature set adds lemmas. 

PHI: This feature set includes the so-called 
phi-features of person, gender and number. 

Features POS MORPH6 MORPH9 LEMMA PHI 

POS Y Y Y Y Y 
PHRASE Y Y Y Y Y 
VOICE - Y Y Y Y 
MOOD - Y Y Y Y 
CASE - Y Y Y Y 
STATE - Y Y Y Y 
PRONTYPE - - Y Y Y 
SEGTYPE - - Y Y Y 
COPULA - - Y Y Y 
LEMMA - - - Y Y 
PERSON - - - - Y 
GENDER - - - - Y 
NUMBER - - - - Y 

            

 
Figure 6: Morphological features used for parsing. 
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6 Evaluation 

6.1 Metrics and Methodology 

Two standard metrics for evaluating parsing per-
formance are LAS (labelled attachment score) 
for pure dependency parsing, and Parseval for 
constituency parsing. LAS is a single measure, 
while Parseval defines three measures: precision, 
recall, and F1-score, where F1-score is the har-
monic mean of precision and recall. For hybrid 
parsing, we combine both LAS and Parseval into 
a new metric which we call ELAS (extended la-
belled attachment score). We first define the two 
existing metrics in set-theoretic terms, and then 
show how they can be combined. 

In the CoNLL-X shared task on multilingual 
dependency parsing (Nivre, et al. 2007b), LAS 
was used an official accuracy metric. Let (t1, ..., 
tn) be an input sentence that has been morpholog-
ically tokenized, G = (V, E, L) be an expected 
graph from the reference data, and G' = (V', E', 
L') be the corresponding pure dependency graph 
output by the parser. Let H(t) be the expected 
head of the token t ∈ {t1, ..., tn}, or ϕ if t is head-
less. Similarly, if H(t) ≠ ϕ, let l(t) ∈ L denote the 
expected label of the edge e ∈ E from t to H(t). 
The LAS metric for the dependency parse pair 
(G, G') is then defined as the cardinality ratio: 
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For a pure dependency graph, this is the frac-

tion of tokens that are assigned the correct head 
node and dependency label. This token-based 
definition does not easily generalize to hybrid 
parsing since hybrid graphs can contain edges 
between phrase nodes. Therefore, we provide a 
second definition of LAS by shifting focus from 
tokens to edges. For a well-formed pure depend-
ency graph, the number of tokens with heads is 
the same as the number of edges. We define the 
edge equivalence relation e ≡ e' to be true if and 
only if e and e' both connect t to H(t) and if l(e) = 
l(e'). We then have the following edge-based def-
inition: 

LAS = 
( ){ }

E
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For constituency phrase structure, the Parseval 

metric (Black et al., 1991) can also be defined 
using a similar equivalence relation. Let C de-
note the set of constituency labels. Given a sen-

tence (t1, ..., tn), we let pij = (ti, tj) be the phrase 
that spans the tokens from ti to tj inclusively with 
label c(p) ∈ C. Let P denote the set of non-
terminal phrases in a parse tree from the refer-
ence data, and P' be the corresponding set of 
phrases output by a pure constituency parser. A 
phrase p' ∈ P' is considered to be correct if there 
exists an equivalent phrase p ∈ P with the same 
label that spans the same tokens. We define the 
phrase equivalence relation p ≡ p' ⇔ ∃i, j : p = pij 
∧ p' = p'ij ∧ c(p) = c(p'). For the constituency 
parse pair (P, P') we define Parseval precision 
and recall scores as: 
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For hybrid parsing, we consider an edge in a 

parsed graph G' = (V', E', L') to be correct if it 
has an equivalent edge in the reference graph G 
= (V, E, L). Two edges are equivalent if they 
have the same edge label, and connect equivalent 
vertices. A vertex v ∈ V may represent a token, a 
phrase node or elision. We define the vertex 
equivalence relation v ≡ v' to be true when v and 
v' are both the same token. For two vertices that 
are phrases (v = p ∧ v' = p'), we use the same 
phrase equivalence relation p ≡ p' in the Parseval 
metric. For elision, two vertices are equivalent if 
they have the same POS tag and surface form. 
For two edges, e from v to H(v), and e' from v' to 
H'(v'), we define the edge equivalence relation as 
e ≡ e' ⇔  v ≡ v' ∧ H(v) ≡ H' (v')  ∧ l(e) = l(e'). We 
then define ELAS precision and recall scores as: 

 

Precision = 
( ){ }

E
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Recall = 
( ){ }

E
eeEeEe ʹ′≡∈∃ʹ′∈ʹ′ :

 

 
and the F1-score as the harmonic mean of preci-
sion and recall. This metric combines LAS and 
Parseval. For pure dependency graphs, ELAS 
recall is the same as vanilla labelled attachment 
score. For an edge between two phrase nodes in a 
hybrid graph, the metric uses a Parseval-like 
measure of correctness for the two phrases. 

99



6.2 Results 

We use ELAS as our evaluation metric for meas-
uring the performance of HSP in both the one-
step and two-step parsing experiments. To re-
duce sample bias, we use 10-fold cross-
validation. Our F1-scores are calculated by ag-
gregating the total number of true positives and 
false positives across the ten folds, as per method 
three in Forman and Scholz (2009). 

Figure 7 shows the results for the two parsing 
approaches. Using the best performing feature 
set, HSP achieves an F1-score of 87.47% for the 
multi-step approach, and 89.03% for the inte-
grated approach. This high performance may not 
only be due to the treebank being annotated with 
rich morphological features or our choice of al-
gorithm. The Quranic text contains many exam-
ples of syntactic and stylistic repetition (Salih, 
2007). Repetition leads to an easier machine 
learning problem, as fewer non-standard cases 
are encountered during training. 

For statistical parsing, the five feature sets 
above each give different results. It is surprising 
that the POS feature set is already a good base-
line. Using no morphological features and only 
part-of-speech tags, this feature set produces 
scores of 75.54% and 76.61% for the two ap-
proaches respectively. Our explanation for this is 
the fact that the treebank uses a detailed part-of-
speech tagset, with 45 tags. However, we note 
that all five feature sets use the same graph fea-
tures defined in the previous section. Without 
these graph features, accuracy for the baseline 
POS feature set drops to only 21.64%. The graph 
features provide constraints on possible depend-
encies. For example, the DEPREL features stop 
additional edges being formed where these 
would not make sense based on examples in the 
training data, such as multiple subjects for the 
same verb. 

The next feature set MORPH6 adds voice, 
mood, case and state. The improvement over the 
POS feature set is 5.56% for the multi-step ap-
proach and 5.97% for the integrated approach. 
This is consistent with recent work for parsing 
Modern Standard Arabic. Marton et al. (2010) 
use a similar set of morphological features to 
improve parsing accuracy for CATiB (Habash 
and Roth, 2009). The next set MORPH9 similarly 
improves performance using further morphologi-
cal features. 

In comparison to parsing Modern Standard 
Arabic, the best feature set is LEMMA, which 
boosts performance by a further 1.33% and 
1.17% respectively over MORPH9. However, the 
feature set PHI that adds person, gender and 
number, surprisingly degrades performance by 
0.19% and 0.13% for the two approaches. This 
contrasts with recent work for parsing CATiB, 
where the phi-features have been shown to be 
helpful. We conclude that adding these features 
may not be statistically significant for parsing the 
Quran using 10-fold cross-validation, or that this 
last feature set possibly includes too many fea-
tures for our SVM model, given the relatively 
small size of the current version of the treebank. 

6.3 Effect of the Conversion Process 

The results above show that the integrated parser 
outperforms the multi-step parser for all of the 
five feature sets. However, it is interesting that 
the absolute difference between the two F1-
scores consistently lies in the narrow band 1.4 ± 
0.32. This suggests that the two parsers have 
similar sensitivities to feature selection. 

Another factor affecting the performance of 
the multi-step parser is the accuracy of the con-
version process from the hybrid representation to 
pure dependency, and then back to hybrid. The 
rule-based conversion algorithm outlined in sec-
tion 5.1 correctly recovers 94.81% of edges. Alt-

Feature Set 
Multi-step Parser Integrated Parser 

F1-Diff. 
Precision Recall F1-Score Precision Recall F1-Score 

        

POS 76.73 74.38 75.54 78.28 75.01 76.61 +1.07 
MORPH6 82.52 79.74 81.10 84.62 80.64 82.58 +1.48 
MORPH9 86.98 85.32 86.14 89.42 86.35 87.86 +1.72 
LEMMA 88.42 86.54 87.47 90.98 87.16 89.03 +1.56 

PHI 88.23 86.35 87.28 90.87 87.02 88.90 +1.62 
        

 
Figure 7: Extended labelled attachment scores (ELAS) for parsing the treebank using different feature sets. 
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hough it might have been possible to improve the 
accuracy of the conversion process, this would 
have required a larger set of more complex rules 
for uncommon structures, such as the few cases 
of non-projective edges in the treebank, or for 
semantic elision. 

To measure the effect of the conversion pro-
cess, we performed a further experiment. We 
excluded from the treebank all dependency 
graphs that did not have a perfect reversible con-
version to pure dependency (~ 8% of all graphs). 
We then repeated the 10-fold cross-validation 
tests using the best performing configuration for 
both approaches, the LEMMA feature set. On this 
subset of the data, the multi-step parser achieved 
an F1-score of 88.89% (89.33 precision, 88.45 
recall), and the integrated parser’s F1-score was 
90.24% (91.48 precision, 89.03 recall). The dif-
ference between the two F1-scores was +1.35, 
which lies in the same narrow band of 1.4 ± 0.32. 

These results suggest that the absence of a 
conversion process is not the largest contributing 
factor to integrated parser’s improved perfor-
mance. Although additional investigation into 
optimizing the two-step parsing algorithm could 
be further pursued, we choose not to. Instead, we 
argue that the integrated approach is not only 
simpler as there is no conversion, but is also bet-
ter suited to the hybrid representation in the tree-
bank. 

7 Conclusion and Future Work 

In this paper we presented HSP, a Hybrid Statis-
tical Parser, trained using data from the Quranic 
Treebank. This treebank is a resource for study-
ing the Quran online, and uses a hybrid represen-
tation that closely follows the traditional Arabic 
grammar known as i’rāb (إإعراابب). The treebank’s 
syntactic representation includes phrase nodes 
and elided words, and presents a special chal-
lenge to statistical parsing. 

We described two approaches to parsing using 
different sets of rich morphological features, and 
compared this to recent work for Modern Stand-
ard Arabic. Our shift-reduce algorithm is able to 
parse hybrid syntactic representations using a 
one-step process. We concluded that our novel 
integrated architecture is not only more elegant, 
but that encoding information this way also im-
proves performance, resulting in a 1.6% ELAS 
absolute increase over the multi-step baseline for 
the integrated approach. To the best of our 
knowledge, this is the first work on statistical 

parsing for the Classical Arabic language of the 
Quran. 
In the future, we plan to continue our work on 
hybrid parsing by focusing on three key areas: 
integrating morphological disambiguation into 
the parser, comparing HSP to other statistical 
parsers, and extending the parser to other related 
languages. 

Morphological disambiguation is an important 
component of our proposed architecture. In this 
paper, we focused on parsing using only gold 
standard morphological input. However, Marton 
et al. (2010) show that parsing Arabic using pre-
dicted instead of gold morphological input gives 
similar results for different feature sets. For He-
brew, Goldberg and Tsarfaty (2008) show that 
joint morphological and syntactic disambiguation 
outperforms a pipeline approach. We plan to de-
termine if the same applies to parsing the Quran. 
Another area of future work is to compare HSP 
to other statistical parsers. Since our two-step 
approach converts the hybrid representation to 
pure dependency, we could in principle parse the 
Quranic Treebank using any pure dependency 
parser. For example, MSTParser (McDonald, et 
al., 2006) could be used to compare one-step hy-
brid parsing to two-step pure dependency parsing 
using an alternative graph-based parsing algo-
rithm. 

We also plan to extend HSP to parse other 
languages and treebanks. Classical languages 
such as Quranic Arabic are sometimes easier to 
parse statistically compared to modern lan-
guages, since vocabulary size and the number of 
linguistic constructions in such languages is 
smaller. We are interested to determine if our 
approach generalizes to other classical languages 
such as Biblical Hebrew, as well as modern texts, 
beyond this particular dataset. 
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Abstract

This paper proposes a direct parsing of

non-local dependencies in English. To this

end, we use probabilistic linear context-free

rewriting systems for data-driven parsing,

following recent work on parsing German.

In order to do so, we first perform a transfor-

mation of the Penn Treebank annotation of

non-local dependencies into an annotation

using crossing branches. The resulting tree-

bank can be used for PLCFRS-based pars-

ing. Our evaluation shows that, compared

to PCFG parsing with the same techniques,

PLCFRS parsing yields slightly better re-

sults. In particular when evaluating only the

parsing results concerning long-distance de-

pendencies, the PLCFRS approach with dis-

continuous constituents is able to recognize

about 88% of the dependencies of type *T*

and *T*-PRN encoded in the Penn Tree-

bank. Even the evaluation results concern-

ing local dependencies, which can in prin-

ciple be captured by a PCFG-based model,

are better with our PLCFRS model. This

demonstrates that by discarding information

on non-local dependencies the PCFG model

loses important information on syntactic de-

pendencies in general.

1 Introduction

Discontinuous constituents as exemplified in (1)

are more frequent than generally assumed, even

in languages such as English that display a rather

rigid word order. In (1), the NP areas of the fac-

tory where the crocidolite was used is separated

into two non-adjacent parts. (1) is an example

from the Penn Treebank (PTB). More generally,

all constructions where head-argument or head-

modifier dependencies are non-local, such as wh-

movement, can be seen as instances of discontin-

uous constituency. Such instances appear in about

20% of the sentences in the PTB. They constitute

a particular challenge for parsing.

(1) Areas of the factory were particularly dusty

where the crocidolite was used.

In the past, data-driven parsing has largely been

dominated by Probabilistic Context-Free Gram-

mar (PCFG). This is partly due to the annotation

formats of treebanks such as the Penn Treebank

(PTB) (Marcus et al., 1994), which are used as a

data source for grammar extraction. Their anno-

tation generally relies on the use of trees without

crossing branches, augmented with a mechanism

that accounts for non-local dependencies. In the

PTB, e.g., labeling conventions and trace nodes

are used which establish additional implicit edges

in the tree beyond the overt phrase structure.

However, given the expressivity restrictions of

PCFG, work on data-driven parsing has mostly ex-

cluded non-local dependencies. When using tree-

banks with PTB-like annotation, labeling conven-

tions and trace nodes are often discarded.

Some work has however been done towards in-

corporating non-local information into data-driven

parsing. One general way to do this is (non-

projective) dependency parsing where parsers are

not grammar-based and the notion of constituents

or phrases is not employed, see e.g. McDonald

et al. (2005) or Nivre (2009). Within the do-

main of grammar-based constituent parsing, we

can distinguish three approaches (Nivre, 2006):

1. Non-local information can be reconstructed in

a post-processing step after PCFG parsing (John-

son, 2002; Levy and Manning, 2004; Jijkoun and

de Rijke, 2004; Campbell, 2004; Gabbard et al.,

2006). 2. Non-local information can be incorpo-
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Figure 1: Different domains of locality

rated into the PCFG model (Collins, 1999) or into

complex labels (Dienes and Dubey, 2003; Hock-

enmaier, 2003; Cahill et al., 2004). 3. A formal-

ism can be used which accommodates the direct

encoding of non-local information (Plaehn, 2004;

Maier and Kallmeyer, 2010; Kallmeyer and Maier,

2010). This paper pursues the third approach.

Our work is based on recent research in using

Linear Context-Free Rewriting Systems (LCFRS)

(Vijay-Shanker et al., 1987) for data driven pars-

ing. LCFRSs extend CFGs such that non-

terminals can span tuples of possibly non-adjacent

strings (see Fig. 1). This enables them to describe

discontinuous constituents and non-projective de-

pendencies (Kuhlmann and Satta, 2009; Maier

and Lichte, 2009). Furthermore, they are able to

capture synchronous derivations, something that

is empirically attested in treebanks (Kallmeyer

et al., 2009). In order to parse German, a

language where discontinuities are particularly

frequent, Kallmeyer and Maier (2010); Maier

and Kallmeyer (2010) use probabilistic LCFRSs

(PLCFRSs). As a data source, they use the Ger-

man NEGRA and TIGER treebanks that anno-

tate discontinuous constituents by using crossing

branches.

We adapt this approach for German to English,

using the PTB. For this, we first need to transform

the trace-based annotation of discontinuous con-

stituents into an annotation with crossing branches

which requires a careful treatment of the different

types of traces that occur in the PTB. Then we ex-

tract a PLCFRS from the resulting treebank and

we use the PLCFRS parser from Kallmeyer and

Maier for our parsing experiments.

The paper is structured as follows. Section

2 introduces PLCFRS and the parsing algorithm.

The next section explains the transformation of

the PTB into an annotation format where non-

local dependencies are annotated with crossing

branches. Section 4 describes further transforma-

tions we apply to the resulting treebanks, in par-

ticular binarization and category splitting. Finally,

section 5 reports the results or our parsing exper-

iments with a detailed evaluation of the way the

different types of long-distance dependencies are

captured. Section 6 concludes.

2 PLCFRS Parsing

2.1 PLCFRS

LCFRSs are an extension of CFG where the

non-terminals can span not only single strings

but, instead, tuples of strings (see Fig. 1). An

LCFRS (Vijay-Shanker et al., 1987) is a tuple

〈N,T, V, P, S〉 where

a) N is a finite set of non-terminals with a func-

tion dim: N → N; dim(A) is called the fan-

out of A and determines the dimension of the

tuples in the yield of A;

b) T and V are disjoint finite sets of terminals and

variables;

c) S ∈ N is the start symbol with dim(S) = 1;

d) P is a finite set of rules

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 where A,A1, . . . , Am ∈ N , X
(i)
j ∈

V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) and

αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(A). For all
r ∈ P , it holds that every variable X occurring

in r occurs exactly once in the left-hand side

(LHS) and exactly once in the right-hand side

(RHS).

A rewriting rule describes how the yield of

the LHS non-terminal can be computed from

the yields of the RHS non-terminals. The rules

A(ab, cd) → ε and A(aXb, cY d) → A(X,Y ) for
instance specify that 1. 〈ab, cd〉 is in the yield of A

and 2. one can compute a new tuple in the yield of

A from an already existing one by wrapping a and

b around the first component and c and d around

the second.

For every A ∈ N in a LCFRS G, we define the

yield of A, yield(A) as follows:

a) For every A(~α) → ε, ~α ∈ yield(A);

b) For every rule

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

and all ~τi ∈ yield(Ai) for 1 ≤ i ≤ m,

〈f(α1), . . . , f(αdim(A))〉 ∈ yield(A) where f

is defined as follows: (i) f(t) = t for all t ∈ T ,

(ii) f(X
(i)
j ) = ~τi(j) for all 1 ≤ i ≤ m, 1 ≤

j ≤ dim(Ai) and (iii) f(xy) = f(x)f(y) for
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all x, y ∈ (T ∪V )+. f is the composition func-

tion of the rule.

c) Nothing else is in yield(A).

The language is then {w | 〈w〉 ∈ yield(S)}.

The fan-out of an LCFRSG is the maximal fan-

out of all non-terminals in G. An LCFRS with a

fan-out of n is called an n-LCFRS. Furthermore,

the RHS length of a rewriting rules r ∈ P is called

the rank of r and the maximal rank of all rules

in P is called the rank of G. We call a LCFRS

monotone if for every r ∈ P and every RHS non-

terminal A in r and each pair X1, X2 of arguments

of A in the RHS of r, X1 precedes X2 in the RHS

iff X1 precedes X2 in the LHS.

A probabilistic LCFRS (PLCFRS) (Kato et

al., 2006) is a tuple 〈N,T, V, P, S, p〉 such that

〈N,T, V, P, S〉 is a LCFRS and p : P →
[0..1] a function such that for all A ∈ N :

Σ
A(~x)→~Φ∈P

p(A(~x) → ~Φ) = 1.

2.2 CYK Parsing

We use the parser from Kallmeyer and Maier

(2010); Maier (2010), Maier and Kallmeyer

(2010) which is a probabilistic version of the CYK

parser from Seki et al. (1991), applying techniques

of weighted deductive parsing (Nederhof, 2003).

LCFRSs can be binarized (Gómez-Rodrı́guez et

al., 2009) and ε-components in the LHS of rules

can be removed (Boullier, 1998). We can therefore

assume that all rules are of rank 2 (in section 4.1,

we explain our binarization technique) and do not

contain ε components in their LHSs. Furthermore,

we assume POS tagging to be done before parsing.

POS tags are non-terminals of fan-out 1. The rules
are then either of the form A(a) → ε with A a

POS tag and a ∈ T or of the form A(~α) → B(~x)
or A(~α) → B(~x)C(~y) where ~α ∈ (V +)dim(A),

i.e., only the rules for POS tags contain terminals

in their LHSs.

For every w ∈ T ∗, we call every pair 〈l, r〉 with
0 ≤ l ≤ r ≤ |w| a range in w. The concatenation

of two ranges ρ1 = 〈l1, r1〉, ρ2 = 〈l2, r2〉 is de-
fined as follows: if r1 = l2, then ρ1 ·ρ2 = 〈l1, r2〉;
otherwise ρ1 · ρ2 is undefined.

For a given rule p : A(α1, . . . , αdim(A)) →
B(X1, . . . ,Xdim(B))C(Y1, . . . ,Xdim(C))we now
extend the composition function f to ranges, given

an input w: for all vectors of ranges ~ρB and ~ρC

of dimensions dim(B) and dim(C) respectively,
fr( ~ρB , ~ρC) = 〈g(α1), . . . , g(αdim(A))〉 is defined
as follows: g(Xi) = ~ρB(i) for all 1 ≤ i ≤

Scan:
0 : [A, 〈〈i, i + 1〉〉]

A POS tag of wi+1

Unary:
in : [B, ~ρ]

in + |log(p)| : [A, ~ρ]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC ]

inB + inC + log(p) : [A, ~ρA]
where p : A( ~ρA) → B( ~ρB)C( ~ρC) is an instantiated

rule.

Goal: [S, 〈〈0, n〉〉]

Figure 2: Weighted CYK deduction system

add SCAN results to A
while A 6= ∅
remove best item x : I from A
add x : I to C
if I goal item

then stop and output true

else

for all y : I ′ deduced from x : I and items in C:
if there is no z with z : I ′ ∈ C ∪ A
then add y : I ′ to A
else if z : I ′ ∈ A for some z

then update weight of I ′ in A to max (y, z)

Figure 3: Weighted deductive parsing

dim(B), g(Yi) = ~ρC(i) for all 1 ≤ i ≤ dim(C)
and g(xy) = g(x) · g(y) for all x, y ∈ V +.

p : A(fr( ~ρB , ~ρC)) → B( ~ρB)C( ~ρC) is then called

an instantiated rule.1

For a given input w, our items have the form

[A, ~ρ] where A ∈ N , ~ρ a vector of ranges with

|~ρ| = dim(A). ~ρ characterizes the span of A.

We specify the set of weighted parse items via the

deduction rules in Fig. 2. The parser performs

a weighted deductive parsing (Nederhof, 2003),

based on this deduction system. It uses a chart

C and an agenda A, both initially empty, and pro-

ceeds as in Fig. 3.

3 Treebank Transformation

The PTB annotation guidelines (Bies et al., 1995,

Section 1.1) specify a set of rules that determine

where arguments and adjuncts are attached with

respect to their head words. For example, subjects

are attached at clause level, most other arguments

and adjuncts of verbs are attached at VP level, and

phrases modifying nouns such as PPs and relative

clauses are adjoined at NP level. Knowing these

1This corresponds to the instantiated clauses in simple

Range Concatenation Grammars (Boullier, 1998; Boullier,

2000).
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rules, head-argument and head-adjunct dependen-

cies can be read off the trees easily, e.g. for se-

mantic interpretation.

Non-local head-argument and head-adjunct de-

pendencies constitute exceptions to these rules.

Following the rules would lead to discontinuous

constituents with crossing branches, containing

the head and the argument or adjunct, but not

containing some intervening tokens. Examples of

non-locally dependent arguments and adjuncts in-

clude wh-moved phrases, fronted phrases, extra-

posed modifiers, it-extraposition, and right-node-

raised phrases (Fig. 4a-d). Such phrases are at-

tached at locations in the tree that avoid disconti-

nuity, thus the heads on which they depend can-

not easily be determined from the tree structure

alone. The PTB instead uses the null elements

*T*, *ICH*, *EXP* and *RNR* to mark the posi-

tion where the phrases would be attached accord-

ing to the general rules and indices in node labels

to indicate which null element stands for which

phrase (shown by arcs in the tree diagrams). Null

elements are embedded in “placeholder phrases”

of the same category (but without WH prefixes) as

the non-locally dependent phrase. This represen-

tation of non-local dependencies is not suitable for

PCFG parsing since null elements pose a serious

combinatorial problem and PCFG has no mech-

anism for dealing with indexed category labels.

Null elements and indices are therefore usually re-

moved before training PCFG parsers, resulting in

parse trees that do not contain information on non-

local dependencies.

We use the approach proposed and tested on the

German treebanks NEGRA and TIGER in Maier

and Kallmeyer (2010): permit discontinuous con-

stituents, attach non-locally dependent arguments

and adjuncts according to the general rules, result-

ing in a uniform representation for local and non-

local dependencies, and use PLCFRS for parsing.

While NEGRA and TIGER already use such a uni-

form representation, training and testing data for

English can be obtained by removing placeholder

phrases with *T*, *ICH*, *EXP* and *RNR* null

elements from their locations in the PTB trees and

reattaching the coindexed phrases to those loca-

tions, removing indices from node labels (Fig. 5).

Other types of null elements are used to indi-

cate control and other relations with no immedi-

ate bearing on non-local head-adjunct and head-

argument dependencies. We remove these from

trees with gap-degree

type instances trees 0 1 2

*T* 18759 15452 7292 7924 236

*T*-PRN 843 843 0 71 772

*ICH* 1268 1240 7 1200 33

*EXP* 658 651 1 630 20

*RNR* 210 208 131 67 10

any reattachment 21738 17187 7397 8996 794

no reattachment n/a 32021 32021 0 0

total n/a 49208 39418 8996 794

Table 1: Reattachment types and gap-degrees of result-

ing trees

the treebank along with corresponding indices.

Two types of cases require special treatment.

First, some arguments and adjuncts are shared be-

tween two or more heads, marked by two or more

null elements with the same index (Fig. 4(d)).

Since a phrase cannot be attached to more than

one location in a tree even with crossing branches,

the phrase must either remain in place, where no

relation to any head can be immediately read off

the tree, or be attached according to the general

rules with respect to only one of the heads, leav-

ing the others with no trace of the argument or ad-

junct. For now, we decided to put consistency in

the way arguments and adjuncts are attached first

and always attach phrases with multiple heads as

depending on the head which is closest (Fig. 5(d)).

The other special case concerns phrases, typically

quotations, that surround the matrix phrase con-

taining the head on which they depend. In the

PTB annotation, the matrix phrase is embedded

into such arguments under a node labeled PRN for

parenthesis (Fig. 4(e)). To avoid cycles after the

transformation, such matrix phrases are detached

from within the argument and reattached to the

node where the argument was originally attached,

if any (Fig. 5(e)).

Table 1 gives an overview of the tendency of

each type of null element2 to introduce gaps when

so transformed as indicated by gap-degree (Holan

et al., 1998; Maier and Lichte, 2009), i.e. the max-

imal number of gaps in any constituent of the re-

sulting trees. Most typically, one gap is introduced

since there is a single phrase non-adjacent to the

rest of the phrase to which it is attached. No gap at

all is introduced by the reattachment of most wh-

moved subjects and *EXP*-type phrases in object

position. Gap degrees of 2 are almost exclusively

accounted for by surrounding phrases where the

2Those instances of *T* reattachments where the depen-

dent element is a surrounding phrase are given separately as

*T*-PRN.
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(a) Wh-movement (b) Fronting (c) Modifier extraposition

(d) Right-node raising (e) Surrounding argument

Figure 4: Annotation of non-local head-argument and head-adjunct dependencies in the PTB

(a) Wh-movement (b) Fronting (c) Modifier extraposition

(d) Right-node raising (e) Surrounding argument

Figure 5: Transformed versions of the trees in Fig. 4
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VP of the surrounded matrix clause is typically in-

terrupted by two commas and the subject of the

matrix clause. On the whole, about 20% of the

trees in the transformed PTB contain discontinu-

ities – less than the c. 30% reported by Maier and

Lichte (2009) for the German treebanks NEGRA

and TIGER, but still a considerable percentage.

An LCFRS is extracted from the transformed

treebank using the algorithm of Maier and

Søgaard (2008), simplified using the fact that

leaves do not have siblings and their parents are

labeled with POS tags: every leaf is represented

as a variable. Every internal node n is represented

as a term Ai(X11 . . . X1j1 , . . . ,Xi1 . . . Xiji)
where X11, . . . ,X1j1 , . . . ,Xi1 . . . Xij1 represent

the leaves dominated by n in order, there is an

argument boundary between two variables iff the

corresponding leaves are non-adjacent, A is the

label of n and i is the number of arguments, used

to obtain a unique non-terminal Ai with fan-out

i. A rule α → β1 . . . βm is extracted for each

internal node n such that α is the term represent-

ing n and β1, . . . , βm are the terms representing

its children, conventionally ordered by leftmost

dominated terminal. For parents of leaves, m is

0, and the single variable in α is replaced with

the terminal labeling the corresponding leaf. For

other nodes, every sequence of variables that

occurs as a right-hand side argument is replaced

with a single new variable on both sides. Fig. 6

shows an example. Rules are equivalent if equal

up to renaming variables. The resulting LCFRS

rules are ε-free and they are monotone. The latter

means that the order of the arguments of a RHS

element is the same as the order of these variables

in the LHS. Both properties facilitate parsing.

The number of occurrences of the rules are

counted and the probabilities of RHSs conditioned

on LHSs are then calculated using MLE. In this

way, a PLCFRS is obtained. This is a very sim-

ple probability model, much like a vanilla PCFG.

In the following section, we discuss techniques we

used to refine the probability model.

4 Grammar Annotation

4.1 Binarization

Similarly to the transformation of a CFG into

Chomsky Normal Form (CNF), we binarize the

LCFRS extracted from the treebank. The result

is an LCFRS of rank 2. A binarization tech-

nique that results in horizontal Markovization of

Non-binary tree:

SBARQ

SQ

VP

WHNP NP

WP MD PRP VB .
What should I do ?

Extracted LCFRS rules:

SBARQ1(XY ) → SQ1(X).1(Y )
SQ1(XY ZU) → VP2(X,U)MD1(Y )NP1(Z)

VP1(X,Y ) → WHNP1(X)VB1(Y )
WHNP1(X) → WP1(X)

NP1(X) → PRP1(X)
WP1(What) → ε

MD1(should) → ε

PRP1(I) → ε

VB1(do) → ε

.1(?) → ε

Figure 6: LCFRS extraction from trees

the grammar is proposed and successfully used

for parsing NEGRA and TIGER in Kallmeyer and

Maier (2010). However, our experiments have

shown that the beneficial effect of this horizon-

tal Markovization technique does not carry over to

parsing the PTB, presumably because compared to

the two German treebanks, the PTB has a more

hierarchical annotation scheme, extracted gram-

mars have rules with shorter RHSs to begin with

and can thus profit less from additional factoriza-

tion; the adverse effect of wrong independence as-

sumptions predominates. We thus use a determin-

istic binarization technique that does not change

the probability model. Specifically, we introduce a

unique new non-terminal for each right-hand side

longer than 2 and split the rule into two rules, us-

ing this new intermediate non-terminal. This is

repeated until all right-hand sides are of length

2. The transformation algorithm is inspired by

Gómez-Rodrı́guez et al. (2009) and it is also spec-

ified in Kallmeyer (2010). Fig. 7 shows an exam-

ple.

SBARQ1(XY ) → SQ1(X).1(Y )
SQ1(XY Z) → VP1(X,Z)C1(Y )

C1(XY ) → MD1(X)NP1(Y )
VP1(X,Y ) → WHNP1(X)VB1(Y )
WHNP1(X) → WP1(X)

NP1(X) → PRP1(X)

Figure 7: Binarized grammar equivalent to the gram-

mar in Figure 6, not showing terminal rules.

109



Note however that the fan-out of the LCFRS can

increase because of the binarization.

4.2 Category Splits

Category splitting, i.e. relabeling certain nodes in

the training data depending on context, has been

used to improve the performance of PCFG pars-

ing (Klein and Manning, 2003) and also PLCFRS

parsing (Kallmeyer and Maier, 2010). Our exper-

iments have shown that a combination of three

splits for the PTB annotation improved perfor-

mance considerably: S nodes are relabeled to

SWH if a wh-element is extracted from the sen-

tence. In order to make this split more effec-

tive, SBAR nodes that have only one child after

transformation to the discontinuous format are re-

moved. VP nodes are relabeled to VPHINF if their

head is labeled VB, to VPHTO if their head is la-

beled TO and to VPHPART if their head is labeled

VBN or VBG. S nodes rooting infinitival clauses

(head child labeled VPHINF or VPHTO) are rela-

beled to SINF.

5 Evaluation

We use the Wall Street Journal sections 1-22 of the

Penn Treebank (version 2.0) as training data and

sections 23-24 as test data. Due to time constraints

and the complexity of PLCFRS parsing, sentences

with more than 25 tokens (not counting null ele-

ments) are excluded, resulting in 25801 training

sentences and 2233 test sentences. After a small

number of corrections to the annotation, concern-

ing chiefly wrong indices and missing PRN nodes,

we create discontinuous versions of the training

and test set by carrying out the reattachment op-

erations described in Section 3 while also keep-

ing context-free versions. All four sets are then

preprocessed by removing all (remaining) indices,

null elements and empty constituents. We call the

resulting context-free training and test set Tr and

Te , and the resulting discontinuous training and

test set Tr ′ and Te
′.

5.1 EVALB-Style Evaluation

Since the structure in Te
′ encodes local as well

as non-local dependencies, it serves as our pri-

mary gold standard. In a first step, we use

the standard EVALB metric, generalized to trees

with discontinuous constituents as in Maier and

Kallmeyer (2010), to measure how much of the

structure in the gold standard is captured by differ-

ent parsers. We compare Maier and Kallmeyer’s

parser trained on Tr
′ (resulting in a 3-PLCFRS)

with three parsers that do not produce discon-

tinuous structures: the Berkeley parser (Petrov

et al., 2006; Petrov and Klein, 2007) trained on

Tr using our manual category splits but no au-

tomatic splitting/merging/smoothing, the Berke-

ley parser trained on Tr using its default setting

of six iterations of split/merge/smooth, and Maier

and Kallmeyer’s parser with a grammar extracted

from Tr (a 1-PLCFRS, i.e. a PCFG). The upper

half of Table 2 shows the results. For comparison,

we also evaluated the three context-free parsers on

the untransformed context-free test set Te. These

figures are given in the lower half of the table. For

Maier and Kallmeyer’s parser, the number of rules

in the grammar before and after binarizing is also

given, as well as the number of items created dur-

ing parsing as an indicator of parsing complexity.

Across these experiments, the most crucial

factor for parsing accuracy seems to be split-

ting/merging/smoothing. As the comparison be-

tween the two parsing experiments with the Berke-

ley parser shows, this technique is key to achieving

its state-of-the-art results. We plan to transfer this

technique to discontinuous constituent parsing in

future work. For now, we must compare discontin-

uous to context-free constituent parsing on a level

below the state of the art. Comparison between

the two experiments with Maier and Kallmeyer’s

parser shows that it works with about the same

accuracy when trained and tested on discontinu-

ous data as when trained and tested on context-

free data, although parsing complexity is consid-

erably higher in the discontinuous experiment as

evidenced by the number of items produced. Note

that scores would presumably be lower if sen-

tences with more than 25 tokens were included.

Even when trained on the context-free data,

both parsers get most of the structure in Te
′

right since only a relatively small fraction of con-

stituents is discontinuous. However, for those

test sentences that do contain discontinuous con-

stituents (Te ′D), context-free parsers fare much

worse than for sentences that do not (Te ′C). For

Maier and Kallmeyer’s parser trained on Tr
′ they

seem to be only slightly harder to parse. Although

its scores for Te ′D with discontinuous parsing are

lower than for TeD with context-free parsing, the

former may be considered a better parse result

than the latter since the Te
′

D gold standard con-
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Parser Berkeley Maier&Kallmeyer

Training set Tr Tr Tr Tr
′

Split/merge 6 it. man. man. man.

Test set

Te
′

LP 87.29 72.86 78.13 80.36

LR 86.89 67.88 74.60 77.61

LF1 87.09 70.28 76.33 78.96

UP 90.40 77.70 82.59 83.74

UR 89.98 72.39 78.86 80.00

UF1 90.19 74.95 80.68 82.29

Te
′

C

LP 89.43 74.55 79.97 80.66

LR 89.37 69.75 76.57 77.81

LF1 89.40 72.07 78.23 79.21

UP 91.85 78.63 83.91 83.95

UR 91.78 73.57 80.34 80.99

UF1 91.82 76.02 82.09 82.44

Te
′

D

LP 77.06 64.76 69.42 78.90

LR 75.31 59.14 65.44 76.61

LF1 76.17 61.82 67.37 77.74

UP 83.48 73.23 76.31 82.77

UR 81.58 66.88 71.93 80.37

UF1 82.52 69.91 74.06 81.55

Te

LP 89.82 74.88 80.37

-

LR 89.64 69.94 76.94

LF1 89.73 72.32 78.61

UP 91.89 78.80 83.91

UR 91.70 73.60 80.33

UF1 91.80 76.11 82.08

TeC

LP 89.90 74.94 80.36

-

LR 89.85 70.12 76.95

LF1 89.88 72.45 78.62

UP 91.90 78.63 83.92

UR 91.84 73.57 80.36

UF1 91.87 76.02 82.10

TeD

LP 89.43 74.58 80.40

-

LR 88.64 69.08 76.87

LF1 89.03 71.73 78.60

UP 91.86 79.61 83.85

UR 91.05 73.74 80.16

UF1 91.46 76.56 81.96

Rules 8892 9761

Bin. rules 27809 29218

Items 580M 1056M

Table 2: EVALB-style evaluation of parsing experi-

ments (scores in %). Tr and Te are the context-free

training and test sets, Tr ′ and Te
′ the discontinuous

transformed versions. The D and C subscripts indi-

cate the subsets of the test sets containing the sentences

that actually have (D) resp. do not have (C) one or

more discontinuities inTe ′. ForMaier and Kallmeyer’s

parser, the number of rules in the unbinarized and bi-

narized grammar as well as the number of parse items

produced is given.

Parser Maier&Kallmeyer

Training set Tr
′′

Split/merge man.

Test set

Te
′′

LP 80.71

LR 77.85

LF1 79.26

UP 84.07

UR 81.09

UF1 82.55

Te
′′

C

LP 80.82

LR 77.90

LF1 79.33

UP 84.12

UR 81.07

UF1 82.57

Te
′′

D

LP 78.87

LR 76.38

LF1 77.60

UP 82.49

UR 79.88

UF1 81.16

Rules 9653

Bin. rules 29096

Items 852M

Table 3: Results of a second discontinuous parsing

experiment where *ICH* and *EXP* transformations

have been omitted in the transformation

tains information on non-local dependencies while

TeD does not.

5.2 Dependency Evaluation

In order to assess to what degree this is the case,

we perform a dependency evaluation (Lin, 1995),

first used for evaluating discontinuous constituent

parser output in Maier (2010). This method re-

quires a conversion of constituent trees to sets of

word-word dependencies. We use Lin’s depen-

dency conversion method, where each phrase is

represented by its lexical head. To determine the

head of each phrase, we use the head-finding al-

gorithm of Collins (1999), ordering the children

of each node by leftmost dominated terminal.

Under this standard dependency conversion

method, the transformation described in Section 3

introduces new word-word (head-argument/head-

adjunct) dependencies that are relevant to seman-

tic interpretation. Word-word dependencies lost in

the transformation are not normally relevant since

they result from attachment of phrases outside of

the domains of their heads. We therefore choose

Te
′ as the gold standard against which to eval-

uate both context-free and discontinuous parsing

results. Table 4 shows that discontinuous parsing

as compared to context-free parsing boosts the un-

labeled attachment score (i.e. recall on word-word

dependencies) slightly for local dependencies and

considerably for non-local dependencies. The lat-
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Figure 8: Failure to recognize the discontinuous NP

phone calls from nervous shareholders

Figure 9: Correct parse of a deeply embedded moved

wh-phrase

ter are broken down by type as in Section 3.

Dependency evaluation also allows a di-

rect comparison with state-of-the-art dependency

parsers. In Table 4 we give results for MST-

Parser (McDonald and Pereira, 2006) trained on

two dependency versions of Tr ′, converted from

constituents to dependencies once without depen-

dency labels and once with dependency labels us-

ing the method of Hall and Nivre (2008). It can

be seen that MSTParser recognizes a fair percent-

age of even the difficult *ICH* and *EXP* type

dependencies (cf. Section 5.3) and that it has a

considerably better overall score. We expect that

this gap can be bridged by optimizing Maier and

Kallmeyer’s parser with techniques successfully

used for context-free constituent parsing as out-

lined above, but this remains to be proven experi-

mentally.

5.3 A Closer Look at the Parses

Further inspection of the parse trees produced in

the discontinuous experiment confirms that Maier

and Kallmeyer’s parser trained on Tr
′ correctly

analyzes the majority of the *T* and *T*-PRN

type discontinuities3 : wh-movement (108 of 129),

fronted quotations (129 of 142) and surrounding

arguments (22 of 31). Fronting apart from quo-

tations (0 of 6) and right-node raising (3 of 4)

seems too rare to allow for a meaningful assess-

ment. *ICH* and *EXP* type discontinuities are

almost never correctly parsed (2 of 30 resp. 2 of

14).

The latter suffer from massive attachment am-

biguity – attaching the right part of a discon-

tinuous constituent of this type locally as illus-

trated in Fig. 8 almost always leads to higher-

scoring parses in the current model. Augmenting

it with lexical information as is common in mod-

ern PCFG-based parsers could help to better re-

solve these and other attachment ambiguities. In

the present model, including discontinuous anno-

tation of *ICH* and *EXP* type dependencies

adds no value to the parser output and is even detri-

mental since grammar rules typically found with

them like NP(X,Y ) →NP(X)SINF(Y ) are used

by the parser in many falsely detected discontinu-

ities. We therefore conducted another experiment

with Maier and Kallmeyer’s parser using the train-

ing and test sets Tr ′′ and Te
′′. These are like Tr ′

and Te
′ except that *ICH* and *EXP* type de-

pendencies were not included in the transforma-

tion. This makes EVALB scores for the continu-

ous test trees rise slightly and parsing time drop

considerably due to the smaller number of discon-

tinuous rules (Table 3). However, a higher unla-

beled attachment score is not achieved by this (cf.

Table 4).

*T* type discontinuities are well recognized

presumably due to their strong correlations with

patterns like a wh-word followed by a sentence,

a sentence followed by another, a sentence inter-

rupted by another, and characteristic punctuation

in the case of fronted and discontinuous quota-

tions. Even correctly recognizing deeply embed-

ded attachment of wh-moved phrases as illustrated

in Fig. 9 poses no major problem. One of the prob-

lems that do exist is the many possible ways that a

sentence can be split into two parts as a surround-

ing quotation, resulting in many required S rules of

fan-out 2 and in sparse data. This problem could

3This excludes most cases of subject wh-movement which

accounts for some of the *T* type dependencies but does not

induce discontinuities.
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gold Maier&Kallmeyer MSTParser

Tr Tr
′

Tr
′′

Tr
′

Tr
′

unlabeled Hall&Nivre

*T* 436 134 386 380 374 379

*T*-PRN 32 8 26 26 25 26

*ICH* 31 3 5 4 10 9

*EXP* 18 0 1 0 8 9

*RNR* 4 2 3 3 3 3

other 35918 29785 30252 30241 32452 32457

total 36439 29932 30673 30654 32872 32883

82.14% 84.18% 84.12% 90.21% 90.24%

Table 4: Unlabeled attachment scores in dependency evaluation on the dependency-convertedTe ′

be tackled by factoring rules into an expansion

part (what RHS categories) and a separation part

(where the gap is), similar to the factorization pro-

posed in Levy (2005, Section 4.8). Note also that

there is nothing in the present model to prevent

LCFRS rules associated with different construc-

tions, such as wh-movement and fronting, from re-

combining, producing nonsensical parses in a few

cases. Finally, it should be noted that attaching

commas surrounding parentheses inside surround-

ing quotations rather than to the PRN node could

reduce the fan-out of the grammar from 3 to 2,

benefiting parsing efficiency.

6 Conclusion and Future Work

This paper pursues an approach of direct pars-

ing of discontinuous constituents. We have ap-

plied data-driven PLCFRS parsing to English. To

this end, we have first transformed the trace-based

Penn Treebank annotation format into a format

with crossing branches and explicit discontinu-

ous constituents. The latter can then be used for

PLCFRS parsing.

Our evaluation has shown that, compared to

PCFG parsing with the same techniques, PLCFRS

parsing yields slightly better results. In particu-

lar when evaluating only the parsing results con-

cerning long-distance dependencies, the PLCFRS

approach with discontinuous constituents is able

to recognize about 88% of the dependencies of

type *T* and *T*-PRN. Even the results concern-

ing local dependencies, which can in principle be

captured by a CFG-based model, are better with

the PLCFRS model. This demonstrates that by

discarding information on non-local dependencies

the PCFG model loses important information on

syntactic dependencies in general.

Our results show that data-driven PLCFRS

parsing is a promising and feasible strategy not

only for so-called free word order languages such

as German but also for English where we obtain

competitive parsing results.

However, our experiments also reveal some

shortcomings of the chosen probabilistic model.

A general problem is that some decisions, for in-

stance on PP-attachments, cannot be taken solely

based on the syntactic information we have used.

This problem occurs independent from the choice

of PLCFRS. A careful integration of more lexical

information can help to overcome this problem. A

shortcoming that is specific to LCFRS is the as-

sumption that the expansions of the same category

with different fan-outs (for instance a continuous

VP and a discontinuous VP) are independent from

each other. This bears two problems. Firstly, since

categories of higher fan-out are rather rare, we

have a sparse data problem. Secondly, the inde-

pendence assumption is probably wrong. In order

to tackle this problem, we plan to develop mod-

els that factor rules into an expansion part and a

separating part that introduces gaps. We leave this

issue for future work.
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Pétr Dienes and Amit Dubey. 2003. Deep syntac-

tic processing by combining shallow methods.

In Proceedings of the 41st Annual Meeting of

the Association for Computational Linguistics,

pages 431–438, Sapporo, Japan, July. Associa-

tion for Computational Linguistics.

Ryan Gabbard, Seth Kulick, and Mitchell Marcus.

2006. Fully parsing the Penn Treebank. In Pro-

ceedings of the Human Language Technology

Conference of the NAACL, Main Conference,

pages 184–191, New York City, USA, June. As-

sociation for Computational Linguistics.
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Comprehension Across Languages
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Abstract

Among human cognitive abilities, language is singular in the diversity of its manifestations:
over 6000 languages are spoken in the world today. Some of the major challenges in modelling
how language is processed by the human brain thus lie in explaining (a) how this diversity is
handled, and (b) whether there are nevertheless some underlying generalisations that recur
across languages of different types. Furthermore, an adequate model should be neurobiolog-
ically plausible, i.e., respect what we know about the structure and function of the human
brain. In this presentation, I will describe a line of research in which we have attempted
to take up these challenges at the level of sentence comprehension. Based on the results of
neurophysiological experiments in a range of typologically varied languages, I will argue for
a comprehension architecture that is actor-centred, i.e., focused on identifying the participant
primarily responsible for the state of affairs under discussion. I will introduce the latest version
of a comprehension model (extended Argument Dependency Model, eADM; Bornkessel and
Schlesewsky, 2006), the architecture of which is built around actor-centrality as a design prin-
ciple, and will describe how it accounts for potential universals of comprehension and critical
dimensions of variation.
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Abstract

The paper demonstrates how the generic
parser of a minimally supervised informa-
tion extraction framework can be adapted
to a given task and domain for relation ex-
traction (RE). For the experiments a generic
deep-linguistic parser was employed that
works with a largely hand-crafted head-
driven phrase structure grammar (HPSG)
for English. The output of this parser is a
list of n best parses selected and ranked by
a MaxEnt parse-ranking component, which
had been trained on a more or less generic
HPSG treebank. It will be shown how the
estimated confidence of RE rules learned
from the n best parses can be exploited
for parse reranking. The acquired rerank-
ing model improves the performance of RE
in both training and test phases with the
new first parses. The obtained significant
boost of recall does not come from an over-
all gain in parsing performance but from an
application-driven selection of parses that
are best suited for the RE task. Since the
readings best suited for successful rule ex-
traction and instance extraction are often
not the readings favored by a regular parser
evaluation, generic parsing accuracy actu-
ally decreases. The novel method for task-
specific parse reranking does not require any
annotated data beyond the semantic seed,
which is needed anyway for the RE task.

1 Introduction
Domain adaptation is a central research topic for
many language technologies including informa-
tion extraction (IE) and parsing (e.g., (Grishman
and Sundheim, 1996; Muslea, 1999; Hara et al.,
2005; McClosky et al., 2010; Miwa et al., 2010)).
The largest challenge is to develop methods that

exploit domain knowledge with minimal human
effort.

Many IE systems benefit from combining
generic NLP components with task-specific ex-
traction methods. Various machine learning ap-
proaches have been employed for adapting the IE
methods to new domains and extraction tasks (e.g.,
(Yangarber, 2001; Sudo et al., 2003; Greenwood
and Stevenson, 2006)). The IE framework ex-
tended in this paper utilizes minimally supervised
learning of extraction rules for the detection of re-
lation instances (Xu et al., 2007). Since the min-
imally supervised learning starts its bootstrapping
from a few semantic examples, no treebanking or
any other annotation is required for new domains.
In addition to this inherently domain-adaptable
rule-learning component, the framework also em-
ploys two language analysis modules: a named-
entity (NE) recognizer (Drozdzynski et al., 2004)
and a parser (Lin, 1998; de Marneffe and Man-
ning, 2008). NE recognizers are adapted to new
domains–if needed–by adding rules for new NE
types and extending the gazetteers. The employed
generic data-driven dependency parsers or deep-
linguistic handcrafted parsers have not yet been
adapted to IE domains and tasks.

The new work presented here concerns the
adaptation of a generic parser to a given relation
extraction (RE) task and domain without actually
changing the parser itself. For the experiments a
generic deep-linguistic parser was used together
with a hand-crafted HPSG (Pollard and Sag, 1994)
grammar for English (ERG) (Flickinger, 2000).
The output of this parser is a list of n best parses
selected and ranked by a MaxEnt parse-ranking
component (Toutanova et al., 2005b), which had
been trained on a generic HPSG treebank (Oepen
et al., 2002). The parse ranking had attracted our
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attention because the first RE tests with the hand-
crafted grammar revealed recall problems even for
the parsable relation mentions. Our suspicion to
partially blame the generic parse selection was
confirmed by our experiments.

In this paper we will show how the estimated
confidence of rules learned from the n best parses
can be exploited for task-specific parse reranking.
The acquired reranking model improves the per-
formance of RE both in training and test phases.
The task-driven reranking leads to significantly
better RE recall by boosting readings that are bet-
ter suited for RE rule extraction and rule appli-
cation. The beneficial reranking does not im-
prove the quality of parsing measured by task-
independent performance criteria, not even for
the IE domain. The validation of the adapted
parser using a hand-checked HPSG treebank of in-
domain texts rather shows a deterioration of pars-
ing accuracy. But often the incorrect parses se-
lected over less faulty parses support the correct
detection of instance mentions.

The novel method for task-specific parse
reranking does not require any annotated data be-
yond the semantic seed, needed anyway for the RE
task. Thus it does not require a domain-specific
treebank.

The paper is organized as follows. Section 2
describes the grammar and the associated parse se-
lection model. Section 3 introduces the RE frame-
work. Section 4 explains the new task/domain-
oriented reranking approach. Section 5 presents
the experiments and evaluations. Special empha-
sis is placed on the role of reranking for the per-
formance of the RE system. Section 6 discusses
related work. Finally, Section 7 summarizes the
results and suggests directions for further research.

2 HPSG and Parse Selection Model
Recent progress in parsing has several sources.
The most noticeable trend is the shift from pure
symbolic rule-based approaches toward statistical
parsing. The availability of large-scale treebanks
has enabled the training of powerful data-driven
parsers, some based on constituency others on de-
pendency. Meanwhile, existing hand-crafted pre-
cision oriented linguistic grammars have also ben-
efitted from empirical methods through new dis-
ambiguation models trained on treebanks.

Among the available deep linguistic grammars,
ERG is a good representative of the state of the art.
Its lexicon contains ∼35K entries. The 1004 re-

lease of the grammar we use is accompanied by
a maximum-entropy-based parse disambiguation
model trained on the Redwoods Treebank (Oepen
et al., 2002), a treebank of ∼20K sentences with
mixed genre texts (dialogs, tourist information,
emails, etc). The discriminative log-linear disam-
biguation model scores each parse by the follow-
ing (Toutanova et al., 2005b),

P (t|w) =
exp

∑n
i=1 λifi(t, w)∑

t′∈T (w) exp
∑n

i=1 λifi(t′, w)
(1)

where w is the given input sentence and t is the
HPSG reading; T (w) is the set of all possible
readings for a given sentence w licensed by the
grammar; 〈f1, . . . , fn〉 and 〈λ1, . . . , λn〉 are fea-
ture functions and their corresponding weights. In
practice, the effective features are defined on the
HPSG derivation trees (without details from the
feature structures), and the best readings are de-
coded efficiently from a packed parse forest with
dynamic programming (Zhang et al., 2007).

Although there are indications that parsers with
hand-written grammars usually suffer less from
the shift of domain than statistical parsers (Zhang
and Wang, 2009; Plank and van Noord, 2010), the
effect can still be observed, say in the preference
of lexical selection. The issue is not that the cor-
rect analysis would be ruled out by the constraints
in the treebank-induced grammar, but rather that
it is not favored by the statistical ranking model,
since the statistical distribution of the syntactic
structures in the training corpus is different from
the target application domain. This issue is re-
cently acknowledged in most parsing systems and
known as the domain adaptation task.

3 DARE and Confidence Estimation
DARE (Xu et al., 2007; Xu, 2007) is a minimally
supervised machine learning system for RE for
free texts consisting of two major parts: 1) rule
learning, 2) relation extraction (RE). DARE pro-
vides a recursive extraction-rule representation,
which can deal with relations of varying com-
plexity. Rule learning and RE feed each other
in a bootstrapping framework. The bootstrap-
ping starts from so-called ”semantic seed” as a
search query, which is a small set of instances of
the target relation. The rules are extracted from
found sentences with annotations of semantic en-
tities and parsing results. RE applies acquired
rules to texts in order to discover more relation in-
stances, which in turn are employed as seed for
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further iterations. The confidence values of the
newly acquired rules and instances are calculated
in the spirit of the ”Duality principle” (Brin, 1998;
Agichtein and Gravano, 2000; Yangarber, 2001),
i.e., the confidence values of the rules are de-
pendent on the truth value of their extracted in-
stances and on the seed instances from which they
stem. The confidence value of an extracted in-
stance makes use of the confidence value of its
ancestor seed instances. The core system architec-
ture of DARE is depicted in Figure 1. The entire
bootstrapping stops when no new rules or new in-
stances can be detected.

Figure 1: DARE core architecture

Relying entirely on semantic seeds as domain
knowledge, DARE can accommodate new relation
types and domains with minimal effort. Since we
had already reported on experiments applying the
framework to different relation types and corpora
including MUC-6 data in the cited papers, includ-
ing comparisons with other ML approaches to RE
(Xu, 2007; Uszkoreit et al., 2009), we omit a com-
parative discussion here.

For confidence estimation, the method proposed
by Xu et al. (2010) is adopted.1 Actually, in (2)
we propose an extended version of the rule scor-
ing, since the rule scoring in (Xu et al., 2010) did
not consider the case when a learned rule does not
extract any new instances. Thus, given the scoring
of instances, the confidence value of a rule is the
average score of all instances (Iextracted ) extracted
by this rule or the average score of seed instances
(Irule ) from which they are learned. Through the
factor δ we reduce the score of rules that have not
proven yet their potential for extracting instances.

1The actual confidence estimation is slightly more com-
plex because it further improves the scoring by utilizing im-
plicit negative evidence provided by closed-world seeds, a
method proposed by (Xu et al., 2010). As this mechanism is
not relevant in the context of this paper, we omit a descrip-
tion.

confidence(rule) =
∑

i∈Iextracted
score(i)

|Iextracted | if Iextracted 6= φ

∑
j∈Irule

score(j)
|Irule | × δ if Iextracted = φ

where Iextracted = getInstances(rule),
Irule = getMotherInstancesOf(rule),
δ = 0.5

(2)

This method allows DARE to estimate the con-
fidence value of a rule according to its extraction
performance or the confidence value of its origin.

4 Domain Adaptive Parse Reranking
4.1 Basic Idea

In our research, we observe that there is a strong
connection between the RE task and the parser via
the learned extraction rules, because these rules
are derived from the parse readings. The confi-
dence values of the extraction rules imply the do-
main appropriateness of the parse readings. There-
fore, the confidence values can be utilized as feed-
back to the parser to help it to rerank its readings.

4.2 Reranking Architecture and Method

Figure 2 depicts the overall architecture of our
experimental system. We utilize the HPSG to
parse our experimental corpus and keep the first
n readings of each sentence (e.g., 256) delivered
by the parser. During bootstrapping DARE tries
to learn extraction rules from all readings of sen-
tences containing a seed instance or newly de-
tected instances. At each iteration the extracted
rules are applied to all readings of all sentences.
When bootstrapping has terminated, the obtained
rules are assigned confidence values based on the
DARE ranking method described in Section 3.

Figure 2: DARE and Parse Reranking
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The parse reranking component scores the alter-
native parses of each sentence based on the confi-
dence values of the rules matching these parses,
i.e., all rules that could have been extracted from a
parse or successfully applied to it.

For each reading from the HPSG parser, the
reranking model assigns a numeric score by the
following formula:

S(t) =
∑

r∈R(t) (confidence(r)− φconfidence)

ifR(t) 6= φ,
0

ifR(t) = φ.

(3)

R(t) is the set of RE rules matching parse read-
ing t, and φconfidence is the average confidence
score among all rules. The score of the read-
ing will be increased if the matching rule has an
above-average confidence score. And the match-
ing of low-confidence rules will decrease the read-
ing’s reranking score. If a reading has no matching
DARE rule, it will be assigned the lowest score 0,
for no potential relation can be extracted from that
reading.

After the calculation, the top-n readings are
sorted in descending order. In case two or more
readings received the same reranking score (e.g.
by matching the same set of DARE rules), the
original maximum entropy-based disambiguation
scores are used as a tie-breaker. The sort compari-
son function is shown below:

Algorithm 1 compare readings(ri, rj)

if compare(S(ri), S(rj)) 6= 0 then
return compare(S(ri), S(rj))

else # Tie-breaking with MaxEnt scores
return compare(MaxEnt(ri), MaxEnt(rj))

end if

In practice, most readings will have no more
than two matching DARE rules. And many read-
ings from the HPSG parser do not affect the RE
task. A consequence is that the reranking model
can only partially disambiguate and have an effect
only on particular subsets of the readings. As we
are only evaluating RE performance, the remain-
ing ambiguity is not an issue.

5 Experiments and Evaluation
5.1 Experiment and Evaluation Setup

Data For several reasons we decided to conduct
our experiments on the Nobel Prize award corpus
used also in (Xu et al., 2007). Previous results
have shown that

1. not every data collection is suited for the
minimally supervised approach to RE (Xu,
2007);

2. freely available Nobel Prize award corpus ac-
tually has the required properties (Uszkoreit
et al., 2009).

Moreover, the availability of a version of the
corpus in which all relation mentions are labelled
and a treebank for a subset of the corpus have
greatly facilitated the evaluation.

The target relation is prize-awarding event,
namely, a relation among four arguments: WIN-
NER, PRIZE NAME, PRIZE AREA and YEAR. We
take the same seed example as utilized in (Xu et
al., 2007), namely, the 1999 Nobel Chemistry win-
ner Ahmed H Zewail in our experiments2. The
seed looks like an database recond:
〈Ahmed H Zewail, Nobel, Chemistry, 1999〉
The corpus contains 2864 documents from

BBC, CNN and NYT, together 143289 sentences.
ERG covers around 70% sentences of the total cor-
pus. For our experiments we randomly divide the
parsable corpus into two parts: training and test
corpus, each containing the same number of sen-
tences. The average sentence length of the to-
tal corpus is around 20 words. If we look at the
domain relevant sentences, namely, those contain
both person name mentions and prize name men-
tions, they have an average length of around 30.
Among those relevant ones, the average length of
the sentences parsable by ERG is around 25.

Experiments Two phases of experiments are
conducted. In the training phase, we show that
reranking improves RE performance. The test
phase applies the reranking model resulting from
the training phase to the test corpus. In both
phases, two different experiments are conducted
1) Baseline: without reranking; 2) reranking: with
parse reranking. In the baseline experiment, we

2Uszkoreit et al. (2009) show that for the given dataset
the particular choice of the single seed instance does not have
any affect on the performance.
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keep the first n readings of all sentences and
run DARE for rule learning and RE on top of
these readings. The aim is to observe whether
correct relation instances can also be detected in
lower-ranked readings. In the second experiments,
we aim to investigate whether reranking based
on task-feedback and domain knowledge is use-
ful for better extraction performance. These ex-
periments are conducted only with the best read-
ing after reranking, i. e. the normal setting of RE
application. In none of the experiments, confi-
dence thresholds are employed for improving pre-
cision by filtering out less confident rules or in-
stances. As we are mainly interested in the ef-
fects of reranking on RE recall, we are trying to
avoid any other factors that may influence the re-
call. Thus in our experiments confidence estima-
tion scores are only used for reranking.

Qualitative Analysis Given the experimental
results, we carry out various qualitative analysis
on the results of both parsing and RE. With respect
to parsing, we evaluate the results against the gold-
standard treebank before and after reranking. In
addition we evaluate the quality of the extraction
rules before and after the reranking.

5.2 Experiments

5.2.1 Training

Baseline Figure 4 shows the baseline evaluation
results. In this case, no confidence thresholds are
applied, therefore we have neither reranking nor
filtering. In order to monitor the contribution of
lower-ranked parses to RE, we add readings in log-
arithmic increments. We start with one reading,
namely the best reading proposed by the parser
and then in steps go up to 500. From each read-
ing, DARE tries to learn rules and to extract rela-
tion instances. When DARE only works with the
best reading, the precision is very high, namely,
87.83%, but with a very low recall of 45.18%.
When we increase the number of readings, we ob-
serve that precision drops while recall increases.
This confirms our suspicion that many good read-
ings are among the lower ranked ones in the cur-
rent maximum entropy-based parse model. There-
fore, reranking is important for lifting the good
readings to the top.

Reranking In the training phase, we learn
DARE rules from all 500 readings from all sen-
tences in the training corpus. Given the rules and
their confidence values, we rerank the 500 read-

Figure 4: Training phase (baseline): RE perfor-
mance w.r.t. the increase of readings

ings of each sentence in this corpus.

Reading 0 Precision Recall F1-Measure
Baseline (no reranking) 87.83% 45.18% 59.66%
After reranking 83.87% 56.19% 67.29%

Table 1: Training phase: Comparison of RE per-
formance before and after reranking.

Table 1 compares the RE performance with
just the first reading before reranking (baseline
experiment) and after reranking. As indicated,
the reranking strongly improves the recall value
(56.19% vs. 45.18%) and also yields a signifi-
cantly better F-measure (67.29% vs. 59.66%).

Figure 5 illustrates the behavior of parse read-
ings with respect to the respective frequencies of
matches with extraction rules (indicating their use-
fulness for rule or instance extraction). After
reranking, the number of the higher ranked read-
ings that match with the RE rules is increased sig-
nificantly. This indicates that the higher ranked
readings after reranking are better suited for the
RE task.

Figure 5: Training phase: Distribution of parse
readings from 0 to 255 and their frequency of
matching rules before and after reranking
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Figure 3: An example of ambiguous parses with PP attachment

reranking Examples In our experiment, we uti-
lize the syntactic derivation tree of the HPSG anal-
ysis. Figure 3 shows two derivation trees of a sen-
tence (4) from the experimental domain corpus.

(4) Egyptian scientist Ahmed Zewail won the 1999
Nobel Prize for Chemistry

In Figure 3, in the first reading r0 the PP “for
chemistry” is wrongly attached to the verb “win”,
while r2 (the third reading) is more appropriate
since the PP here modifies the noun “prize”. The
DARE rule in Figure 6 is presented as a typed fea-
ture structure, which is learned from HPSG parses.
The value of its feature PATTERN contains the
derivation tree structures relevant for the target re-
lation, while the value of the feature OUTPUT
represents the co-indexing between the semantic
arguments of the target relation and the linguistic
arguments in PATTERN. Since this rule has a high
confidence value and it matches the reading r2, r2
is pushed to the top after reranking.

rule_30 
PATTERN pattern 

HEAD (“win_v1”) 
SB-HD_MC_C sb-hd_mc_c 

HEAD <person> 0 

HD-
CMP_U_C 

hd-cmp_u_c 
HEAD 1 <prize> 
HD-
CMP_U_C 

hd-cmp_u_c_2 
HEAD (“for_prtcl”) 
HD-
CMP_U_C 

hd-cmp_u_c_3 
HEAD 2 <area> 

OUTPUT relation 
area 
winner 
prize 

2 
0 
1 

Figure 6: An example DARE rule derived from
HPSG derivation trees

5.2.2 Testing

In the test phase, we apply the reranking model
trained in the training phase to the parsing of the

test corpus when performing RE. The reranking
model consists of RE rules with their respective
confidence values. These rules work as classi-
fiers that add their confidence values to the ranking
scores of matching readings.

Baseline First, we evaluate the performance of
the baseline system, i.e., parsing the test corpus
without reranking. Similar to the experiments on
the training corpus, we first examine the perfor-
mance of RE on different reading sets. The re-
sults are shown in Figure 7. Similar to the training
phase results, the recall and F-measure values in-
crease when more readings are taken into account.

Figure 7: Test phase (baseline): RE performance
with respect to the increase of readings.

Reranking Table 2 presents the extraction per-
formance after application of the trained reranking
model to the test corpus, using only the highest-
ranked reading. Similar to the training phase re-
sults, both recall and F-measure also improve sig-
nificantly in comparison to the baseline system be-
fore reranking.
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Reading 0 Precision Recall F1-Measure
Baseline (no reranking) 82.93% 45.37% 58.56%
after reranking 80.33% 53.41% 64.16%

Table 2: Test phase: Comparison of RE perfor-
mance before and after reranking.

5.3 Qualitative Analysis

Experiments in both training and test phases con-
firm that our reranking improves RE recall and
F-measure. A further observation is that the re-
ranked best readings are much more compatible
with the learned extraction rules. Naturally, the
question arises whether reranking also improves
overall parsing accuracy.

5.3.1 Parsing before and after Reranking

Finally, we evaluate the general parsing accu-
racy before and after reranking. More specifi-
cally, we compare the syntactic structures against
a high-quality gold-standard treebank annotated
by the ERG grammar developer Dan Flickinger.
This evaluation indicates the general correctness
of the parser (or in particular the disambiguation
model).3

Table 3 reveals that the general parsing perfor-
mance suffers from reranking both with respect to
full trees and subtrees. To further narrow down the
effect of reranking, we manually marked the re-
gions (sub-strings in sentences) most relevant for
the target relations and calculated the parser scores
within those subtrees.4 The degradation of parser
performance (against gold annotation) is more sig-
nificant within these local regions.

Further error analyses show the breakdown of
the differences: Of the 113 test sentences, 68 show
a difference w.r.t. reranking. The labeled bracket-
ing accuracy (on relevant subtrees) increased for
13 sentences. Among these, 3 are due to better

3Since manual treebanking of HPSG derivation trees is
very expensive, the gold-standard treebank only contains 500
randomly selected domain relevant sentences in which both
persons and prizes are mentioned. Among these 500 sen-
tences, 113 are in the test corpus. Although this treebank
was developed independent from our research approach, the
113 sentences turn out to be useful because they are potential
candidates for RE rules and thus their readings can be more
effected by reranking than sentences which are irrelevant for
the target relation.

4We also evaluated the parsing performance on the sub-
trees selected by the relation extraction rules, whose results
are consistent with the above findings.

Model LBf1(full) LBf1(subtree)
MaxEnt 0.8613 0.8918

Reranked 0.7966 0.8132

Table 3: Labeled bracketing f-score

appositions, 2 to better selection of verb subcat
frames, 6 to better PP attachments. Of the 55
cases of degradation, main causes are: incorrect
compounding in NPs (24 cases), bad coordina-
tions (7 cases), wrong lexical categories (2 cases).

“good” for RE
Before reranking 50%
After reranking 85%

Table 4: “Good” readings for RE among 68 re-
ranked sentences

A careful study has been conducted on these
68 cases with respect to their effect on RE per-
formance. It turns out that after reranking more
of the parses are “good” for RE, i.e., leading to
good rules. A “good” rule is defined by us as
a rule which extracts correct instances. Table 4
shows that after reranking 85% of the 68 have
good parses as opposed to 50% before reranking.

An explanation for the drop of linguistic qual-
ity is that linguistically “wrong” analyses nev-
ertheless lead to consistent extraction of rules
and instances. For example, the gold-standard
bracketing of the compound noun “Nobel Peace
Prize laureate” is ((Nobel (Peace Prize)) laure-
ate). The reranking reading is ((Nobel Peace)
(Prize laureate)), which is wrong. However,
the rule derived from this wrong reading can
be applied to all equally incorrect readings of
similar compound nouns such as “Nobel Chem-
istry/Physics/Economics Prize laureate” to suc-
cessfully extract two arguments of the target rela-
tion, namely, PRIZE NAME and PRIZE AREA. Thus
the increased consistency in the re-ranked parses
does help improve the RE process.

5.3.2 Extraction Rules after Reranking

In the above analysis, we can learn the lessons that
a good reading for RE task is not necessary a lin-
guistically correct parse. The major contribution
of reranking is not the improvement of general lin-
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guistic parse selection but the improvement of se-
lection of good readings for RE tasks.

Table 5 shows a comparison of the distribution
of the good readings before and after reranking in
test corpus. Bad readings are readings where bad
rules are learned, namely, rules which extract only
incorrect instances. Useless readings are readings
from which useless rules are learned. Useless rules
are rules which do not extract any instance. Ta-
ble 5 clearly demonstrates that the porportion of
good readings increases significantly after rerank-
ing, while the number of bad readings and useless
readings drop.

Good Reading Bad Reading Useless Reading
before reranking 29.2% 1.3% 69.5%
after reranking 42.4% 0.8% 56.8%

Table 5: Test corpus: distribution of good readings
before and after reranking

We also compare the number of the learned
good rules and their extraction productivity. Af-
ter reranking, not only the number of good rules
increases, but also the average number of the in-
stances extracted by each good rule is grown to
4.3 in comparison to 3.5 before reranking. The
growth of good readings and rules and the produc-
tivity of rule extraction performance explains the
recall improvement after the parse reranking.

6 Related Work
Various attempts have been made to improve the
cross-domain performance of statistical parsing
models. McClosky et al. (2006) uses self-training
to improve Charniak’s parser by feeding large
amount of unannotated texts to the parser. Plank
(2009) utilize structural-correspondence learning
to improve the accuracy of the Dutch Alpino
parser on the Wikipedia texts. Rimell and Clark
(2008) show that a small set of annotated in-
domain data can significantly improve the CCG
parser’s performance. Hara et al. (2007) im-
proves the Enju HPSG parser performance in the
biomedical domain by a low-cost retraining of
the lexical disambiguation model. Nearly all ap-
proaches evaluate the parsing quality against a
“gold-standard” treebank. Miwa et al. (2010)
compares five parsers for bio-molecular event ex-
traction to investigate the correlation between the
performance on a gold-stand treebank and the
usefulness in real-world applications. All four
domain-adapted parsers achieve similar IE perfor-

mance and are better than the one not adapted.
The idea of reranking parses for better dis-

ambiguation is not new. Charniak and Johnson
(2005) presents a discriminative model for captur-
ing the linguistically motivated global properties
of the candidate parses proposed by the first-stage
generative parser. As the reranking model operates
on a relatively small set of candidates, it is able
to more accurately find the best reading. In the
same spirit, several applications such as named-
entity extraction (Collins, 2002), semantic pars-
ing (Toutanova et al., 2005a) and semantic label-
ing (Ge and Mooney, 2006) have taken advantage
of reranking approaches based on discriminative
models.

In contrast to the above proposals, our approach
does not need the annotated “gold-standard” data
for domain adaptation or training of the reranking
model. Our system exploits application feedback
for reranking. In a sense, the approach is akin
in spirit to the joint learning of multiple types of
linguistic structures with non-jointly labeled data
(Finkel and Manning, 2010), although in our case
the emphasis is entirely put on the application per-
formance.

7 Conclusion and Future Work
The main contribution of our work is a method
for adapting generic parsers to the tasks and do-
mains of relation extraction by parse reranking.
Our reranking is based on feedback from the ap-
plication. We could show that for one generic
parser/grammar, recall and f-measure could be
considerably improved and hope that this effect
can also be obtained for other generic parsers.
We do not worry much about the collateral de-
crease in precision, because precision will be
tightened again when we employ confidence es-
timation thresholds for filtering out less promising
rules and instances.

A side result of the work was the insight that a
better parse ranking for the purpose of relation ex-
traction does not necessarily correspond to a bet-
ter parse ranking for other purposes or for generic
parsing. This should not be surprising since re-
lation extraction in contrast to text understand-
ing does not need the entire and correct syntac-
tic structure for the detection of relation instances.
The ease and consistency of rule extraction and
rule application counts more than the linguisti-
cally correct analysis. The gained new insight that
the consistency of parse selection is more relevant
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than parsing accuracy, we consider worth sharing.
The presented results may also be viewed as a

step forward toward making deep linguistic gram-
mars useful for relation extraction, whereas up
to now most minimally supervised approaches to
RE have employed shallower robust parsers. The
hope behind these attempts is to improve precision
without losing too much recall. After reclaiming
recall through our parse reranking, next steps in
this line of research will be dedicated to balanc-
ing off the deficits in coverage by data-driven lex-
icon extension in the spirit of (Zhang et al., 2010)
and by exploiting the chart for partial parses in-
volving the relevant types of named entities. Fur-
thermore, the approach of (Dridan and Baldwin,
2010) to learning a parse selection model in an
unsupervised way by utilizing the constraints of
HSPG grammars might also be interesting for do-
main adaptive parse selection for relation extrac-
tion. At some point we may then be in a position
to conduct a fair empirical comparison between
deep-linguistic parsing with hand-crafted gram-
mars on the one hand and purely statistical parsing
on the other. An error analysis may then indicate
the chances for hybrid approaches. However, be-
fore targeting these medium-term goals we plan to
investigate whether our approach can also be ap-
plied to other parsers with inherent generic parse
ranking and whether the set of learned RE rules
with their confidence values can be directly used
as features in the statistical parse disambiguation
models instead of in the post-processing step by a
separate re-ranker.
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Abstract

Prepositional phrase attachment is an im-
portant subproblem of parsing, performance
on which suffers from limited availability of
labelled data. We present a semi-supervised
approach. We show that a discriminative
lexical model trained from labelled data,
and a generative lexical model learned via
Expectation Maximization from unlabelled
data can be combined in a product model to
yield a PP-attachment model which is bet-
ter than either is alone, and which outper-
forms the modern parser of Petrov and Klein
(2007) by a significant margin. We show
that, when learning from unlabelled data, it
can be beneficial to model the generation of
modifiers of a head collectively, rather than
individually. Finally, we suggest that our
pair of models will be interesting to com-
bine using new techniques for discrimina-
tively constraining EM.

1 Introduction

Labelled data for NLP tasks will always be in
short supply. Thus, a statistical parser trained
with labelled data alone will always be troubled
by unseen events—primarily when parsing out-of-
domain data, or when faced with rare events from
in-domain data. Thus, a major focus of current
work is the use of cheap, abundant unlabelled data
to improve state-of-the-art parser performance.

We focus on an important sub-problem of
parsing—prepositional phrase attachment—and
demonstrate a successful semi-supervised learn-
ing strategy. We show that, using a mix of la-
belled and unlabelled data we can improve both
the in-domain and out-of-domain performance of
a prepositional phrase attachment classifier.

Prepositional phrase attachment, for us, is the
decision as to which heads a series of prepositional
phrases of the form [PP prep NP] modify, as in,

e.g.,

He ate a salad [PP with a fork] [PP of plastic]

Prepositional phrase attachment is an important
sub-problem of parsing in and of itself. Structural
heuristics perform poorly (cf., Collins and Brooks,
1995), and so lexical knowledge is crucial.

Moreover, the highly lexicalized nature of
prepositional phrase attachment makes it a kind of
microcosm of the general problem of learning de-
pendency structure, and so acts as a computation-
ally less-demanding testing ground on which to try
out learning techniques. We have endeavoured to
approach the problem with a strategy that might
be likely to generalize: a mix of generative and
discriminative lexical models, trained using tech-
niques that have worked for parsers.

The main contributions of this paper are:

• We compare the performance on the preposi-
tional phrase attachment task of natural lexi-
calized dependency parsing strategies, to the
popular semi-lexicalized model of Petrov and
Klein (2007), and show that a lexical is more
effective for this problem.

• We show that a discriminative lexical model
trained from labelled data and a generative
lexical model learned through Expectation
Maximization on unlabelled data can per-
form better in a product model than either
does alone, yielding a significant improve-
ment over our baseline reference, the parser
of Petrov and Klein (2007).

• We show that, in this case, when learning
from unlabelled data, a strategy of generat-
ing all modifiers of a head collectively works
better than generating them individually.
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2 Prior Work

Work on the topic of prepositional phrase attach-
ment typically views the problem as a binary clas-
sification task. Given a 4-tuple,

〈verb, noun1, prep, noun2〉

the task is to decide whether the attachment of
the [PP prep NP] prepositional phrase character-
ized by 〈prep, noun2〉 is to verb or to noun1.

Human performance on this prepositional
phrase attachment task has been estimated by Rat-
naparkhi et al. (1994). They found that treebank-
ing experts given the 4-tuple binary decision task
choose the correct attachment 88.2% of the time.
And, when then given the full context for the same
examples, they choose the “correct” attachment
(i.e. the same attachment that is given by the Penn
Treebank) 93.2% of the time.

Approaches to training from labelled data
include rule-based (Brill and Resnik, 1994),
maximum-entropy (Ratnaparkhi et al., 1994), and
a generative “backed-off” model (Collins and
Brooks, 1995).

The state-of-the-art is an approach by Stetina
and Nagao (1997). They replace each noun and
verb by a WordNet sense using a custom word
sense disambiguation algorithm. Then, they train
a decision tree on labelled WSJ data. Their
method achieves essentially a human level of ac-
curacy on this task: 88.1%. Toutanova et al.
(2004) achieve a comparable result with a method
that integrates word-sense disambiguation into the
generative attachment model.

There is also a variety of work that makes use
of unlabelled data to learn prepositional phrase
attachment. An early example in this category
is Hindle and Rooth (1991). They estimate the
probability that a given preposition modifies a
given head using an iterative process with hetero-
geneous steps. Ratnaparkhi (1998) uses determin-
istic heuristics.

The state-of-the-art in this area is due to Pan-
tel and Lin (2000). They, use a homespun iterative
algorithm learning algorithm which bears a resem-
blance to EM, but it does not seem to learn a gen-
erative model. One interesting feature of this ap-
proach is that the attachment decision for a given
word is allowed to make use of the statistics col-
lected for similar words, which helps to the spar-
sity that occurs even in a large, unlabelled corpus.

Their performance on the binary classification task
is 84.5%.

We are aware of one case that has used a mix
of labelled and unlabelled data: Volk (2002) uses
a back-off strategy in which information from la-
belled data is used when conclusive, and informa-
tion from unlabelled data otherwise. Performance
on the same task on a NEGRA-based data set lags
behind the others, at 81.0%.

Finally, Atterer and Schütze (2007) argue that
an experimental setup that evaluates a prepo-
sitional phrase attachment with possible attach-
ments given by an “oracle,” rather than an actual
parser, may make the problem appear easier than
it really is. This is a good point. But, for the pur-
poses of comparing learning techniques, we feel
that the typical oracle task is better suited, as it
avoids introducing the noise of parser mistakes.

3 Background

3.1 The Prediction Task

We treat prepositional phrase attachment as a
structured prediction task, rather than as a binary
decision. The input to the prediction procedure
will be a (prepositional phrase) attachment prob-
lem, a string matching either the regular expres-
sion (1) or (2).

(1) verb baseNP (prep baseNP)∗

(2) baseNP (prep baseNP)∗

For example, some attachment problems are:

(3) sought man from Germany with expertise

(4) man from Germany with expertise

Though not indicated above, we assume that POS
tags are given as part of the problem, and need not
be predicted.

Our goal is to create a prediction procedure
which, given an attachment problem, x, will return
a derivation, d, which is a parse for x using the
following mini CFG grammar whose initial sym-
bol is ROOT:

(5) a. ROOT→ VP

b. ROOT→ NP

c. VP→ verbH NP PP∗

d. NP→ baseNPH PP∗

e. PP→ prepH NP
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The head of each XP is indicated with a sub-
scripted H. All siblings to a head are called its
modifiers.

Given a full parse tree in the style of Marcus
et al. (1993), attachment problem-derivation pairs
were extracted using a TGrep-like functional pro-
gram, which is described in Appendix A.1

3.2 Scoring Performance

When evaluating a prediction procedure, we will
give it a series of attachment problems and ask for
the derivations. In most cases, the score we will
focus on is what we can call the binary decision
score, i.e., the percentage of the time in which the
first prepositional phrase following a verb–direct-
object pair is attached correctly. In this case, we
are reporting the same score as is typically re-
ported on this task, so as to avoid introducing a
new metric.

To be clear, then, when scoring, in this way,

[VP set [NP rate [PP on [NP refund]] ] [PP at [NP 5 percent]]]]

we only ask where [PP on [NP refund]] attaches,
and ignore the attachment decision of [PP at [NP 5
percent]].

One might thus ask what the point of bother-
ing with the whole derivation is if we are typically
only intending to score a binary decision. Well,
our model in §5.2 makes each attachment decision
independently, and in this example from the WSJ
development test set, incorrectly attaches both on
refund and at 5 percent to the verb. In contrast,
our model of §5.3 attaches prepositional phrases
collectively, and rejects the derivation where on
refund and at 5 percent both modify set. Thus,
though we only score one decision in a derivation,
that decision can be influenced by others, and so
it does make a difference to work at the level of
derivations.

3.3 Data Sets

The traditional semi-supervised learning task in-
volves learning from two sets. The first is a set of
pairs, {(xi ,di)}, of data points along with their la-
bels. The second is a (typically much larger) set of
data points alone, {xj } (i.e. without labels). In our
case, the data points are attachment problems and
the labels, which are structured, are derivations.

1Our data sets extracted from the Penn Treebank will be
available on request to those with the relevant license(s) to
use Penn Treebank data.

Our experiment is interested in performance
across domains. Thus, we also distinguish be-
tween in-domain labelled data, some of which we
will allow ourselves to use to train model param-
eters, and out-of-domain labelled data, which we
will not use to train model parameters.2

Our source of labelled data is the Penn Treebank
(Marcus et al., 1993). We use sections 0-22 of the
WSJ portion of the Penn Treebank for training and
development and sections 23, 24 are left for final
evaluation. We variously use i) sections 2-21 as
labelled training data, with sections 0, 1, 22 as a
development test set, or ii) sections 0, 1, 5-22 as
labelled data with sections 2-4 as held-out set for
parameter tuning.

We split up the Brown portion of the treebank
similarly to Gildea (2001)—i.e. we split it into 10
sections such that the s’th sentence is assigned to
section s mod 10. We then use sections 0-2 de-
velopment test set, 4-6 for tuning, and sections 7-9
are left for final evaluation. Our divisions of the
Penn Treebank are chosen to resemble the canoni-
cal training-test split for parsing, but we use more
sections for testing, to obtain more reliable test
scores, as there are far fewer decisions to test on in
each section in our task, when compared to pars-
ing.

Our source of unlabelled data is the New York
Times portion of the GigaWord corpus (Graff et
al., 2005). These sentences are parsed automati-
cally using the generative semi-lexicalized parser
of Petrov and Klein (2007). We did some filter-
ing of these unlabelled sentences, removing sen-
tences with quotations (as quoted material can be
ungrammatical) and sentences over 40 words in
length (to increase the chance that each automatic
parse used was reasonable).

We use these automatically extracted parses
only to identify attachment problems (x), which
we will then treat as unlabelled. That is, while
there is possibly information in the derivations
(the d) that the parser is coming up with, we did
not use this.

In terms of size, our WSJ2-21 set has 29, 750
examples. The GigaWord set has 8, 038, 001 ex-
amples.

2However, we do appeal to the labels of a portion of the
out-of-domain Brown data once, in order to fix a single exper-
imental parameter, which is the number of iterations of EM
to run on the unlabelled data, cf. note 6.

131



3.4 Baseline

Much past work has tested on the 4-tuple, bi-
nary decision data set of Ratnaparkhi et al. (1994).
This data does not have all of the information re-
quired by our approach, and is based on a pre-
liminary version of the Penn Treebank (version
0.75), which is incomplete and difficult to work
with. Thus, we could not compare our work di-
rectly with past work.

In order to evaluate our performance, then, we
will compare our model against the performance
on prepositional phrase attachment of the Berke-
ley parser (Petrov and Klein, 2007), which is pop-
ular, readily available, and essentially state-of-art
among supervised parsing methods. And, as we
said, this is precisely the technology that we use
to process unlabelled data, so it makes sense that
our model should improve upon this in order to be
of any use.

So, we need to evaluate the prepositional phrase
attachment performance of the Berkeley parser.
What we do is parse the test sections of the Penn
Treebank using this parser (which is trained on
WSJ2-21). We run our functional program to ex-
tract problem-derivation pairs from the automatic
parse. Suppose we extract the pair (da ,xa) from
the automatic parse. We compare this to the gold
tree. If the gold tree contains the pair (dg ,xg),
and xa = xg , then we score da with respect to
dg . Otherwise, we do not score da .

This means the parser is not penalized for fail-
ing to identify attachment problems in the gold
parse. And, this should be a favourable compari-
son for the parser as it is evaluated on the examples
it knows most about, i.e. those for which it can
identify the location of an attachment problem.

We supply the parser with gold POS tags to
maximize the chance that it will find each attach-
ment problem. In this way, we were able to as-
sess the performance of the Berkeley parser on
3184
3475 = 91.6% of the test examples in the WSJ set,
and 3091

3509 = 88% in the Brown (both dev. test and
final test). Our models are tested on all examples.

An important parameter for the Berkeley parser
is the number of split-merge iterations done dur-
ing training (cf. Petrov and Klein, 2007). The
documentation suggests 6 is better for parsing the
WSJ, while 5 is better for parsing other English.
We tried both. The results are shown in Table 1.
We will use whichever parameterization did better

WSJ Brown
Parser Dev. Test Dev. Test

Berkeley 5 SM 85.3 83.0 82.4 81.1
Berkeley 6 SM 84.6 83.0 83.3 82.7

Table 1: Performance of the Berkeley parser on the
prepositional phrase attachment task. The best scores
on each data set will be our baseline.

on each data set as the baseline on that data set.3

3.5 Reduction of Open-Class Words

In all experiments, all nouns and verbs were re-
placed by more general forms. If applicable,
nouns were replaced by their NER label, either
person, place or organization, using the NER clas-
sifier of Finkel et al. (2005). All numeral strings
of two or four digits were replaced with a symbol
representing year, and all other numeral strings
were replaced with a symbol representing numeric
value.

A word not reduced in either of these ways was
replaced by its stem using the stemmer designed
by Minnen et al. (2001).4

Finally, this reduced form is paired with the cat-
egory of the word c ∈ {NOUN, VERB} to distin-
guish uses of words that can either be nouns or
verbs. We find that these reductions improve per-
formance slightly and also reduce the size of the
generative probability table.

4 A Discriminative Model from Labelled
Data

4.1 The Model

As noted, we have access to one set {(xi ,di)} of
labelled examples. We begin by discriminatively
training two conditional models on this set.

Our model uses two types of features: i) struc-
tural, and ii) lexical.

The structural features exploit two characteris-
tics of prepositional phrase attachment that are of-
ten noted in the literature. First, a prepositional
phrase headed by the preposition of almost always
attaches to the nearest available attachment site
to its left. So, one feature fires whenever this is

3The performance of this parser depends on a random
seed used to initialize the training parser. Our 6-iteration
grammar was downloaded from the authors’ web site. Our
5-iteration grammar is the one that resulted from our first run
of the training process.

4We use the Java reimplementation in the Stanford NLP
API, http://nlp.stanford.edu/software/index.shtml.
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not the case. Second, prepositional phrases almost
never attach to pronouns. So, another feature fires
whenever some prepositional phrase attaches to a
pronoun.

The first model, denoted pD1 (d | x; θD1), uses
these and lexical features of the form

〈head,prep〉

Here, head is either a noun or a verb, and prep is
a preposition. The feature 〈head,prep〉 is active
in derivation d iff (a prepositional phrase headed
by) prep modifies head in d.

Our second model, pD2 (d | x; θD2), has all fea-
tures mentioned above, and also those of the form

〈head,prep,nouninside〉

Here, head and prep are as before, and
nouninside is the head of the noun phrase inside
the prepositional phrase headed by prep.

For example, in

[NP salad [PP with [NP dressing]]]

The active features are 〈salad, with〉 and
〈salad, with, dressing〉.

This latter type of feature represents straight-
forward specialization of the concept used by
higher-order dependencies for parsing, especially
Carreras (2007), to the problem of prepositional
phrases.

Our estimates of θD1 and θD2 are arrived at us-
ing structured perceptron training (Collins, 2002).
The models trained on all examples in our training
section (i.e. those of type NP and of type VP). We
pick the number of perceptron training iterations
for each model by maximizing performance on a
held-out set, using our parameter tuning split de-
scribed in §3.3. We only use feature instances that
have occurred at least twice in training.

If Φ(x,d) is a feature vector characterizing
(x,d), the perceptron algorithm will output a
parameter vector θDi , and the “score” assigned
to a pair (x,d) under this interpretation will be
θDi · Φ(x,d), with the predicted derivation being
the d with the highest score (in the case of any tie,
we always choose attachment to the verb).

As we have suggested, we are interested in a
conditional probability for d given x, rather than
just a linear “score”. This is for use in a future
section (i.e. §6). The natural way to achieve this is

WSJ Brown
Classifier Dev. Test Dev. Test

pD2 (2nd-order) 87.4 86.0 84.7 83.9
pD1 (1st-order) 86.2 86.0 84.7 83.0

Baseline 85.3 83.0 83.3 82.7

Table 2: Performance of the two discriminative classi-
fiers.

to interpret θDi as the parameters for a maximum
entropy model, i.e.

pDi(d | x; θDi) =
exp {θDi · Φ(x,d)}∑
d′ exp {θDi · Φ(x,d′)}

Fortunately, we will see that we never need actu-
ally compute the normalizing term in the denomi-
nator.

4.2 Results

The performance of this model both in- and out-
of-domain are shown in Table 2, along with the
performance of the baseline Berkeley parser.

The results should be of interest to those inter-
ested the use of lexical features for parsing. The
models that use lexical features outperform the
semi-lexical model of Petrov and Klein (2007).
Prepositional phrase attachment may be one area
where lexicalized models are especially important.

We also see that the use of second-order fea-
tures buys extra performance on some data sets,
but not on others. A look at the dev. sets show
that second-order features were active in 9 of the
first 60 decisions in the WSJ, but in 0 of the first
60 in Brown. We speculate that use of word senses
as features, taking after Stetina and Nagao (1997),
might result in better generality across domains,
but leave this to future work.

5 Two Generative Models Trained on
Unlabelled Data

5.1 Common Model Structure

We now want to make use of our unlabelled data,
{xj }. For this purpose, we turn to the Expectation
Maximization algorithm (Dempster et al., 1977).
Thus, we will estimate generative models of the
data, each of the form pG∗(x,d; θG).

Our discriminatively trained classifier made use
of both structural and lexical features. Our strat-
egy will be to use our unlabelled examples to esti-
mate just the lexical parameters.
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It would seem impossible to expect that we
could learn the structural features, e.g., that prepo-
sitional phrases do not attach to pronouns from un-
labelled data. Nor do we need to do this, as this
constraint can be encoded with little effort. What
we do want to be able to estimate from unlabelled
data is the strength of lexical relationships in arbi-
trary domains, which we could not hope to encode
manually.

So, the question arises as to how to incorporate
our knowledge of the structural constraints into
the problem, and to constrain the EM process us-
ing these. Probably the most powerful and general
purpose way to do this would be to use one of the
new variants of EM that allows the specification of
expectations for feature counts, such as Ganchev
et al. (2010) or Druck and McCallum (2010). In
this case we could specify that, e.g., we expect the
average number of times we see a prepositional
phrase attach to a pronoun to be 0, and the mod-
ified EM process would be encouraged or forced
to converge to a solution that respects this expec-
tation. This strategy is very general, but also much
more expensive than ordinary EM, as each E-step
involves an expensive optimization problem.

Here, we get by with a simpler, and much more
computationally inexpensive strategy.

The structural constraints we have made use of
are very robust. In our WSJ sections 2 − 21, of-
headed PPs attach to the nearest non-pronoun to
their left in about 98.6% of cases. And, in 99.6%
of cases, pronouns have nothing attaching to them.

Thus, we are willing to take a deterministic
stance: we will assign 0 probability mass to
derivations that violate our structural constraints.
Let AD, intuitively the set of “admissible deriva-
tions,” be the set of derivations that have: i) no
attachment to a pronoun, unless there is no other
choice, and ii) every of-pp attaching to its nearest
available non-pronoun site, if it has one.

Let 1d∈AD be an indicator function, which is
equal to 1 if d ∈ AD, and 0 otherwise. Then, the
strategy is to let

pG∗(x,d) = pG∗(x,d | 1d∈AD) · 1d∈AD

and to estimate pG∗(x,d | 1d∈AD) from unla-
belled data. The result is easily seen to be a prob-
ability distribution in which all weight is given to
derivations in AD.

We will look at two model structures. In both
cases, the data trained on will include all examples

of type VP and NP from our GigaWord set. Ex-
amples with unambiguous attachment, such as [NP
place [PP at table]], are included, so that parame-
ters chosen must maximize likelihood over these
examples as well. Also note that, since the num-
ber of derivations is never unmanageable, when
summing over derivations, we do so exhaustively
rather than use some form of dynamic program-
ming such as, e.g., the inside-outside algorithm.

We will now look at two different ways to struc-
ture a model for pG∗(x,d | 1d∈AD).

5.2 Individual Dependent Generation

The first model uses the same lexical features as
our first-order discriminative model. We model
a derivation as a series of sub-events, which
will be draws from a pair of random variables,
(head,prep). Intuitively, this corresponds to
the event the phrase headed by head generates a
modifier headed by prep. Following the reason-
ing of Collins (1999, p. 46), we imagine that each
head’s final modifier is a special STOP symbol.

Thus, the derivation

(6) [VP ate [NP salad] [PP with [NPfork]]]

is modeled as the four events (eat, with), (eat,
STOP), (salad, STOP), (fork, STOP).

Then, the probability of a problem-derivation
pair, conditioned on 1d∈AD , is estimated as

pGInd
(x,d | 1d∈AD ; θGInd

) =∏
h∈heads(d)

∏
p∈deps(head)

pGInd
(prep | head; θGInd

)

Here heads(d) is the set of head of NP and V P
phrases in d, and deps(head) is the list of modi-
fiers of head in d, including the STOP symbol.

Even though our unlabelled training set was
large, there were still nouns and verbs seen
during test that were not seen during training.
Thus, we created a GENERIC head for each
category (one for VERB and one for NOUN).
Each time an event (head,prep) was counted,
we would also count (GENERICtype(head),prep),
where type(head) ∈ {VERB, NOUN}. Thus, the
generic head represents a kind of “average head.”
Then, if we needed the probability for some event
(head′,prep′) during test, and head′ had not
been seen during training, we would back off to
the event (GENERICtype(head′),prep′).

134



5.3 Collective Dependent Generation
The next strategy we try is to generate the collec-
tion of dependents for a head head as a whole.
In particular, we generate each head’s multi-set of
dependents.5

In this case, if a verb has a direct object, the
direct object is represented in the multi-set of the
verbs modifiers. But, rather than put the word it-
self, each direct object is represented by a special
symbol, DO.

So, in this model, (6) is modeled as three events,
(eat, {DO, with}), (salad, {}), and (fork, {}).

Then, if depsd(head) is the multi-set of mod-
ifiers of head in d, our estimate of the probabil-
ity of the problem-derivation pair, conditioned on
1d∈AD , is

pGCol
(x,d | 1d∈AD ; θGCol

) =∏
head∈heads(d)

pGCol
(depsd(head) | head; θGCol

)

Unseen heads are handled in the same manner as
in §5.2.

5.4 Initializing and Terminating the EM
Process

We consider two cases for initializing the EM pro-
cess. In one case, our initial guess at the posterior
distribution is the uniform distribution: all deriva-
tions for a given x that are in AD are considered
equally likely, with small random perturbations to
break any symmetry (we found there to be essen-
tially no difference from run to run).

In the second case, we make better use of our
labelled data, and begin with the conditional dis-
tribution given by pD1 , the model with only first-
order features, that we had estimated discrimina-
tively from labelled data, i.e.

pG∗(d|x,1d∈AD ; Ø) = pD1 (d|x; θD1)

Given that running EM to convergence can
overfit the training data, to the detriment of perfor-
mance (cf., Liang and Klein (2009)), we chose to
run EM for a fixed number of iterations, with the
number of iterations determined using a tuning test
set. We picked the number of iterations to maxi-
mize performance of the best performing model
(which turned out to be the collective dependent

5We also experimented with lists and sets, finding multi-
sets to work slightly better. To avoid losing the focus of this
discussion, we will only discuss multi-sets.

generation initialized with pD1 ) on a Brown tun-
ing set, sections 4-6.6 The optimal number of iter-
ations was found to be 4.

5.5 Results

The performance of these two model structures,
under the two kinds of initialization methods, is
shown in Table 3. Performance on the dev. test
sets is plotted versus the number of iterations of
the EM procedure. The fourth row is highlighted
as this was determined to be the optimal number
of iterations in the manner just described.

We see that the best performing method is that
which generates the (multi-set of the) modifiers
simultaneously, while initializing using the con-
ditional distribution estimated from labelled data.
It is also interesting to note that, models initial-
ized with pD1 get progressively better at parsing
Brown but worse at parsing WSJ. In fact, after 6
iterations, performance at parsing the WSJ is sim-
ilar for both models initialized with pD1 and those
initialized with the uniform distribution. This sug-
gests to us that the information that we have from
our valuable labelled data is being lost, and leads
us to think that it may be profitable to incorpo-
rate this information more forcefully, using tech-
niques for constraining EM with information, such
as those of Ganchev et al. (2010) and Druck and
McCallum (2010) already mentioned.

However, though the model may be “losing” in-
formation relevant to parsing the WSJ, the note-
worthy aspect is that it ends up being able to parse
the Brown data better than our discriminatively
trained parsers (both with accuracy of 84.7 on
Brown dev. test), and thus makes a contribution
to overall parsing accuracy.

Note that we show the performance of the vari-
ous models on the development test set only here.
We report results on a held-out set in the next sec-
tion.

6In this case, we are using the labels from our out-of-
domain data during training. We feel that this is legitimate
because these are only used to tune a single experimental pa-
rameter, the number of EM iterations. Tuning a single pa-
rameter requires only a small number of examples, that does
not necessarily grow with the number of lexical parameters
being estimated. It is the fact that we can learn lexical model
parameters from unlabelled data that will ultimately save us
from having to label the entire web.
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Initialized with pD1 (d | x; θD1) Initialized to uniform distr.
Independent Collective Independent Collective

EM Its. WSJ Brown WSJ Brown WSJ Brown WSJ Brown
1 85.7 83.9 86.3 85.8 82.0 83.4 81.6 84.5
2 84.2 84.9 84.9 85.7 82.4 84.4 82.7 85.2
3 83.3 84.5 84.7 86.0 82.8 84.6 82.5 85.1
4 83.0 84.6 83.8 86.3 82.9 84.6 82.5 85.4
5 82.9 84.6 83.5 86.0 82.9 84.7 82.6 85.7
6 82.8 84.6 82.8 86.0 82.9 84.7 82.4 85.8

Table 3: Performance of the two generative models. Variables are: i) the model learned, independent vs. collective
modifier generation (§5.2, 5.3), ii) the intial guess at a conditional distribution for hidden variables (§5.4), and iii)
the number of iterations of EM. Score is the binary decision score (cf. §3.2).

6 A Combination of Models

6.1 The Combination

We now have two models of prepositional phrase
attachment. One is estimated from labelled data,
and one from unlabelled data. Each performs well
in isolation. But, we find that the combination of
the two in a logarithmic opinion pool framework
works better than either does alone.

With roots in Bordley (1982), a logarithmic
opinion pool, as defined in Smith et al. (2005), has
the form

plop(d|x) =
1

Zlop

∏
α

pα(d|x)wa

In related work, Hinton (1999) describes a prod-
uct of experts, i.e. multiple models trained to work
together, so that an unweighted product, will be
sensible. Petrov (2010) has success with the un-
weighted product of the scores of several similar
parsing models. Smith et al. (2005) adjust weights
by maximizing the likelihood of a labelled dataset.

Here, we weight the component models so as to
maximize performance on a held out set. Where i
is either 1 or 2, let

plop,i(d | x; θDi , θGCol
) =

1

Zi
· pDi(d | x; θDi)

k i · pGCol
(d | x; θGCol

)1−k i

for some ki ∈ [0, 1]. That i can be 1 or 2 signifies
that we will create two combinations, one for pD1

and one for pD2 . The Zi are normalizing factors.
The conditional distribution pGCol

(d | x; θGCol
) is

obtained from the joint, in theory, by normalizing.
In practice, we never actually need to compute any

normalizing factors.7

To estimate ki , we first train θD1
′ and θD2

′

on our WSJ tuning training sections (0, 1, 5-22).
We then use θD1

′ to estimate θGCol
′. Finally, we

choose the value for ki that maximizes the per-
formance of the model that combines θDi

′ with
θGCol

′ on our WSJ sections 2-4, with a simple
search over values [0, .01, · · · , .99, 1]. The opti-
mal values for the ki were k1 = .70 and k2 = .71.

6.2 Results

Table 4 compares our two combined models
against our individuals models, and our Berkeley
parser baseline. We see that the combined models
outperform their component models on all tasks.
That is, the LOP1st-order model that combines pD1

and pGCol
outperforms both pD1 and pGCol

. And,
the LOP2nd-order model that combines pD2 and
pGCol

outperforms both pD2 and pGCol
. This all

adds up to a significant improvement over the per-
formance of the Berkeley parser. And, we see that
when parsing the out-of-domain Brown data, the
first-order model performs as well or slightly bet-
ter than the second-order model.

Recall that we have used a new data set. In
terms of past work on the Ratnaparkhi et al. (1994)
data set, recall that the state-of-the-art using la-
belled data alone is Stetina and Nagao (1997), with

7To see this, note that

argmax
d

(
f(d)

Z1

)
a ·

(
g(d)

Z2

)
b

Z3

=argmax
d

1

Z1
aZ2

bZ3
f(d)ag(d)b

=argmax
d

f(d)ag(d)b
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88.1% accuracy, and with unlabelled data alone
is Pantel and Lin (2000), with 84.5% accuracy.
Our results compare favourably to these, though,
of course, the comparison is indirect.8

Furthermore, both of these other author’s mod-
els make use of semantic resources such as Word-
Net and similar words lists to combat the spar-
sity of combinations that occurs even in large un-
labelled samples. The limited utility of second-
order features based on only the stems of the
nouninside suggests to us that features based on
some more general semantic concept might gen-
eralize to other domains better. What is interest-
ing in this regard is the strength of our first-order
model, LOP1st-order, which achieves performance
approaching or passing the previous work without
looking at nouninside. This suggests to us that col-
lective dependent generation is a useful technique,
which can presumably be combined with the se-
mantic resources of the authors just mentioned to
make an even better model.

Returning to the results, while the performance
on the out-of-domain Brown corpus looks very
comparable to that on the WSJ for both our system
and the Berkeley parser, it actually seems that the
Brown corpus is somewhat “easier”, in the sense
that it contains more examples that can be settled
on the basis of our two fairly reliable structural
heuristics.9 Table 5 shows the performance on ex-
amples in which the structural heuristics do not
apply. Here, we see that performance on the out-
of-domain Brown corpus lags significantly behind
performance on the WSJ.

Those interested in the automatic grammar dis-
covery technique of the Berkeley parser will note
the significant drop in performance of that parser
on this subset of the data which implies that
this parser had done essentially perfectly in cases
where our structural heuristics did apply, meaning
it must have learned equivalent heuristics to those
that we encoded by hand, which is noteworthy.

Finally, though we have so far reported only the
binary decision score (cf. §3.2) for each deriva-
tion, Table 6 shows a more general score: the
percentage of correct attachments in any example

8While both the Ratnaparkhi et al. (1994) test set and our
WSJ test set are from the essentially the same material, they
are not exactly the same examples, as the Treebank has un-
dergone reordering.

9On WSJ sections 0, 1, 22-24, structural features fire in
33.8% of examples, while on Brown sections 0-2, 7-9 struc-
tural features fire in 46.0% of examples.

WSJ Brown
Model Dev. Test Dev. Test

pGCol
(4 EM its.) 83.8 81.6 86.3 85.4

LOP2nd-order 88.9 86.9 86.4 86.2
pD2 (2nd-order) 87.4 86.0 84.7 83.9

LOP1st-order 87.5 86.6 86.6 86.2
pD1 (1st-order) 86.2 86.0 84.7 83.0

Baseline 85.3 83.0 83.3 82.7

Table 4: Performance of the combined model. Score is
the binary decision score (cf. §3.2).

WSJ Brown
Model Dev. Test Dev. Test

LOP2nd-order 84.1 80.3 76.0 76.2
LOP1st-order 82.3 79.8 76.1 76.3

Baseline 78.7 74.4 70.0 69.0

Table 5: Performance of the combined model on exam-
ples that cannot be settled by our two structural con-
straints. I.e., examples where i) the preposition is not
of, and ii) the direct object is not a pronoun. Score is
the binary decision score (cf. §3.2)

(whether headed by noun or verb) in which more
than one attachment was possible. Here, we see
that the general problem is, as one would expect,
harder than the binary decision problem.

6.3 Analysis: What does Unlabelled Data
Change?

At this point, we ask what difference the unla-
belled data makes. To answer this question, we
consider the nature of the disagreements between
the pD1 itself, and the LOP1st-order model that
mixes pD1 with pGCol

.
In Table 7, the Count column shows the num-

ber of agreements and disagreements on the de-
velopment test sets. One possible outcome would
have been few disagreements between models and
that each of these would be won by the combined
model. In fact, a significant number of disagree-

WSJ Brown
Model Dev. Test Dev. Test

LOP2nd-order 85.8 84.8 83.7 84.0
LOP1st-order 84.5 84.2 83.4 83.9

Baseline 82.6 80.1 81.2 82.2

Table 6: Performance of the combined model. Score
is the percentage of prepositional phrases attached cor-
rectly in all cases in which more than one attachment
was possible.
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WSJ Dev. Brown Dev.
Model
correct Count

pD1

neutral Count
pD1

neutral
Both 1748 134 1396 227

LOP1st-order 117 29 105 26
pD1 87 9 72 12

Neither 176 37 161 49

Table 7: Analysis of the agreements and disagreements
between the first-order discriminative classifier, pD1

,
and the combined model, LOP1st-order. The second row
describes examples where LOP1st-order was correct but
pD1 was wrong, and the third row describes the con-
verse situation. The Count column gives the number
of examples in each category. The pD1

neutral col-
umn gives the number of examples in each category
in which no features in the pD1

model were active (the
strategy is to pick attachment to verb in this case).

ments go each way, but the large majority are won
by the combined model.

The pD1 neutral category counts the number of
times that none of pD1 ’s features fire. These are
the examples in which pD1 has no opinion what-
soever, and so the combined model should have
an advantage, if the unlabelled data is contribut-
ing useful information. We see that this is indeed
the case. When no features fire for pD1 , the strat-
egy, as noted, is to choose attachment to the verb,
which should still lead to a large number of cor-
rect responses. Thus, it makes sense that some
disagreements are won by pD1 , even when none
of its features fire.

7 Conclusion and Future Work

We have shown that supervised techniques based
on lexical dependency parsing outperform the
semi-lexicalized strategy of Petrov and Klein
(2007).

We have demonstrated that a properly chosen
pair of models, one trained discriminatively from
labelled data, and one trained generatively from
unlabelled data, can be combined in a product
model to yield a model better than either is alone.

We have shown that, when learning from unla-
belled data, it may be preferable to generate de-
pendents collectively.

Finally, we have introduced a pair of models
which we think will be interesting to combine us-
ing the new methods for constraining EM, e.g., a
la Ganchev et al. (2010) or Druck and McCallum
(2010).
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Appendix A: Extracting Examples from
Gold Trees

In this section, we describe the functional program
used to extract examples from gold trees.

A base noun phrase is phrase labelled NP,
which does not dominate any other phrases. A
base noun phrase is identified with its head-word.
Head words are found using the Java reimplemen-
tation of Collins (1999) head-finder in the Stanford
NLP API.

Noun phrase examples extracted are those that
match

[S . . . [NP1 BaseNPH (prep baseNP)i
∗ . . . ] . . . ]

NP1 must be immediately dominated by an S,
baseNPH must be the left-most descendant of NP1,
and all (prep baseNP)i substrings must be domi-
nated by NP1 as well.

Verb phrase examples are those that match

[VP1
verbH (PRT) (ADVP) (baseNP) (prep baseNP)i

+ . . . ]

VP1 can occur in any environment. If there is a
particle (PRT), this is appended to the verb. The
adverbial phrase (ADVP) is ignored.
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Abstract

Current successful probabilistic parsers
require large treebanks which are difficult,
time consuming, and expensive to produce.
Some parts of these data do not contain
any useful information for training a parser.
Active learning strategies allow to select the
most informative samples for annotation.
Most existing active learning strategies
for parsing rely on selecting uncertain
sentences for annotation. We show in this
paper that selecting full sentences is not an
optimal solution and propose a way to select
only subparts of sentences.

1 Introduction

Current probabilistic parsers rely on treebanks
in order to estimate their parameters. Such
data is known to be difficult and expensive to
produce. One can also observe that the quality of
parsers increase when they model complex lexico-
syntactic phenomena. Unfortunately, increasing
the precision of models is quickly confronted with
data sparseness which prevents to reliably estimate
the model parameters. Treebanks size is therefore
a limit to the accuracy of probabilistic parsers.
Given the cost of annotating new data with
syntactic structures, it is natural to ask oneself,
before annotating a new sentence and adding it to
a treebank, if this new piece of information will
benefit a parser trained on the treebank.

This question is at the heart of active
learning which assumes that “a machine learning
algorithm can achieve greater accuracy with
fewer training labels if it is allowed to choose the
data from which it learns. An active learner may
pose queries, usually in the form of unlabeled data
instances to be labeled by an oracle (e.g. human
annotator). Active learning is well-motivated
in many modern machine learning problems,
where unlabeled data may be abundant or easily

obtained, but labels are difficult, time-consuming,
or expensive to obtain.” (Settles, 2010)

Different scenarios have been proposed for
active learning. The work described here is based
on the Pool-Based Sampling scenario (Lewis and
Gale, 1994) which is adapted to the problem at
hand. Pool-based sampling scenario assumes that
there is a small set of labeled data L and a large
pool of unlabeled data U available. Instances are
drawn from U according to a selection strategy.
The chosen instance(s) are then labeled and added
to L. These steps are repeated until either U is
empty or does not contain informative instances
anymore.

Many selection strategies have been proposed
in the literature. Uncertainty sampling, which
is the strategy that has been used in this work,
is the simplest and the most commonly used
one. In this strategy, instances for which the
prediction of the label is the most uncertain are
selected by the learner. The performances of
such methods heavily rely on the definition of
a good confidence measure, which measures the
confidence the model, in our case the parser, has
in the solution it proposes.

Active learning has been used for many
NLP applications, such as automatic speech
recognition, information extraction, part of speech
tagging or syntactic parsing. We will not detail
the way active learning has been applied to
those tasks, the interested reader can find two
reasonably recent surveys in (Settles, 2010) and
(Olsson, 2009), and concentrate on its application
to statistical parsing.

(Tang et al., 2002) and (Hwa, 2004)
proposed active learning techniques for training
probabilistic parsers. They both used uncertainty
sampling and suggested a measure of uncertainty
based on the entropy of the probability distribution
of the parses of a sentence. The idea being that
the higher this entropy is, the more uncertain the

140



parser is of its choice. (Tang et al., 2002) proposed
to combine uncertainty with representativeness,
the idea here is to make sure that the instances
selected with uncertainty criterion are also
representative of the data distribution. The
common point to these two approaches, and most
work on active learning applied to parsing is that
they only consider full sentences in their instance
selection.

There is something not satisfactory in
considering only full sentences as instances
since, in many cases, only part of the syntactic
structure is uncertain. The manual annotation
of this part would benefit the parser while the
annotation of the remaining part of the sentence
would be a waste of effort.

The main novelty of the work reported here is
that we explore the other extreme position: instead
of considering uncertain sentences, we consider
single uncertain word tokens in a sentence. More
precisely, we consider the attachment of single
word tokens. In the framework of dependency
parsing, which is used here, this boils down to
selecting, for a token w, its governor and the label
of the dependency between w and its governor.
The task is therefore to select, in a sentence, the
most uncertain dependencies.

Active learning for parsing using sub-sentential
units has already been explored by (Sassano and
Kurohashi, 2010). In their work they select
unreliable dependencies predicted by a parser (a
simple shift-reduce parser where dependencies
are weighted using an averaged perceptron with
polynomial kernels), based on the score the parser
assigns to the dependencies. Such dependencies
are hand labeled and, based on syntactic
characteristics of Japanese syntax (dependencies
are projective and oriented from left to right (the
governor is always to the right of the dependent))
other dependencies are deduced and this set of
dependencies are added to the training set. Our
work departs from their in the uncertainty measure
that we use, in the kind of parser used, on the way
hand annotated single dependencies are added to
the training data (without using language specific
properties) as well as on the fact that we use both
sentence based and dependency based uncertainty
measures.

The structure of the paper is the following: in
section 2, we describe, in some details, the parsing
model on which this work is based, namely

the graph-based dependency parsing framework.
Such a detailed description is motivated by
two extensions of graph based parsing that we
describe. The first one is how to take into account,
in the input of the parser, part of the syntactic
structure of the sentence to parse, a feature that
is needed when annotating only a subpart of the
syntactic structure of a sentence. We will see that
this can be done very easily and this is the main
reason why we chose this parsing framework.
The second extension concerns the production of
a list of n-best candidates, which is necessary
for computing our uncertainty measure and is
not a standard operation for this kind of parsers,
contrary to syntagmatic parsers, for example. In
section 3, we report a first series of experiments
in which full sentences are selected during the
instance selection procedure. The techniques used
here are not novel and the aim of this section is
to constitute a baseline for evaluating our idea of
partial annotation, which is described in section 4.
Section 5 shows that better results can be reached
when taking into account both uncertainty of a
sentence and uncertainty of parts of it. Finally,
section 6 concludes the paper.

2 Graph-Based Parsing

Graph-Based parsing (McDonald et al., 2005;
Kübler et al., 2009) defines a framework for
parsing that does not make use of a generative
grammar. In such a framework, given a sentence
W = w1 . . . wl, any dependency tree1 for W is a
valid syntactic representation of W . The heart of
a graph-based parser is the scoring function that
assigns a score to every tree T ∈ TW , where TW
denotes the set of all dependency trees of sentence
W . Such scores are usually a weighted sum of the
scores of subparts of W .

s(T ) =
∑
ψ∈ψT

λψ

where ψT is the set of all the relevant subparts
of tree T and λψ is the score of subpart ψ.

Depending on the decomposition of the tree
into subparts, different models of increasing
complexity can be defined. The most simple one
is the arc factored model, also called first order
model, which simply decomposes a tree into single

1A dependency tree for sentence W = w1 . . . wl and the
dependency relation set R is a directed labelled tree (V, A)
such that V = {w1, . . . wn} and A ⊆ V ×R× V .
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dependencies and assigns a score to a dependency,
independently of its context.

The score of tree T , noted s(T ) in this model is
therefore :

s(T ) =
∑

(wi,r,wj)

λ(i, r, j)

where (i, r, j) is the dependency that has wi
as governor, wj as dependent and r as label,
and λ(i, r, j) is the score assigned to such a
dependency.

Parsing a sentence W in such a system boils
down to determining the tree that has the highest
score in TW . Determining such a tree can
be simply accomplished using the maximum
spanning tree algorithm.

A maximum spanning tree or MST of a
directed multigraph G = (V,A) is the highest
scoring subgraph G′ that satisfies the following
conditions:

• V ′ = V , i.e. G′ spans all the original nodes
of G.

• G′ is a directed tree.

Given a sentence W = w1 . . . wl, and a set
of functional labels R = {r1, . . . rm}, a graph
GW = (VW , AW ) can be built such that:

• VW = {w1, . . . wl}

• AW = {(i, r, j)} ∀wi, wj ∈ VW and r ∈
R and i 6= j

In other words, GW is the graph composed
of all the dependencies that can be defined
between tokens of W . Given a scoring function
λ that assigns a score to every arc of GW , a
simple Graph-Based parser can be implemented
based on any MST algorithm such as Chu-Liu-
Edmonds (Chu and Liu, 1965; Edmonds et al.,
1968).

In order to build an actual parser, a scoring
function λ is needed. Current versions of Graph-
Based Parsers assume that such a function is a
linear classifier. The score of a dependency is
computed as follows:

λ(i, r, j) = α · f(i, r, j)

where f is a feature function that maps the
dependency to a boolean vector and α is the
feature weight vector that associates a weight

with every feature of the model. In first order
models, features describe different aspects of a
dependency, such as the part of speech of the
governor and the dependent, their lexical value,
the length of the dependency, the part of speech
of tokens between the dependent and the governor
. . .

Different Machine Learning techniques
can be used in order to learn the weight
vector. In our experiment, we used the
implementation of (Bohnet, 2010) that is based
on MIRA (Crammer et al., 2006), an on-line large
margin classifier.

The arc factored model, described here,
achieves good performances, but it relies on a
very strong independence assumption which is
that the score of a dependency is independent of
its context. Such an independence assumption
is linguistically unappealing and more elaborate
models, known as second order (Carreras, 2007)
and third order (Koo and Collins, 2010) models,
which associate a score with pairs of adjacent
dependencies in a tree or chains of two or three
dependencies, have shown to give better results.

Although we have used second order models
in our experiments, we will consider in the next
two subsections, only first order models, which are
conceptually and computationally simpler.

2.1 Constraining the Output of the Parser

The graph-based framework allows us to impose
structural constraints on the parses that are
produced by the parser in a straightforward way,
a feature that will reveal itself to be precious for
our experiments.

Given a sentence W = w1 . . . wl, a parser
with a scoring function λ and a dependency d =
(i, r, j) with 1 ≤ i, j ≤ l. We can define a new
scoring function λ+

d in the following way:

λ+
d (i′, r′, j′) =


−∞ if j′ = j and

(i′ 6= i or r′ 6= r)
λ(i′, r′, j′) otherwise

When running the parser on sentence W , with
the scoring function λ+

d , one can be sure that
dependency dwill be part of the solution produced
by the parser since it will be given a better score
than any competing dependency, i.e. a dependency
of the form (i′, r, j′) with j = j′ and i′ 6= i or
r′ 6= r. This feature will be used in section 4
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in order to parse a sentence for which a certain
number of dependencies are set in advance.

Symmetrically, we can define a function λ−d in
the following way:

λ−d (i′, r′, j′) =


−∞ if j′ = j and

i′ = i and r′ = r
λ(i, r, j) otherwise

The effect of this new scoring function when
parsing sentence W is that the solution produced
by the parser will not contain dependency d.

Functions λ+ and λ− can be extended in order
to force the presence or the absence of any set of
dependencies in the output of the parser. Suppose
D is a set of dependencies, we define λ+

D the
following way:

λ+
D(i, r, j) =


λ+
d (i, r, j) if (·, ·, j) ∈ D

λ(i, r, j) otherwise

2.2 Producing N -Best Parses

Given scoring functions λ−D, we can define a
simple way of producing the n-best scoring parses
of a sentence. Given a scoring function λ and
a sentence W , let’s call T̂1 = {d1, . . . dl} the
tree output by the parser, where d1 . . . dl are the
dependencies that make up the tree T̂1, di being
the dependency that has wi as a dependent.

By definition, T̂1 is the tree of TW with the
highest score. Now let’s define l functions
λ−d1 . . . λ

−
dl

and run the parser l times on W ,
equipped respectively with functions λ−d1 . . . λ

−
dl

.
The result of these runs is a set of trees L0 =
{T1, . . . Tl} respectively produced with functions
λ−d1 . . . λ

−
dl

. These trees are such that Ti does not
contain dependency di. Let’s define T̂2 as follows:

T̂2 = arg max
T∈L0

s(T )

It is easy to prove that T̂2 is the second best
scoring tree in TW . This proposition holds because
trees T1 . . . Tl are all the best scoring trees of TW
that differ from T̂1 by at least one dependency.
Among them, the tree with the highest score is
therefore the second best scoring tree.

Suppose T̂2 = {d′1, . . . d′n}, The process is
recursively applied to T̂2 and produces a list of
trees L. A new list L1 is then defined as follows:

L1 = L0 − {T̂2} ∪ L

and the third best scoring tree T̂3 is defined as
follows:

T̂3 = arg max
T∈L1

s(T )

The process is iterated until a tree T̂n has been
produced, for a given value of n.

The process, as described is not
computationnaly optimal since the parser is
run n × l times on the same sentence and
many operations are duplicated. Much of the
redundant work could be avoided using dynamic
programming.

We are not aware of a general method for
efficiently computing n-best parses for graph-
based parsing, as it is the case with context-free
parsing (Huang and Chiang, 2005). Nevertheless,
(Hall, 2007) describes an efficient n-best method
for graph-based parsing which is unfortunately
limited to first order models.

3 Selecting Full Sentences

We report in this section a first series of
experiments in which full sentences are selected
from the pool at every iteration of the active
learning algorithm. The aim of this section is
primarily to set up a baseline against which we
will compare the results obtained in sections 4
and 5. In order to set up a reasonable baseline, we
used successful methods described in (Tang et al.,
2002) and (Hwa, 2004) but we adapted them to our
framework: discriminative dependency parsing.
The method described here will also prove to be
interesting to combine with the model of section 4,
as we will see in section 5.

The experiments have been conducted on the
French Treebank (Abeillé et al., 2003) which is
made of 12, 350 sentences taken from newspaper
Le Monde and annotated with syntagmatic
structures along with syntactic functions. The
corpus has been divided into three parts, the
labeled set L made of 500 sentences, the pool U ,
made of 10, 665 sentences and a test set T made
of 1, 185 sentences. The syntagmatic annotations
have been converted to dependencies using the
BONSAÏ converter (Candito et al., 2010).

As described in the introduction, the algorithm
is Pool-Based. A first parser P0 is trained onL and
used to parse the sentences of U . An uncertainty
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measure is then computed for every sentence of
U and the k most uncertain sentences are labeled,
removed from U and added to L. A second parser
P1 is trained on L and the process is iterated
until there is no more sentences left in U . These
different steps are illustrated in Algorithm 1.

Algorithm 1 ACTIVE LEARNING WITH FULL

SENTENCES ANNOTATION
L: Initial training set
U : Unlabeled pool
ϕ(S): Uncertainty measure of sentence S
i = 0;

while U is not empty do
Pi = train(L);
Build n-best parses of U based on Pi;
Compute ϕ(S) for S ∈ U ;
U ′ = k most uncertain sentences of U ;
L′ = Annotate U ′;
U = U − U ′;
L = L ∪ L′;
i = i+ 1;

end while

3.1 Sentence Entropy

The uncertainty measure we have been using,
the sentence entropy, noted SE, is close to the
uncertainty measures defined in (Tang et al.,
2002), (Hwa, 2004) or (Sánchez-Sáez et al., 2009).
Given a sentence W and the n-best parses of W
with scores respectively noted s1 . . . sn, SE(W )
is computed as follows:

SE(W ) = −
n∑
i=1

pi log(pi)

where pi is the posterior probability:

pi =
si∑n
j=1 sj

This uncertainty measure is based on the
intuitive idea that when the scores of the n-best
parses of a sentence are close to each other, and
therefore the entropy of the distribution of the
posterior probabilities is high, this indicates that
the parser is “hesitating” between some of the n-
best parses.

Two curves have been represented in figure 1,
they show the Labeled Accuracy Score (LAS)
computed on the test set against the size of the
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Figure 1: Learning curves with full sentences selection
using sentence entropy, comparison with random
selection.

train set, given in tokens2. Two curves have been
drawn, a curve based on the sentence entropy and
a curve based on a random selection. The sentence
entropy curve has two interesting features, it
grows quicker than the random curve and presents
an asymptotical shape which shows that it has
“extracted” all the useful information present in U
when it reaches the asymptote.

The uncertainty measure of a sentence W used
in this experiment is supposed to measure the
difficulty of parsing sentenceW . It must therefore
be related to the mean error rate of the parser
on sentence W . The curve of figure 2 shows
the relation between labeled accuracy score and
sentence entropy computed on a set of 1000
randomly selected sentences. The curve shows
that on average LAS tends to decrease when
sentence entropy increases. The small range in
which score entropy takes its values is explained
by the fact that, on average, the score of parse
trees in n-best list are close to each other. Their
posterior probability is therefore close to 0.01 (due
to the fact that it is computed on a 100 best list).
We do not have an explanation for the general
shape of the curve.

(Tang et al., 2002) and (Hwa, 2004) discuss
the relation between entropy and the length of
sentences. The idea is that long sentences tend
to have more parses than short sentences and
tend to have on average higher entropy. This
dependency between sentence length and entropy

2In all our experiments, the LAS was computed on whole
sentences, including punctuation.
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Figure 2: Relation between Labeled Accuracy Score
and Sentence Entropy

will therefore bias the active learning algorithm
towards selecting long sentences. They therefore
propose to normalize entropy either with sentence
length (Tang et al., 2002) or number of parses for
a sentence (Hwa, 2004).

In our case, we did not observe any influence of
sentence length on sentence entropy. That might
be due to the fact that we only consider the n-
best scoring parses (but that was also the case
of (Tang et al., 2002)) or to the fact that the scores
from which posterior probabilities are computed
are not probabilities but scores given by the MIRA

classifier which have different distributions than
generative probabilites. We did not investigate
further this difference since our goal in this section
was mostly to define a reasonable baseline for
evaluating the results of the selection strategy that
will be described in the following section.

4 Selecting Single Tokens

The algorithm described in the preceding section
associates an uncertainty measure with whole
sentences and, based on this measure, decides to
ask for its labeling, or not. The syntactic analysis
of a sentence is a complex object, part of it can be
difficult to parse and a correct analysis of this part
could improve the parser while the remaining of
the syntactic structure might not contain any new
piece of information. The idea that we explore
in this section consists in locating in a sentence
some difficult parts and ask for the labeling of
these parts only. More precisely, we will try to
locate single difficult dependencies and ask for the

labeling of just these dependencies. The partly
labeled sentence is then parsed in such a way
that the parser preserves the manually annotated
dependencies. This is done by changing the
scoring function of the parser, as described in 2.1.
The output of the parser is then added to the set of
labeled sentences L.

In order to estimate the potential benefit of
such a method, we conducted the following
experiment: the parser P0, trained on the 500
sentences of L, was used to parse 1000 randomly
selected sentences from U . We will refer to this
set of sentences as U1000. Among the 24, 000
dependencies created by the parser, 3, 144 were
incorrect (governor or/and dependency label was
incorrect for a given token). These dependencies
were corrected (the right governor along with
the right dependency label was restored) and the
partially parsed sentences were parsed with P0

preserving manual annotation. The output of this
process was added to L and used to train a new
parser Ppartial. Eventually a third parser Pcomplete
was trained on a fully correct version of U1000 plus
L. The two parsers were evaluated on the test set
T . The result of these experiments are reported in
table 1.

Model LAS UAS
Pcomplete 85.60 87.84

Ppartial 85.71 87.91

Table 1: Performances of parsers trained with
respectively a set of 1000 sentences fully annotated
and the same set of sentences in which only wrong
dependencies were hand annotated.

The figures reported in table 1 show that
training a parser P on a corpus in which only
the mistakes of P were corrected can lead to
better results than training it on the fully annotated
version of this same corpus. In our case, the
partially annotated corpus contained only 3, 144
manually annotated dependencies and the fully
annotated corpus contained 24, 000 ones.

If we were able to determine the set of
wrong attachments made by a parser we would
therefore be in a position to define a very efficient
active learning algorithm. Although determining
all and only the wrong attachments is clearly
impossible, we can try to approximate this set
using a dependency based confidence measure as
described in the following subsection.
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4.1 Attachment Entropy

Given the n-best parses of a sentence W , one
indication of the confidence of the attachment of
token w is the number of its possible governors in
the n-best parses. We define attachment entropy
of token w, noted AE(w) as a simple measure of
this confidence. Attachment entropy is computed
as follows:

AE(w) = −
∑

g∈G(w)

P (g, ·, w) logP (g, ·, w)

where G(w) is the set of the possible governors
of token w in the n-best parses and P (g, ·, w) is
the probability that tokenw is governed by token g
in the n-best parses. This probability is estimated
as follows:

P (g, ·, w) =
count(g, ·, w)

n

where count(g, ·, w) counts the number of
times token w was governed by token g in the n-
best parses3.

A perfect confidence measure should, in the
experiments reported above, allow to select the
wrong dependencies and only those. In order
to evaluate the quality of attachment entropy,
precision recall curves have been computed. For
a given threshold τ of our confidence measure, the
dependencies that are above τ (more precisely, the
dependencies (g, ·, w) of the first best parse such
that AE(w) ≥ τ ) are collected to form the set DU
of uncertain dependencies. This set is compared
with the set DI of incorrect dependencies (the
set of 3, 144 dependencies described above). The
comparison is realized with precision and recall,
which are computed as follows:

Prec. = |DI∩DU |
|DU | Rec. = |DI∩DU |

|DI |

Attachment entropy depends on the length of
the n-best lists of parses produced by the parser.
A high value of n will produce, on average, a
higher number of possible governors for a token
of a sentence and therefore, a potentially higher
entropy. Three precision recall curves are reported
in figure 3 for n best lists of lengths respectively

3Labelling errors of correct attachments are not taken into
account for measuring attachment entropy for they did not
improve the quality of the confidence measure.
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Figure 3: Precision Recall curves for attachment
entropy for different n-best output of the parser.

equal to 20, 100 and 1000. Several conclusions
can be drawn from these curves. The first one
is that attachment entropy is quite far from the
perfect confidence measure that would achieve a
precision and recall of 1. High recall values can
be obtained at the cost of very low precision, and
inversely, high precision yields very low recall. On
average, lower values of n achieve better precision
recall tradeoffs but do not allow to reach high
recall values.

The inability for low values of n to reach
high values of recall opens the door for a
discussion about the influence of the sentence
length on precision recall curves. The number
of parses of a sentence is, in the worse case,
an exponential function of its length (Church
and Patil, 1982). Computing entropy attachment
on fixed length n-best parses lists only allow
to consider a very limited number of possible
governors of a token for longer sentences. A
natural solution in order to cope with this problem
is to compute variable length n-best lists, where
the value of n is a function of the length (l) of
the sentence being parsed. It would make sense
to let n be an exponential function of l. This
approach is in practice impossible since (at least
in our implementation of the n best algorithm)
the production of the n-best list will take an
exponential time. Furthermore, our experiments
showed that the value of n should not grow
too fast, as reported in figure 4. Three4 curves

4We have added the fixed 20-best curve, that achieved the
best result for fixed length n, for comparison purpose.
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Figure 4: Precision Recall curves for attachment
entropy with variable length n-best lists.

have been reported in this figure, that correspond
to three functions linking n and l. The best
results were obtained for the function n = l

3
2 .

Higher order function did not obtain good results,
contrary to our intuition.

It is important, at this point to discuss one aspect
of our attachment entropy measure. In graph-
based parsing, one can compute the score of any
dependency linking two tokens of a sentence. It
is therefore possible to compute, for a given token
wj , the score of all the dependencies of the form
(i, ·, j), ∀j 1 ≤ j ≤ k and compute attachment
entropy based on this score. This method has the
advantage of considering all tokens of the sentence
as a potential governor and does not ask for the
construction of the n-best parses. But such a
method does not take into account the global score
of a parse. A dependency can get a high score
when considered alone but might not be part of a
good (high scoring) parse. In practice, it gave very
bad results5.

4.2 Active Learning Strategy

The token based active learning algorithm is
straightforward. For every iteration of the
algorithm, the most uncertain tokens are selected,
hand annotated and their sentences are parsed in
such a way that the partial annotation is preserved.
The new parses are then added to the labeled set

5As suggested by one of the reviewers, for first order
models, the confidence measure can be computed without
producing the n-best parses, using marginal probability of an
arc existing in any tree, which can be efficiently computed,
via the matrix tree theorem (McDonald and Satta, 2007).

and the process is iterated, as shown in Algorithm
2. Two different approaches can be considered
when selecting most uncertain tokens. One can
either select for every sentence the most uncertain
token or select for the whole pool the k most
uncertain tokens. In the latter case, several tokens
of a single sentence could be selected for every
step.

Algorithm 2 ACTIVE LEARNING WITH SINGLE

DEPENDENCY ANNOTATION
L: Initial training set
U : Unlabeled pool
ϕ(w): Uncertainty measure for token w
i = 0;

while There is no uncertain dependency do
Pi = train(L);
Build n-best parses of U based on Pi;
Compute ϕ(w) for each token;
U ′ = sentences containing the k most
uncertain tokens;
Annotate selected tokens;
L′ = Parse U ′ sentences, preserving
annotation;
L = L ∪ L′;
i = i+ 1;

end while

The result of the token selection strategy
is reported in figure 5. The full sentence
selection based on score entropy as well as the
random selection are also reported for comparison
purpose. The two strategies described above
(selecting the most uncertain token per sentence
or the k most uncertain tokens in the corpus)
gave almost the same results. The full sentence
selection strategy yielded better results for the first
iterations of the algorithm but was outperformed
by the token selection strategy after a while. The
token selection strategy shows good asymptotical
performances, it reaches the asymptote with
130, 000 manually annotated tokens (45.45% of
total tokens of U) while the full sentence strategy
asks for 180, 000 tokens (62.94% of total tokens
of U) to reach it. It is unclear why full sentence
selection gave better results in the first iterations,
it is as if the parser needs to be trained on full
sentences in the beginning and, after a while, gain
better benefit from isolated difficult attachments.
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Figure 5: Learning curves with token selection strategy.
Comparison with full sentence strategy and random
selection.

5 Selecting Uncertain Tokens of
Uncertain Sentences

The results obtained when selecting uncertain
sentences and those obtained for uncertain tokens
showed that both strategies seem to be somehow
complementary. Such conclusion opens the door
for a two level strategy. In a first step uncertain
full sentences are selected, then uncertain tokens
of these sentences are selected, as described in
Algorithm 3.

Algorithm 3 COMBINED ACTIVE LEARNING

L: Initial training set
U : Unlabeled pool
ϕ(S): Full sentence uncertainty measure
ψ(w): Single dependency uncertainty measure
i = 0;

while U is not empty do
Pi = train(L);
Build n-best parses of U based on Pi;
Compute ϕ(S) for S ∈ U ;
U ′ = k most uncertain sentences of U ;
Compute ψ(x) for each token of U ′;
Select k′ most uncertain tokens;
Annotate selected tokens;
L′ = Partially parse U ′ sentences, preserving
annotation;
U = U − U ′;
L = L ∪ L′;
i = i+ 1;

end while

Figure 6 reports the results of the combined
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Figure 6: Learning curves for the combined strategy.
Comparison with token selection strategy, full sentence
strategy and random selection.

method. The new method outperforms both the
full sentence and the single token strategy for
every iteration of the algorithm. It reaches the
asymptote with only 109, 000 manually annotated
tokens (37.98% of total tokens in U). These
result confirm the intuition that both score entropy
and attachment entropy carry complementary
information. One way to interpret the results
obtained is that the two methods that were tested
in this paper: selecting full sentences vs. selecting
single tokens, are two extreme positions. We did
not investigate the search space that lie between
them, i.e. specifically looking for unreliable parts
of sentences. We describe in the next section some
preliminary results along this line.

6 Conclusions and Future Work

We proposed in this paper three active learning
techniques for dependency parsing. The novelty of
this work is to annotate only difficult attachment
insead of full sentences as it is usually done in
other approaches.

Although selecting single dependencies showed
an improvement over selecting full sentences, in
some cases, it turns out that selecting subparts of
the sentence is a good strategy. A preliminary
experiment was conducted on punctuation. It
showed that selecting tokens that lie in a window
of 6 tokens centered on punctuation yielded very
good results. Such a method could be useful
for difficult attachment such as PP attachment
or coordination where dependencies must be
considered in a larger context.
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Abstract

There has been a long history in combinatorial optimization of methods that exploit structure in
complex problems, using methods such as dual decomposition or Lagrangian relaxation. These
methods leverage the observation that complex inference problems can often be decomposed
into efficiently solvable sub-problems. Thus far, however, these methods are not widely used
in NLP.

In this talk I will describe recent work on inference algorithms for NLP based on Lagrangian
relaxation. In the first part of the talk I will describe work on non-projective parsing. In the
second part of the talk I will describe an exact decoding algorithm for syntax-based statistical
translation. If time permits, I will also briefly describe algorithms for dynamic programming
intersections (e.g., the intersection of a PCFG and an HMM), and for phrase-based translation.

For all of the problems that we consider, the resulting algorithms produce exact solutions, with
certificates of optimality, on the vast majority of examples; the algorithms are efficient for
problems that are either NP-hard (as is the case for non-projective parsing, or for phrase-based
translation), or for problems that are solvable in polynomial time using dynamic programming,
but where the traditional exact algorithms are far too expensive to be practical.

While the focus of this talk is on NLP problems, there are close connections to inference
methods, in particular belief propagation, for graphical models. Our work was inspired by
recent work that has used dual decomposition as an alternative to belief propagation in Markov
random fields.

This is joint work with Yin-Wen Chang, Tommi Jaakkola, Terry Koo, Sasha Rush, and David
Sontag.
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Abstract

We present a novel method for the com-
putation of prefix probabilities for linear
context-free rewriting systems. Our ap-
proach streamlines previous procedures to
compute prefix probabilities for context-free
grammars, synchronous context-free gram-
mars and tree adjoining grammars. In addi-
tion, the methodology is general enough to
be used for a wider range of problems in-
volving, for example, several prefixes.

1 Introduction

There are a number of problems related to proba-
bilistic grammatical formalisms that involve sum-
ming an infinite number of values. For example, if
P is a probability distribution over strings defined
by a probabilistic grammar, and w is a string, then
the prefix probability of w is defined to be:∑

v

P (wv)

In words, all possible suffixes v that may follow
prefix w are considered, and the probabilities of
the concatenations of v and w are summed.

Prefix probabilities can be exploited to predict
the next word or part of speech, for incremental
processing of text or speech from left to right (Je-
linek and Lafferty, 1991). They can also be used
in speech processing to score partial hypotheses in
beam search (Corazza et al., 1991).

At first sight, it is not clear that prefix proba-
bilities can be effectively computed, as the num-
ber of possible strings v is infinite. It was shown
however by Jelinek and Lafferty (1991) that in the
case of probabilistic context-free grammars, the
infinite sums can be isolated from any particular
w, and these sums can be computed off-line by
solving linear systems of equations. For any par-
ticular w, the prefix probability can then be com-
puted in cubic time in the length of w, on the

basis of the values computed off-line. Whereas
Jelinek and Lafferty (1991) consider parsing in
the style of the Cocke-Kasami-Younger algorithm
(Younger, 1967; Harrison, 1978), prefix probabil-
ities for probabilistic context-free grammars can
also be computed in the style of the algorithm by
Earley (1970), as shown by Stolcke (1995).

This approach is not restricted to context-free
grammars. It was shown by Nederhof et al. (1998)
that prefix probabilities can also be effectively
computed for probabilistic tree adjoining gram-
mars. That effective computation is also possible
for probabilistic synchronous context-free gram-
mars was shown by Nederhof and Satta (2011b),
which departed from earlier papers on the subject
in that the solution was divided into a number of
steps, namely a new type of transformation of the
grammar, followed by elimination of epsilon and
unit rules, and the computation of the inside prob-
ability of a string.

In this paper we focus on a much more general
formalism than those mentioned above, namely
that of probabilistic linear context-free rewriting
systems (PLCFRS). This formalism is equivalent
to the probabilistic simple RCGs discussed by
Maier and Søgaard (2008) and by Kallmeyer and
Maier (2010), and probabilistic extensions of mul-
tiple context-free grammars, such as those con-
sidered by Kato et al. (2006). Nonterminals in a
PLCFRS can generate discontinuous constituents.
For this reason, (P)LCFRSs have recently been
used to model discontinuous phrase structure tree-
banks as well as non-projective dependency tree-
banks; see (Maier and Lichte, 2009; Kuhlmann
and Satta, 2009; Kallmeyer and Maier, 2010).

The main contribution of this paper is a method
for computing prefix probabilities for PLCFRSs.
We are not aware of any existing algorithm in the
literature for this task. Our method implies ex-
istence of algorithms for the computation of pre-
fix probabilities for probabilistic versions of for-

151



malisms that are special cases of LCFRSs, such as
the generalized multitext grammars of Melamed
et al. (2004), which are used to model transla-
tion, and the already mentioned formalism pro-
posed by Kuhlmann and Satta (2009) to model
non-projective dependency structures.

We follow essentially the same approach as
Nederhof and Satta (2011b), and reduce the prob-
lem of computing the prefix probabilities for
PLCFRSs to the well-known problem of comput-
ing inside probabilities for PLCFRSs. The reduc-
tion is obtained by the composition of a PLCFRS
with a special finite-state transducer. Most impor-
tantly, this composition is independent of the spe-
cific input string for which we need to solve the
prefix probability problem, and can therefore be
computed off-line. We also show how off-line ap-
plication of a generic form of epsilon and unit rule
elimination for PLCFRS can be exploited, which
simplifies the computation of the inside probabil-
ity.

The rest of this paper is organized as follows.
In Section 2 we introduce PLCFRS and finite-state
transducers. In Section 3 we discuss a general al-
gorithm for composing a PLCFRS with a finite-
state transducer. This construction will be used in
several places in later sections. Section 4 shows an
effective way of computing the inside probabilities
for PLCFRSs, and Section 5 presents a method
for the elimination of epsilon and unit rules in a
PLCFRS. Section 6 combines all of the previous
techniques, resulting in an algorithm for the com-
putation of prefix probabilities via a reduction to
the computation of inside probabilities. We then
conclude in Section 7 with some discussion.

2 Definitions

This section summarizes the terminology and no-
tation of linear context-free rewriting systems, and
their probabilistic extension. For more detailed
definitions on linear context-free writing systems,
see Vijay-Shanker et al. (1987).

For an integer n ≥ 1, we write [n] to de-
note the set {1, . . . , n} and [0] = ∅. We write
[n]0 to denote [n] ∪ {0}. A linear context-free
rewriting system (LCFRS for short) is a tuple
G = (N,Σ,P, S), where N and Σ are finite, dis-
joint sets of nonterminal and terminal symbols, re-
spectively. EachA ∈ N is associated with an inte-
ger value φ(A) ≥ 1, called its fan-out. The non-
terminal S is the start symbol, with φ(S) = 1.

Finally, P is a set of rules, each of the form:

π : A→ g(A1, A2, . . . , Ar)

where A,A1, . . . , Ar ∈ N , and:

g : (Σ∗)φ(A1) × · · · × (Σ∗)φ(Ar) → (Σ∗)φ(A)

is a linear, non-erasing function. In other words, g
takes r tuples of strings as input, the j-th tuple be-
ing of size φ(Aj), and provides as output a tuple of
strings of size φ(A). Each of the output strings is
the concatenation of a sequence of elements, each
element being an input string or a terminal sym-
bol. Each input string is used precisely once in
such a sequence. The number r is called the rank
of the rule, and is denoted by ρ(π) or ρ(g).

The symbol π is the label of the rule, and each
rule is uniquely identified by its label. For tech-
nical reasons, we allow the existence of multi-
ple rules that are identical apart from their labels.
Again for technical reasons, we assume that each
function g is uniquely identified with one rule π.

The rank of LCFRS G, written ρ(G), is the
maximum rank among all rules of G. The fan-
out of LCFRS G, written φ(G), is the maximum
fan-out among all nonterminals of G.

Let a rule π be:

π : A→ g(A1, A2, . . . , Ar), where

g( 〈x1,1, . . . , x1,φ(A1)〉,
. . . ,
〈xr,1, . . . , xr,φ(Ar)〉 ) =

〈 y1,1 · · · y1,m1 ,
. . . ,
yφ(A),1 · · · yφ(A),mφ(A)

〉

where for each k ∈ [φ(A)] and l ∈ [mk], yk,l is
from the set Σ ∪ {xi,j | i ∈ [r], j ∈ [φ(Ai)]}.
We say π is monotone if for each i ∈ [r], for each
j1, j2 ∈ [φ(Ai)] such that j1 < j2, and for each
k1, k2 ∈ [φ(A)], l1 ∈ [mk1 ] and l2 ∈ [mk2 ] such
that yk1,l1 = xi,j1 and yk2,l2 = xi,j2 , we have that
either k1 < k2, or k1 = k2 and l1 < l2. In other
words, the order of variables associated with each
of the right-hand side nonterminals is preserved in
the output of function g. In this paper we will
assume all rules in a LCFRS are monotone. Re-
striction to monotone rules preserves the genera-
tive power of LCFRS (Michaelis, 2001; Kracht,
2003; Kallmeyer, 2010). Furthermore, known
techniques to extract (probabilistic) LCFRSs from
treebanks all provide grammars with monotone
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rules (Maier and Lichte, 2009; Kuhlmann and
Satta, 2009).

For each nonterminal A in a LCFRS G, there
is a set of derivations for A, denoted DG(A), or
D(A) when G is understood. The simultaneous
definition ofDG(A) for allA is inductively as fol-
lows. Let:

π : A→ g(A1, A2, . . . , Ar)

be a rule of G, and let ζ1, . . . , ζr be derivations for
A1, . . . , Ar. Then the expression g(ζ1, . . . , ζr) is
a derivation for A, with an uninterpreted function
symbol g. When r = 0, we write the derivation as
g().

The yield of a derivation ζ for nonterminal A
in grammar G is the φ(A)-tuple of strings result-
ing from evaluating all occurrences in ζ of func-
tion symbols. It will be denoted as yieldG(ζ),
with once more G omitted when the grammar is
understood. The language generated by G, de-
noted L(G), is the set of all strings w such that
〈w〉 is the yield of a derivation for S; formally,
L(G) = {w | 〈w〉 ∈ yieldG(ζ), ζ ∈ DG(S)}.

Example 1 Consider the LCFRS G defined by
the rules:

π1 : S → g1(A), where

g1(〈x1,1, x1,2〉) = 〈x1,1x1,2〉
π2 : A→ g2(A), where

g2(〈x1,1, x1,2〉) = 〈ax1,1b, cx1,2d〉
π3 : A→ g3(), where

g3() = 〈ε, ε〉

We have φ(S) = 1, φ(A) = φ(G) = 2, ρ(π3) = 0
and ρ(π1) = ρ(π2) = ρ(G) = 1. G generates the
language {anbncndn | n ∈ N}. For instance,
the string a3b3c3d3 is obtained through the yield
〈a3b3c3d3〉 of the derivation g1(g2(g2(g2(g3()))))
for S. �

Let π : A → g(A1, A2, . . . , Ar) be a rule in
G and let dπ be the number of occurrences of ter-
minal symbols in the definition of the associated
function g. We define the size of π as:

|π| = dπ + φ(A) +
∑
i∈[r]

φ(Ai)

It is not difficult to see that we can encode rule π
and its associated function g using space linear in
|π|. We define the size of G as |G| =

∑
π∈P |π|,

where P is the set of all rules in G.

A LCFRS is said to be reduced if the function
g from each rule occurs in some derivation from
D(S). Because each function uniquely identifies
a rule, this means that also all rules are useful for
obtaining some derivation for S. A procedure for
transforming a LCFRS to make it reduced will be
discussed in Section 3.

A probabilistic LCFRS (PLCFRS for short) is
a pair G = (G, p) where G = (N,Σ,P, S) is a
LCFRS and p is a function from P to real numbers
in [0, 1]. We say that G is proper if for each A:∑

π:A→g(A1,A2,...,Aρ(g))

p(π) = 1

The probability of a derivation ζ in G, denoted
LG(ζ), is obtained by multiplying the probability
of the rule corresponding to each occurrence of a
function symbol in ζ. The probability of a string
w, denoted LG(w), is the sum of the probabilities
of all derivations in D(S) of which the yield is
〈w〉. A PLCFRS G is consistent if

∑
w LG(w) =

1. It is not difficult to see that if a PLCFRS G is
reduced, proper and consistent, then for each A,∑

ζ∈D(A) LG(ζ) = 1.

Example 2 Consider the extension of the LCFRS
from the previous example with function p defined
by p(π1) = 1, p(π2) = 0.3 and p(π3) = 0.7.
The resulting PLCFRS G is proper, as the sum of
probabilities of all rules with left-hand side S is
1, and so is the sum of probabilities of all rules
with left-hand side A. The probability of deriva-
tion g1(g2(g2(g2(g3())))) is 1 · (0.3)3 ·0.7. This is
also the probability of the string a3b3c3d3. It can
be easily shown that G is consistent, as:

∞∑
j=0

1 · (0.3)j · 0.7 = 1

�

In the following sections, we need to consider
PLCFRSs G that are not necessarily proper or con-
sistent, and our discussion will involve computa-
tion of values LG(A) for each nonterminal A, de-
fined by:

LG(A) =
∑

ζ∈D(A)

LG(ζ)

In the literature, LG is also called the partition
function of the grammar. We can relate these val-
ues by means of the following equations, one for
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each nonterminal A:

LG(A) =
∑

π:A→g(A1,...,Aρ(g))

p(π) ·
∏

j∈[ρ(g)]

LG(Aj)

The above relations specify a system of poly-
nomial, nonlinear equations. The smallest non-
negative solution to this system gives us the values
of LG(A) for all A.

The sought solutions for the nonlinear sys-
tem described above can be irrational and non-
expressible by radicals, even if we assume that
all the rules of our LCFRS have probabilities that
are rational numbers, as observed by Etessami and
Yannakakis (2009). Hence values LG(A) can only
be approximated.

Approximate solutions can be obtained using
the fixed-point iteration method, as described for
example in (Abney et al., 1999). This method is
easy to implement but shows very slow conver-
gence in the worst case, resulting in exponential
time behaviour (Etessami and Yannakakis, 2009).

Alternatively, the more powerful Newton’s
method can be exploited; see again (Etessami and
Yannakakis, 2009). It has been shown by Kiefer et
al. (2007) that, after a certain number of initial it-
erations, each new iteration of Newton’s method
adds a fixed number of bits to the precision of
the approximate solution, resulting in polynomial
time convergence in the size of the grammar and
the number of bits in the desired approximation.
However, Kiefer et al. (2007) also show that, in
some degenerate cases, the number of iterations
needed to compute the first bit of the solution can
be at least exponential in the size of the system.
For further discussion of practical issues in the
computation of values LG(A), we refer the reader
to Wojtczak and Etessami (2007) and Nederhof
and Satta (2008).

Despite the computational limitations discussed
above, there are cases in which values LG(A) can
be computed exactly, and simpler methods can be
exploited. This happens when there are no cyclic
dependencies in the probabilistic grammar. This is
the situation we will deal with in Section 4.

In this paper, we will consider a type of finite-
state transducer (FST) that has a single final state
and that consumes exactly one input symbol in
each transition. Although such restricted FSTs
cannot describe all rational transductions (Berstel,
1979), they are sufficient for our purposes, and the
restrictions greatly simplify the definitions in the
following sections.

Hence, our type of FST can be defined by a tu-
ple M = (Σ1, Σ2, Q, qs, qf , T ), where Σ1 and
Σ2 are finite sets of input and output symbols, re-
spectively, Q is a finite set of states, of which qs
is the start state and qf is the final state, and T is
a finite set of transitions.

Each transition has the form s
a,u7→ s′, where

s, s′ ∈ Q, a ∈ Σ1 and u ∈ Σ2 ∪ {ε}. This means
that we can jump from s to s′ by reading a from
the input, and generating u as output.

The transduction generated by FST M , denoted
L(M), is the set of all pairs 〈w, v〉 such that there
is a sequence of n transitions s0

a1,u17→ s1, . . . ,
sn−1

an,un7→ sn, such that s0 = qs, sn = qf ,
a1 · · · an = w, and u1 · · ·un = v. The defini-
tion allows n = 0, in which case qf must be qs
and the transduction includes 〈ε, ε〉. We say a FST
M is unambiguous if each pair 〈w, v〉 is obtained
by at most one sequence of transitions as above.

3 Composition

Seki et al. (1991, Thm 3.9(3), pg. 203) have shown
that the class of languages generated by LCFRSs
are closed under intersection with regular lan-
guages.1 The proof is a generalization of the proof
that context-free languages are closed under inter-
section with regular languages (Bar-Hillel et al.,
1964). We slightly extend this result by show-
ing that if we point-wise map the language gen-
erated by a LCFRS G by means of a FST M ,
then the resulting language is generated by an-
other LCFRS G′, or formally, L(G′) = {v | w ∈
L(G)∧ 〈w, v〉 ∈ L(M)}. As we will show below,
LCFRS G′ can be effectively constructed from G
andM . The construction is denoted by operator ◦,
hence G′ = G ◦M . The construction can be ex-
tended to take as input a PLCFRS G and a FST M
and the output is then another PLCFRS G′, and we
denote G′ = G ◦M . If the FST is unambiguous,
then the probabilities are preserved, or formally:

LG′(v) =
∑

〈w,v〉∈L(M)

LG(w)

This follows directly from the fact that rule proba-
bilities from G are copied unchanged to G′.

Without loss of generality, we will assume that
G = (N,Σ,P, S) and M = (Σ1, Σ2, Q, qs,
qf , T ), with Σ = Σ1. The construction produces
G′ = (N ′, Σ2, P

′, S′).
1The result by Seki et al. (1991) is obtained for a syntactic

variant of LCFRSs called multiple context-free grammars.
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The nonterminals in N ′ are of the form
A(〈s1, s′1〉, . . . , 〈sφ(A), s

′
φ(A)〉), whereA ∈ N and

s1, s
′
1, . . . , sφ(A), s

′
φ(A) ∈ Q. The intuition behind

this definition is discussed in what follows. From
the derivations for A in G, we take the subset of
those that have yield 〈w1, ..., wφ(A)〉 such that for
each j ∈ [φ(A)] it must be possible to take the au-
tomaton from state sj to state s′j while consuming
input wj . In addition, input symbols are replaced
by the corresponding output strings, according to
the relevant transitions of the automaton. The start
symbol S′ is naturally S(〈qs, qf 〉), as the composi-
tion ultimately needs to match strings that are gen-
erated byG against those input strings that take the
automaton from the start state to the final state.

The rules of G′ are constructed by exhaustively
applying the following procedure. Choose a rule
from G of the form:

π : A→ g(A1, A2, . . . , Ar), where

g( 〈x1,1, . . . , x1,φ(A1)〉,
. . . ,
〈xr,1, . . . , xr,φ(Ar)〉 ) =

〈 y1,1 · · · y1,m1 ,
. . . ,
yφ(A),1 · · · yφ(A),mφ(A)

〉

where for each k ∈ [φ(A)] and l ∈ [mk], yk,l is
from the set Σ ∪ {xi,j | i ∈ [r], j ∈ [φ(Ai)]}.
Further choose two states si,j , s′i,j from M for
each i ∈ [r] and each j ∈ [φ(Ai)], and choose two
states qk,l, q′k,l from M for each k ∈ [φ(A)] and
each l ∈ [mk], under the following constraints,
which if satisfied define zk,l for k ∈ [φ(A)] and
l ∈ [mk]:

• if yk,l = xi,j , then qk,l must be si,j and q′k,l
must be s′i,j , and we let zk,l = xi,j ,

• if yk,l = a ∈ Σ then we must be able to
choose a transition qk,l

a,u7→ q′k,l, and we let
zk,l = u,

• for each k ∈ [φ(A)] and each l ∈ [mk − 1],
q′k,l = qk,l+1

In words, all variables coming from right-hand
side nonterminals are associated with two states,
whose intended meaning was explained before. In
addition, each terminal occurrence in the output of
the function g must correspond to a transition be-
tween two states. Lastly, an output component of
the form yk,1 · · · yk,mk must match a contiguous

path through the automaton, with each yk,l repre-
senting a segment of that path from state qk,l to
state q′k,l.

This determines a rule in G′, which is of the
form:

π′ : A′ → g′(A′1, A
′
2, . . . , A

′
r), where

g′( 〈x1,1, . . . , x1,φ(A1)〉,
. . . ,
〈xr,1, . . . , xr,φ(Ar)〉 ) =

〈 z1,1 · · · z1,m1 ,
. . . ,
zφ(A),1 · · · zφ(A),mφ(A)

〉

Here A′ is:

A(〈q1,1, q′1,m1
〉, . . . , 〈qφ(A),1, q

′
φ(A),mφ(A)

〉)

and for each i ∈ [r], A′i is:

Ai(〈si,1, s′i,1〉, . . . , 〈si,φ(Ai), s
′
i,φ(Ai)

〉)

A new label π′ and new function name g′ are pro-
duced for each rule in G′ that is constructed as
above.

If we are dealing with probabilities, then the
rules in G′ = G ◦M are constructed in the same
manner, and in addition, the probability of each
rule π is copied to each rule π′ constructed from
it.

Example 3 Assume the following is a rule in G:

π : A→ g(A1, A2), where

g(〈x1,1, x1,2〉, 〈x2,1, x2,2, x2,3〉) =

〈x1,1ax2,1, x2,2x1,2, x2,3〉

Further assume the existence of states s1, . . . , s9
in M and the existence of a transition s2

a,b7→ s3 for
M . Then we add to G′ the rule:

π′ : A(〈s1, s4〉, 〈s5, s7〉, 〈s8, s9〉)→ g′(

A1(〈s1, s2〉, 〈s6, s7〉),
A2(〈s3, s4〉, 〈s5, s6〉, 〈s8, s9〉)), where

g′(〈x1,1, x1,2〉, 〈x2,1, x2,2, x2,3〉) =

〈x1,1bx2,1, x2,2x1,2, x2,3〉

�
A LCFRS G′ = G ◦ M (or PLCFRS G′ =
G◦M ) is generally not reduced. We can make it re-
duced by a process almost identical to the process
of reduction for context-free grammars (Sippu and
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Soisalon-Soininen, 1988). This consists of three
phases. First, there is a bottom-up phase to iden-
tify the ‘generating’ nonterminals, that is, those
that have derivations. Second, restricting atten-
tion to the generating nonterminals, a top-down
phase identifies the possibly smaller set of nonter-
minals that are also reachable from the start sym-
bol. Lastly, all rules are removed except those that
are generating and reachable.

Computation Let us first relate |G′| to |G|,
where G′ = G ◦ M . To simplify the discus-
sion, consider a rule of G of the form π : A →
g(A1, A2, . . . , Ar) without terminal symbols, or
in other words dπ = 0. Let Q be the set of states
of M . Then the composition construction defines
a new rule inG′ for each possible choice of a num-
ber of states in Q equal to φ(A) +

∑
i∈[r] φ(Ai).

This results in |Q||π| new rules in G′ that are de-
rived from π, where each new rule has sizeO(|π|).
Thus the target grammar has size exponential in
|G|.

Our algorithm for composition can be easily im-
plemented to run in time O(|G′|), that is, in linear
time in the size of the output grammar. Because of
the above discussion, the algorithm runs in expo-
nential time in the size of the input. Exponential
time for the composition construction is not un-
expected: the problem at hand is a generalization
of the parsing problem for LCFRS, and the latter
problem is known to be NP-hard when the gram-
mar is part of the input (Satta, 1992).

The critical term in the above analysis is |π|.
If we can cast our LCFRS in a form in which
each rule has length bounded by some constant,
then composition can be carried out in polynomial
time. The process of reducing the length of rules
in a LCFRS is called factorization. It is known
that not all LCFRSs can be factorized in such a
way that each rule has length bounded by some
constant (Rambow and Satta, 1999). However,
in the context of natural language parsing, it has
been observed that the vast majority of rules in real
world applications can be factorized to some small
length, and that excluding the worst-case rules
which cannot be handled in this way does not sig-
nificantly affect accuracy; see for instance (Huang
et al., 2009) and (Kuhlmann and Satta, 2009) for
discussion. Efficient algorithms for factorization
of LCFRSs have been presented by Kuhlmann and
Satta (2009), Gómez-Rodrı́guez and Satta (2009)
and Sagot and Satta (2010).

Finally, the procedure for reducing a LCFRS
that we outlined in this section can be easily im-
plemented to run in time linear in the size of the
source grammar.

4 Effective LCFRS Parsing

String parsing with LCFRS G and input w =
a1 · · · an ∈ Σ∗ can be described in terms of com-
position as follows. We construct a FST Mw with
states s0, . . . , sn, of which s0 is the start state and
sn is the final state, and transitions si−1

ai,ai7→ si for
each i ∈ [n]. In words, the FST describes a map-
ping from only one string w to itself. The compo-
sition G′ = G ◦Mw restricts the derivations from
G to only those that have 〈w〉 as yield.

This approach is consistent with the observation
by Lang (1994) that parsing is a form of intersec-
tion. In the case of very ambiguous grammars, the
approach has the advantage that the set of all parse
trees is represented in a compact manner by the in-
tersection grammar, or G′ = G ◦Mw in our case.

Because Mw is unambiguous, the composition
also has favourable properties for PLCFRS G. In
particular, the probability LG(w) of a string w can
be determined by summing the probabilities of all
derivations of PLCFRS G′ = G ◦Mw, or formally:

LG(w) =
∑

v LG′(v) = LG′(S(〈s0, sn〉))

We have thus reduced the problem of computing
the inside probability of w under G to the problem
of computing the values of the partition function
for G′. Because LG(w) can be less than 1, it is
clear that G′ need not be consistent, even if we as-
sume that G is.

As we have discussed in Section 2, if G′ is any
PLCFRS that may not be proper or consistent, then
the valuesLG′(A) for the different nonterminals of
G′ can be expressed in terms of a system of equa-
tions. Solving such equations can be computation-
ally expensive.

A more efficient way to compute the values
LG′(A) is possible however if there are no cyclic
dependencies in G′, that is, in the system of equa-
tions specified in Section 2, no value is defined in
terms of itself. This can be ensured if the functions
g of the rules of the grammar are such that the mul-
tiset of non-empty strings in the output are never
the same as the multiset of non-empty strings in
the input arguments. This in turn is ensured if
the grammar contains no epsilon rules and no unit
rules.
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Analogously to the theory of context-free gram-
mars, we define an epsilon rule to be of the form:

π : A→ g(), where g() = 〈ε, . . . , ε〉

We define a unit rule to be of the form:

π : A→ g(A1), where

g(〈x1, . . . , xφ(A1)〉) = 〈x1, . . . , xφ(A1)〉

Note that we assume that φ(A1) = φ(A). The
reason why we do not need to consider a reorder-
ing of variables is because we have assumed that
all LCFRSs are monotone, as mentioned in Sec-
tion 2. In Section 5 we will show that a LCFRS
can be transformed to eliminate all epsilon rules
and unit rules, while preserving the language as
well as the assignment of probabilities to strings.
In the remainder of the present section, we discuss
the computation of the values LG′(A) under the
assumption that we do not have to deal with cyclic
dependencies.

We define a binary relation ≺ over sequences
of strings by letting 〈w1, . . . , wk〉 ≺ 〈v1, . . . , vm〉
if and only if |w1 · · ·wk| < |v1 · · · vm| or
|w1 · · ·wk| = |v1 · · · vm| and m < k. In
words, a sequence is smaller than another if it con-
tains fewer occurrences of symbols, and when the
two sequences contain the same number of oc-
currences of symbols, then the first is smaller if
the symbol occurrences are distributed over more
strings.

Let w be any string. If LCFRS G does not
contain epsilon rules or unit rules, then LCFRS
G′ = G ◦ Mw has the following property. If
ζ = g′(ζ1, . . . , ζr) is a derivation for some non-
terminal A′ in G′, then yield(ζi) ≺ yield(ζ)
for every i ∈ [r]. Note that yield(ζ) =
g′(yield(ζ1), . . . , yield(ζr)).

If we extend this to the probabilistic case, with
G′ = G ◦ Mw, G = (G, p) and G′ = (G′, p′),
then LG′(ζ) = p′(π′) ·

∏
i LG′(ζi), where π′ is the

label of the rule in which g′ occurs. If we use the
fact that multiplication distributes over addition,
we derive:

LG′(A
′) =

∑
π′:A′→g′(A′1,...,A′ρ(g′))

p′(π′) ·
∏

i∈[ρ(g′)]

LG′(A
′
i)

Recall that Mw has the set of states {s0, . . . , sn},
where n = |w|. Using the notation in Section 3,
A′ is therefore of the form:

A(〈sb1,1 , sb′1,m1
〉, . . . , 〈sbφ(A),1

, sb′
φ(A),mφ(A)

〉),

where for each k ∈ [φ(A)] and l ∈ [mk], bk,l and
b′k,l are integers in [n]0. Furthermore, for each i ∈
[ρ(g′)], A′i is of the form:

Ai(〈sci,1 , sc′i,1〉, . . . , 〈sci,φ(Ai)
, sc′

i,φ(Ai)
〉),

where for each j ∈ [φ(Ai)], ci,j and c′i,j are inte-
gers in [n]0.

By associating each pair 〈sbk,l , sb′k,l〉 (or
〈sci,j , sc′i,j 〉) with a corresponding substring
abk,l+1 · · · ab′k,l (or aci,j+1 · · · ac′i,j , respectively)
ofw, we obtain sequences of strings forA′i that are
smaller than those for A′, by relation ≺. Because
≺ is acyclic, this means we can compute LG′(A′i)
strictly before computing LG′(A′). All values of
LG′ for different nonterminals can be obtained by
enumerating all sequences of substrings from w in
an order that is consistent with ≺. We refer to this
procedure as the inside algorithm for PLCFRSs.

Computation It is not difficult to implement the
inside algorithm in such a way that all values
LG′(A) can be computed in time linear in the size
of G′ = G ◦ Mw. This is essentially a gener-
alization of the well-known inside algorithm for
probabilistic context-free grammars (Manning and
Schütze, 1999) to a special kind of non-recursive
PLCFRS.

5 Grammar Transformations

In this section we introduce grammar transfor-
mations that remove cyclic dependencies from
LCFRS, and discuss their application to a special
class of PLCFRSs.

We say a nonterminal A is nullable in gram-
mar G if there is a derivation ζ ∈ DG(A) with
yieldG(ζ) = 〈ε, . . . , ε〉. The set EG of nullable
nonterminals in G can be found as a straight-
forward generalization of the algorithm to find
nullable nonterminals in a context-free grammar
(Sippu and Soisalon-Soininen, 1988). Similarly,
we can construct the set of all nonterminals A for
which at least one derivation ζ ∈ DG(A) has a
yield containing at least one non-empty string. We
denote this set by EG.

A LCFRS G can now be transformed into a
LCFRS G′ without epsilon rules, by applying the
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following exhaustively.2 Take a rule from G:

π : A→ g(A1, . . . , Ar), where

g( 〈x1,1, . . . , x1,φ(A1)〉,
. . . ,
〈xr,1, . . . , xr,φ(Ar)〉 ) =

〈α1, . . . , αφ(A)〉

and determine:

Uπ = {i | i ∈ [r], Ai ∈ EG}
Uπ = {i | i ∈ [r], Ai ∈ EG}

and then choose any set U with (Uπ \ Uπ) ⊆
U ⊆ Uπ. That is, the set must contain all indices
of right-hand side nonterminals that only generate
yields with empty strings, and it may additionally
contain the indices of other nullable nonterminal
occurrences. Now construct the rule:

πU : A→ gU (B1, . . . , Br′), where

gU ( 〈x′1,1, . . . , x′1,φ(B1)〉,
. . . ,
〈x′r′,1, . . . , x′r′,φ(Br′ )

〉 ) =

〈α′1, . . . , α′φ(A)〉

where B1, . . . , Br′ is obtained from A1, . . . , Ar
by omittingAi if i ∈ U , where r′ = r−|U|. Simi-
larly, gU has only r′ arguments, by omitting its i-th
argument if i ∈ U . Lastly, for each k ∈ [φ(A)],
α′k is obtained from αk by omitting any variables
of the form xi,j where i ∈ U . The constructed rule
πU now becomes a rule in the transformed gram-
mar G′ if it is not an epsilon rule.

Example 4 Assume a rule in G of the form:

π : A→ g(A1, A2, A3), where

g(〈x1〉, 〈x2〉, 〈x3〉) = 〈x3ax1x2〉

Further assume that EG includes A1 and A2 but
not A3, and EG includes A1 and A3 but not A2.
Then G′ will contain:

π{2} : A→ g{2}(A1, A3), where

g{2}(〈x1〉, 〈x3〉) = 〈x3ax1〉
π{1,2} : A→ g{1,2}(A3), where

g{1,2}(〈x3〉) = 〈x3a〉
2Removal of epsilon rules is also investigated by Seki et

al. (1991, Lemma 2.2(N2), pg. 197) for multiple context-free
grammars, a syntactic variant of LCFRSs. Here we extend
the result to the probabilistic version of LCFRSs.

�
In the case of a PLCFRS G = (G, p) being

transformed to G′ = (G′, p′), we have:

p′(πU ) = p(π) ·
∏
i∈U

∑
ζ ∈ DG(Ai) :

yield(ζ) = 〈ε, . . . , ε〉

LG(ζ)

The summation of all derivations with yields con-
sisting only of empty strings is difficult in general,
and involves the solution of a system of polyno-
mial, nonlinear equations, a topic which we ad-
dressed in Section 2.

However, there is a special case that can be eas-
ily dealt with, namely that EG ∩ EG = ∅ and for
each A ∈ EG: ∑

ζ ∈ DG(A) :

yield(ζ) = 〈ε, . . . , ε〉

LG(ζ) = 1

This means that there is precisely one possible set
U for each rule π, and p′(πU ) will always be iden-
tical to p(π). In this case the overall construction
of elimination of nullable rules from PLCFRS G
can be implemented in time linear in |G|. It is this
special case that we will encounter in Section 6.

Now we turn to elimination of unit rules from
a PLCFRS G. We investigate sequences of appli-
cations of unit rules, multiplying the probabilities
of all rule occurrences, and adding the probabil-
ities of all such sequences between each pair of
nonterminals. Formally, for each pair A and B of
nonterminals, we have a value ∆G(A,B), and we
write:

∆G(A,B) = δ(A = B) +

+
∑

π : A→ g(A1), where

g(〈x1, . . . , xφ(A1)〉) =

〈x1, . . . , xφ(A1)〉

p(π) ·∆G(A1, B)

where δ(A = B) is defined to be 1 ifA = B and 0
otherwise. This forms a system of linear equations
in the unknown variables ∆G(·, ·). Such a system
can be solved in polynomial time in the number of
variables, for example using Gaussian elimination.

In order to construct the transformed grammar
G′, we exhaustively choose a rule from G:

π : A→ g(A1, A2, . . . , Ar)
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and choose B such that ∆G(B,A) > 0, and let G′
contain the rule:

πB : B → gB(A1, A2, . . . , Ar)

where gB is defined to be identical to g. The prob-
ability of πB is p′(πB) = p(π) ·∆G(B,A).

The size of G′ is quadratic in G. The time com-
plexity is dominated by the computation of the so-
lution of the linear system of equations. This com-
putation takes cubic time in the number of vari-
ables. The number of variables in this case is
O(|G|2), which makes the running time O(|G|6).

6 Prefix Probabilities

In this section we gather all the constructions that
have been presented in the previous sections, and
provide the main result of this paper.

Let G be a reduced, proper and consistent
PLCFRS. We assume G does not contain any ep-
silon rules, and therefore the empty string is not in
the generated language.

The first step towards the computation of prefix
probabilities is the construction of a FST Mpref

that maps any string w over an assumed input al-
phabet to any non-empty prefix of w. In other
words, its transduction is the set of pairs 〈wv,w〉,
for any non-empty string w and any string v, both
over the alphabet Σ of G. The reason why we
do not consider empty prefixes w is because this
simplifies the definition of Mpref below, assuming
there can be only one final state. The restriction
is without loss of generality, as the computation of
the prefix probability of the empty string is easy:
it is always 1.

The transducer Mpref has two states, qs and qf ,
which are also the start and final states, respec-
tively. The transitions have the following forms,
for each a ∈ Σ:

qs
a,a7→ qs

qs
a,a7→ qf

qf
a,ε7→ qf

In words, symbols are copied unchanged from in-
put to output as long as the automaton is in the start
state. After it jumps to the final state, no more out-
put can be produced.

Note that if we consider any pair of states s and
s′, such that the automaton can reach s′ from s,
then precisely one of the following two cases is
possible:

• On any path through the automaton, the
empty string is produced in the output. This
applies when s = s′ = qf .

• On any path through the automaton, a non-
empty string is produced in the output. This
applies when s = s′ = qs, or s = qs and
s′ = qf .

Note that in the first case, for s = s′ = qf , any
string can be consumed in the input, in exactly
one way. This has an important implication for
the composition G′ = G ◦Mpref , namely that all
nullable nonterminals in G′ must be of the form
A′ = A(〈qf , qf 〉, . . . , 〈qf , qf 〉). By the construc-
tion of G′, and by the assumption that G is reduced,
proper and consistent we have:∑

ζ ∈ DG′ (A′) :

yield(ζ) = 〈ε, . . . , ε〉

LG′(ζ) =
∑

ζ∈DG(A)

LG(ζ) = 1

Therefore, we can apply a simplified procedure to
eliminate epsilon rules, maintaining the probabil-
ity of a rule where we eliminate nullable nontermi-
nals from its right-hand side, as explained in Sec-
tion 5.

After also unit rules have been eliminated, by
the procedure in Section 5, we obtain a gram-
mar G′′ without epsilon rules and without unit
rules. For a given prefix w we can now construct
G′′◦Mw, and apply the inside algorithm, by which
we obtain LG′′(w), which is the required prefix
probability of w by G.

Computation Consider the PLCFRS G′ = G ◦
Mpref ; assume G′ is subsequently reduced. Due
to the special topology of Mpref and to the as-
sumption that G is monotonic, it is not difficult
to see that all nonterminals of G′ have the form
A(〈s1, s2〉, . . . , 〈s2φ(A)−1, s2φ(A)〉) such that, for
some k ∈ [2φ(A)]0, we have si = qs for each
i ∈ [k] and si = qf for each i ∈ [2φ(A)] \ [k].
Related to this, for each rule π ofG, there are only
O(|π|) many rules in G′ (as opposed to a num-
ber exponential in |π|, as in the general case dis-
cussed in Section 3). Since each new rule in G′

constructed from π has size proportional to |π|, we
may conclude that |G′| = O(|G|2). Furthermore,
G′ can be computed in quadratic time.

The simplified procedure for eliminating ep-
silon rules and the procedure for eliminating unit
rules both take polynomial time, as discussed in
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Section 5. This results in a PLCFRS G′′ such that
|G′′| is polynomially related to |G|, where G is
the source LCFRS. Note that G′′ can be computed
off-line, that is, independently of the specific in-
put string for which we need to compute the prefix
probability.

Finally, computation of G′′ ◦ Mw, for a given
prefix w, can take exponential time in |w|. How-
ever, the exponential time behaviour of our algo-
rithm seems to be unavoidable, since the problem
at hand is more general than the problem of pars-
ing of w under a LCFRS model, which is known
to be NP-hard (Satta, 1992). As already discussed
in Section 3, the problem can be solved in polyno-
mial time in case we can cast the source LCFRS
G in a normal form where each rule has length
bounded by some constant.

7 Discussion

Our findings subsume computation of the prefix
probability:

• for probabilistic context-free grammars in
time O(n3) (Jelinek and Lafferty, 1991),

• for probabilistic tree-adjoining grammars in
time O(n6) (Nederhof et al., 1998), and

• for probabilistic synchronous context-free
grammars (Nederhof and Satta, 2011b).

The latter becomes clear once we see that a syn-
chronous context-free grammar can be expressed
in terms of a restricted type of LCFRS. All non-
terminals of this LCFRS, except the start symbol,
have fan-out 2, and all generated strings are of the
form w$v, where w functions as input string, v
functions are output string, and $ is a separator be-
tween the two, which does not occur in the input
and output alphabets of the synchronous context-
free grammar. The rules of the LCFRS are of two
forms. The first form is a single rule with the start
symbol S† in the left-hand side:

π† : S† → g†(S), where

g†(〈x1,1, x1,2〉) = 〈x1,1$x1,2〉

The other rules all have a form that ensures that
variables associated with the input string are never
combined with variables associated with the out-
put string:

π : A→ g(A1, . . . , Ar), where

g(〈x1,1, x1,2〉, . . . 〈xr,1, xr,2〉) =

〈y1,1 · · · y1,m1 , y2,1 · · · y2,m2〉

and each y1,l, l ∈ [m1], is either a terminal (from
the input alphabet) or a variable of the form x1,j ,
and each y2,l, l ∈ [m2], is either a terminal (from
the output alphabet) or a variable of the form x2,j .

Let G be a PLCFRS mimicking a probabilistic
synchronous CFG as outlined above. We can de-
fine an unambiguous FST M of which the trans-
duction is the set of pairs 〈w1v1$w2v2, w1$w2〉 for
any strings w1, v1 over the input alphabet and any
strings w2, v2 over the output alphabet of the syn-
chronous CFG, where w1 and w2 are non-empty.
The FST has states s0, s1, s2, s3, of which s0 and
s3 are the start and the final state, respectively. The
transitions are of the form:

s0
a,a7→ s0 s0

a,a7→ s1

s1
a,ε7→ s1 s1

$,$7→ s2

s2
a,a7→ s2 s2

a,a7→ s3

s3
a,ε7→ s3

We can now proceed by constructing G ◦ M ,
and eliminating its epsilon and unit rules, to give
G′, much as in Section 6. Let w1 and w2 be two
strings over the input and output alphabets, respec-
tively. The prefix probability can now be effec-
tively computed by constructing G′ ◦Mw1$w2

and
computing the inside algorithm.

We can use a similar idea to compute prefix
probabilities for probabilistic extensions of the
generalized multitext grammars of Melamed et al.
(2004), a formalism used to model translation for
which no prefix probability algorithm was previ-
ously known.

A seemingly small variation of the problem
considered in this paper is to compute infix proba-
bilities (Corazza et al., 1991; Nederhof and Satta,
2008). It is straightforward to define a FST
M of which the transduction is the set of pairs
〈v1wv2, w〉. However, it does not seem possible
to construct an unambiguous FST that achieves
this. Therefore G ◦M does not have the required
probabilistic properties that would allow a cor-
rect computation by means of the inside algorithm.
The problem of infix probabilities for probabilis-
tic context-free grammars was also considered by
Nederhof and Satta (2011a).
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Abstract

We present a matrix encoding of context-
free grammars, motivated by hardware-level
efficiency considerations. We find effi-
ciency gains of 2.5–9× for exhaustive in-
ference and approximately 2× for pruned
inference, resulting in high-accuracy pars-
ing at over 20 sentences per second. Our
grammar encoding allows fine-grained par-
allelism during chart cell population; we
present a controlled study of several meth-
ods of parallel parsing, and find near-
optimal latency reductions as core-count in-
creases.

1 Introduction

Constituent parsers are important for a number of
information extraction subtasks — e.g., anaphora
and coreference resolution and semantic role la-
beling — and parsing time is often a bottleneck
for such applications (Bjrne et al., 2010; Banko,
1999). Most constituent parsers leverage the dy-
namic programming “chart” structure of the CYK
algorithm, even when performing approximate in-
ference. The inner loop of the CYK algorithm
computes an argmax for each constituent span
by intersecting the set of observed child cate-
gories spanning adjacent substrings with the set
of rule productions in the grammar. This ‘gram-
mar intersection’ operation is the most compu-
tationally intensive component of the algorithm.
Prior work has shown that the grammar encod-
ing can greatly affect parsing efficiency (c.f Klein
and Manning (2001), Moore (2004), Penn and
Munteanu (2003)); in this paper we present a ma-
trix encoding that can encode very large grammars
to maximize inference efficiency.

This matrix grammar encoding allows a refac-
toring of the CYK algorithm with two beneficial
properties: 1) the number of expensive grammar
intersection operations is reduced from O(n3) to

O(n2); and 2) since grammar intersection is re-
duced to a set of matrix operations, the resulting
algorithm is amenable to fine-grained paralleliza-
tion.

Most discussion of parallel parsing concentrates
on throughput, the aggregate number of sentences
parsed per second on a particular machine. In
this study, we are also interested in applications
for which response time is of interest (e.g., real-
time speech recognition and machine translation),
and thus consider latency, the time to parse a
single sentence, as a primary objective. Given
ideally efficient algorithms and hardware, there
would be no tradeoff between the two — that is,
we would be able to parallelize each sentence
across an arbitrary number of processor cores, re-
ducing latency and increasing throughput linearly
with core-count. Unfortunately, hardware con-
straints and Amdahl’s law ensure that we will
never achieve that ideal speedup; in practice, we
are likely to see some tradeoff. We will demon-
strate interesting patterns of the tradeoff between
throughput and latency with various paralleliza-
tion methods, allowing consumers to tailor parsing
strategies to particular application requirements.

Our grammar intersection method is amenable
to graphics processors (GPUs) and similar
massively-parallel architectures. In this work, we
perform our analysis on a multicore CPU system.
We demonstrate the utility of this approach using
a number of different grammars, including the la-
tent variable grammar used by the Berkeley parser
(Petrov et al., 2006). We show large speedups
compared to a traditional CYK implementation for
serial inference, parsing over 20 sentences per sec-
ond with the Berkeley grammar. Parallelizing this
algorithm reduces average latency to .026 seconds.

The remainder of this paper is organized as fol-
lows: we begin in Section 2 with background on
the CYK algorithm and various general and CYK-
specific parallelization considerations. In Sec-
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tion 3 we provide a detailed presentation of our
grammar encoding, data structures, and intersec-
tion method. In Section 4, we demonstrate their
effectiveness on a single core and present con-
trolled experiments comparing several paralleliza-
tion strategies.

2 Background

2.1 CYK

Algorithm 1 shows pseudocode of the widely used
CYK algorithm. Briefly, constituents spanning
longer substrings are built from shorter-span con-
stituents via a chart structure, as shown in Figure
1. Span-1 cells (the bottom row of the chart) are
initialized with all part-of-speech (POS) tags, and
with unary productions spanning a single word. At
higher span cells in the chart, such as the dark grey
cell in Figure 1, new constituents are built by com-
bining constituents spanning adjacent substrings,
guided by the productions in the grammar. With
a probabilistic context-free grammar (PCFG) the
maximum likelihood solution is found by storing,
in each cell in the chart, the highest probability
for each category in the non-terminal set V along
with a backpointer to where that solution came
from. Dynamic programming reduces this poten-
tially exponential search to O(n3) complexity.

2.2 Parallelism

Since smooth parallelization is one of the benefits
of the algorithm we will present in Section 3.2,
we begin with background on some of the barri-
ers to efficient parallelism. The overhead of par-
allelism takes many forms.1 The operating sys-
tem consumes processor cycles in thread schedul-
ing; coordination and synchronization of concur-
rent tasks can leave processors idle; and (more im-
portantly to memory-bound applications such as
parsing) context switching between threads often
requires flushing the CPU cache, resulting in more
memory contention and stalls.

Further, some multi-core architectures share L2
or L3 caches between CPU cores, and nearly all
share bandwidth to memory (the ‘front-side bus’,
or FSB). Parallel execution threads compete for
those resources, and may stall one another. Thus,
parallelism can introduce considerable hardware

1We are concerned primarily with parallelism within a
single machine. Cluster-level parallelism incurs network la-
tency, shared filesystem, and other forms of overhead that do
not concern us here.

overhead, even if OS- and task-level overhead are
minimal, but this impact can be minimized if con-
current threads share common data structures.

2.3 Low-Latency Parallel CYK
We observe that CYK parsing can be parallelized
in (at least) three distinct ways, each likely to have
different advantages and disadvantages vis-à-vis
the bottlenecks just discussed:

Sentence-level: The simplest way to parallelize
parsing is to parse sentences or documents inde-
pendently on separate cores. This approach is
well-understood, simple to implement, and quite
effective. Total throughput should scale roughly
linearly with the number of cores available, at least
until we reach the limits of memory bandwidth,
but latency is not improved — and may actually in-
crease.

Cell-level: In most forms of CYK iteration, we
populate each cell separately, leading to a straight-
forward form of cell-level parallelism. For exam-
ple, in bottom-up cell iteration order, we popu-
late one chart row fully before proceeding to the
next. The cells on each row are independent of
one another, so we can process all cells of a row in
parallel. Unfortunately, as we move higher in the
chart, there are fewer cells per row, and we must
leave CPU cores idle. The highest cells in the chart
are often the most densely populated (and require
the most processing), an inherent limitation of this
form of parallelism.2

Ninomiya et al. (1997) explored cell-level par-
allelization on a 256-processor machine. Their
method incurred an overhead of 6–10× vs. their
baseline serial algorithm (depending on sentence
length). That is, their parallel algorithm ran 6–
10 times slower on a single core than a simpler
serial implementation. So even if their approach
scaled ideally, many cores would be required to
match their serial baseline performance. In prac-
tice, their algorithm did not scale linearly and
required approximately 64 CPUs to equal their
baseline single-CPU performance, and the total
speedup observed on 256 CPUs was only 2–4×.

Grammar-level: Parallelization within a chart
cell is more difficult to implement, but may avoid
some of the weaknesses of the first two methods
described. If we can fully parallelize cell popu-
lation, we can make use of all available cores re-

2If optimizing for throughput, those idle threads could
be reassigned to subsequent sentences, but cache- and FSB-
contention is likely to further increase latency.
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Algorithm 1 CYK(w1 . . . wn, G = (V, T, S†, P, ρ)) PCFG G must be in CNF.
α represents the population of the current cell.

1: for t = 1 to n do . span = 1 (Words/POS tags)
2: for j = 1 to |V | do
3: αj(t, t)← P(Aj → wt)
4: for s = 2 to n do . All spans > 1 (rows in the chart)
5: for e = s to n do . All end-points (cells in a row)
6: b← e− s+ 1 . begin-point for cell
7: ∀i∈V | αi(b, e)← argmaxj,k,mP(Ai → AjAk)αj(b,m− 1)αk(m, e)

DT→ The 1

0,10,1

NN→ fish 1

1,2

NN→ market 2/3

VB→ market 1/3

VP→ VB 1/12

2,3

NN→ stands 1/2

VB→ stands 1/2

VP→ VB 1/8

3,4

RB→ last 2/3

VB→ last 1/3

VP→ VB 1/12

4,5

NP→ DT NN1
1/4

@VP→ NP 1/4

0,2

@NP→ NN NN2
2/3

NP→ NN NN2
1/9

@VP→ NP 1/9

1,3

@NP→ NN NN3
1/3

NP→ NN NN3
1/18

@VP→ NP 1/18

2,4

NP→ NN RB4
1/18

VP→ VB RB4
1/6

@VP→ NP 1/18

3,5

NP→ DT NP1 1/36

S→ NP VP2 1/48

@VP→ NP 1/36

TOP→ S 1/48
0,3

NP→ NN @NP2 1/18

S→ NP VP3 1/72

@VP→ NP 1/18

TOP→ S 1/72
1,4

VP→ VB @VP3 1/216

S→ NP VP4 1/216

TOP→ S 1/216

2,5

NP→ DT NP1 1/72

S→ NP VP3 1/288

@VP→ NP 1/72

TOP→ S 1/288
0,4

S→ NP VP3 1/54

TOP→ S 1/54

1,5

S→ NP VP3 1/216

TOP→ S 1/216

0,5

Figure 1: Example CYK chart, with target cell 0,4 highlighted in dark gray and the child cells involved in popu-
lating it highlighted in light gray.

gardless of the cell iteration order or the current
position in the chart.3 Because each thread is op-
erating on the same cell, their working sets may
align more closely than in other forms of paral-
lelism, reducing context-switch overhead. How-
ever, this method implies very fine-grained task di-
visions and close coordination between threads —
when we split a single grammar intersection oper-
ation across many threads, each task is quite small.
At this fine granularity, locking of shared data
structures is impractical, so we must divide tasks
such that they share immutable data (the grammar
and current cell population) but do not simultane-
ously mutate the same target data structures (e.g.,
individual threads may populate separate ranges
of non-terminals in the target cell, but must not
attempt to populate the same range). Even with
careful task division, the task management may
overwhelm the potential gains. Youngmin et al.
(2011) presented one approach to this problem; we
present another approach in Section 3.2.

3Of course, we can utilize sentence-level and cell-level
parallelism as well.

3 Methods
3.1 Matrix Grammar Encoding
Retrieval of valid grammar rules and their prob-
abilities is an essential component of context-free
parsing. High-accuracy grammars can exceed mil-
lions of productions, so efficient model access is
critical to parsing performance. Prior work on en-
coding the grammar as a finite state automaton
(Klein and Manning, 2001) and prefix compacted
tries (Moore, 2004) demonstrated that model en-
coding can lead to significant efficiency gains in
parsing.4 Motivated to address hardware bottle-
necks and constraints, we present a novel encod-
ing in matrix form.

Given a binarized probabilistic context-
free grammar (PCFG) defined as the tuple
(V, T, S†, P, ρ) where V is the set of non-
terminals, T is the set of terminals, S† is a special
start symbol, P is the set of grammar productions,
and ρ is a mapping of grammar productions to
probabilities, we subdivide P into binary rules,
Pb, and unary rules, Pu.

We encode Pb in matrix form, where the rows
of the matrix 1..|V | represent a production’s left-

4All grammar encodings discussed, including our own,
only alter efficiency; accuracy remains unchanged.
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hand-side non-terminal, and the columns repre-
sent a tuple of all possible right-hand-side non-
terminals (pairs in a binarized grammar). This
forms a matrix of |V | rows and |V |2 columns. Fig-
ure 2 shows a simple grammar represented in this
format.

In theory, this matrix could contain |V |3 en-
tries, but most grammars of interest are incred-
ibly sparse, populating only a very small frac-
tion of the possible matrix cells. For example,
the Berkeley latent-variable grammar defines 1134
non-terminals, so a fully populated binary rule ma-
trix would contain 1.49 billion rules, but the gram-
mar only populates 1.73 million. Thus, we choose
a ‘compressed sparse column’ sparse matrix repre-
sentation (Tewarson, 1973). This storage structure
is quite dense — we store the binary rules of the
Berkeley grammar in approximately 10.5 MB of
memory. Further, the rules are stored contiguously
in memory and in order of access, so the gram-
mar intersection operations should be very cache-
efficient.

3.2 Matrix-Vector Grammar Intersection

We now present a novel intersection method,
based on the grammar encoding from Section 3.1,
which decouples midpoint iteration from gram-
mar intersection, and can reduce the cell pop-
ulation cost considerably. We begin by point-
ing to Algorithm 1, the standard CYK algorithm.
The argmax on line 7 intersects the set of ob-
served child categories spanning adjacent sub-
strings (stored in chart cells) with the set of rule
productions found in the grammar. Algorithms
2 and 3 show two possible grammar intersection
methods, one which loops over productions in the
grammar (Alg. 2) and one which loops over left-
children prior to looking for grammar productions
(Alg. 3). Song et al. (2008) explored a num-
ber of such grammar intersection methods, and
found Algorithm 3 to be superior for right-factored
grammars. We now present a novel intersection
method based on the grammar encoding from Sec-
tion 3.1. The description in this section is infor-
mal, with midpoints omitted for clarity. In Sec-
tion 3.3, we will formalize the method as an appli-
cation of a lexicographic semiring.

We represent the population of each chart cell α
as a vector in R|V |. Each dimension of this vector
represents the (log) probability of a non-terminal

Algorithm 2 Grammar intersection via full gram-
mar loop (backpointer storage omitted). α(b, e)
represents the population of the cell spanning
words b to e.
α(b, e)← 0
for m = b+ 1 to e− 1 do

for Ai → AjAk ∈ P do
x← P(Ai→ AjAk)αj(b,m−1)αk(m, e)
if x > αi(b, e) then
αi(b, e)← x

Algorithm 3 Grammar intersection via left child
grammar loop
α(b, e)← 0
for m = b+ 1 to e− 1 do

for j ∈ α(b,m−1) do
for Ai → AjAk ∈ P do
x← P(Ai→ AjAk)αj(b,m−1)αk(m, e)

if x > αi(b, e) then
αi(b, e)← x

in that cell. To perform the argmax, we popu-
late a temporary vector c of |V |2 dimensions with
the cartesian product of all observed non-terminals
from the left and right child cells over all mid-
points. That is, each dimension of this vector rep-
resents an ordered pair of non-terminals from the
grammar, and its length (score) is the product of
the inside probabilities of the respective children.
For any child pairs which occur at multiple mid-
points, we record only the most probable.

For example, when populating the highlighted
cell (0,4) in Figure 1, the first midpoint (m=1)
adds (DT,NP), (DT,S), and (DT,@VP) to c;
the second midpoint (m=2) will add (NP,@NP),
(NP,@VP), (@VP,@NP), and so on. If we ob-
serve the same pair at multiple midpoints, we re-
tain only the maximum score.

Given a matrix-encoded grammar, G, and the
child-cell vector, c, we simply multiply G by c
to produce α, the population of the target cell.
In Viterbi search, we perform this operation in
the 〈T, T 〉 lexicographic semiring, thus comput-
ing the maximum probability instead of the sum
(described more fully in Section 3.3). Figure 2
demonstrates this Sparse-Matrix × Vector mul-
tiplication (SpMV). The SpMV is the only por-
tion of our algorithm which must access the gram-
mar. We perform that operation once per cell,
rather than once per midpoint, reducing the num-
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G
(DT,NP) (DT,NN) (NN,NN) · · ·

NP 1⁄4 1⁄4 -
S - 1⁄32 1⁄32

@VP - - -
@NP - - 1
· · · · · ·

×

c
Child Pair Prob
(DT,NP) 1⁄18

(DT,NN) 0
(NN,NN) 0
· · ·
(NP,VP) 1⁄72

(DT,S) 1⁄72

(NP,@NP) 1⁄12

(NP,NN) 1⁄72

· · · · · ·

=

α
Parent Prob
NP 1⁄72

S 1⁄288

@VP 1⁄72

@NP 0
· · ·

Figure 2: Example matrix-vector multiplication for cell 0,4 in Figure 1. The grammar G encodes binary rules as
a |V | × |V |2 matrix, with rows representing parents and columns representing child pairs. The vector c contains
non-terminal child pairs observed across all possible midpoints. The matrix-vector product of G× c produces the
target cell population, α. Factored categories are prefixed with ‘@’, and backpointers are omitted for clarity.

Algorithm 4 Grammar intersection via
Sparse Matrix × Vector Multiplication.
h(l, r) maps l, r ∈ V to an index of c

c← 0
for m = b+ 1 to e− 1 do

for j = 1 to |V | do
for k = 1 to |V | do
i← h(αj(b,m− 1), αk(m, e))
if αj(b,m− 1)αk(m, e) > ci then

ci ← αj(b,m− 1)αk(m, e)
α(b, e)← G · c

ber of expensive grammar operations from O(n3)
to O(n2).

We note the similarity to the formalisms of
Valiant (1975), which transforms parsing into
boolean matrix multiplication, and Lee (1997),
which inverts that transformation. However, the
similarity is only superficial; Valient’s algorithm
populates an upper-triangular matrix, the elements
of which are equivalent to CYK chart cells. Each
matrix element is a subset of V , the observed pop-
ulation of the analogous chart cell. The matrix is
populated by a transitive closure operation, which
takes the place of the CYK algorithm. Our matrix
operation, on the other hand, is concerned with the
population of individual chart cells, the operation
accomplished by Valient’s ∗ operator.

Decoupling the midpoint iteration from gram-
mar intersection is not contingent on our matrix-
vector encoding. The optimization in Graham et
al. (1980) also refactors the CYK algorithm to
result in O(n2) grammar intersection operations
by changing the dynamic programming to iterate
through right (or left) child cells and build new
(parent) categories in multiple chart cells at once.

Similarly, the grammar-loop intersection of Algo-
rithm 2 could be modified to first maximize over
all midpoints, then iterate over grammar produc-
tions as is done in Algorithm 4. However, nei-
ther variation lends itself to straightforward paral-
lelization, and the required synchronization would
severely impact parallel efficiency.

In contrast, the cartesian product and matrix-
vector operations of our SpMV method parallelize
easily across many cores. We subdivide V into
segments, one for each thread. Each thread iterates
over its own subset of V in the left child cell and
combines with all entries in the right child cell,
populating an entry in c for each observed child
pair. c is represented as independent segments safe
for lock-free mutation by independent threads (see
Section 3.4).

To perform the matrix-vector operation in paral-
lel, we retain the same segments of c, and segment
G similarly. Each thread t multiplies its segment
Gt · ct, producing a vector αt. We then merge the
αt vectors into the final α. Since |V | << |c|, this
final merge is quite efficient.

3.3 Lexicographic Semiring

We now present Algorithm 4 more formally as
an application of a lexicographic semiring (Golan,
1999). Roark et al. (2011) recently applied lexi-
cographic semirings to language-model encoding.
We will follow their notational conventions, and
refer the interested reader to their detailed discus-
sion.

A semiring is a ring, possibly lacking negation,
defining two operations ⊕ and ⊗ and their re-
spective identity elements 0̄ and 1̄ (Kuich and Sa-
lomaa, 1985). One common example in speech
and language applications is the tropical semiring
(R∪{∞},min,+,∞, 0). min is the⊕ operation,
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with identity ∞, and + is the ⊗, with identity 0.
This definition is often used for Viterbi search, us-
ing negative log probabilities as costs.

A lexicographic semiring is defined over tu-
ples of weights 〈W1,W2 . . .Wn〉, with the con-
dition that the tuples can be ordered first by W1,
then by W2, and so on (similar to lexicographic
string comparison, resulting in the name). We use
the 〈T, T 〉 semiring, defined as a pair of tropical
weights:

〈w1, w2〉 ⊕ 〈w3, w4〉 =


〈w1, w2〉

if w1 < w3 or
(w1 = w3 &
w2 < w4)

〈w3, w4〉 otherwise

〈w1, w2〉 ⊗ 〈w3, w4〉 = 〈w1 + w3, w2 + w4〉

In our application, W1 encodes the negative log
probability of a production in G or of an observed
non-terminal in the chart. W2 encodes the mid-
point of the maximum-probability analysis.5 To
perform grammar intersection using this semiring,
we encode the grammar matrix as described in
Section 3.2, and include 0 as W2 for each gram-
mar entry (since this weight is constant, it need
not be encoded in the grammar representation).

We populate a vector of tuples ci for each
possible midpoint of the cell, and c =
c1 ⊕ c2 ⊕ . . . cspan. ⊕ compares with min, so
the entries in c will be from the maximum prob-
ability midpoints and the first midpoint will ‘win’
in the case of a tie.

When we multiply G · c in the 〈T, T 〉 semiring,
we use the⊗multiplication operator on each indi-
vidual element, and the⊕ addition operator for the
sum. Since W2 is 0 for all entries in G, the mid-
points are simply carried over from c, and G · c
is the minimum-cost path to each observed non-
terminal.

SpMV optimizations have been explored exten-
sively in the high-performance computing litera-
ture (c.f., for example, Williams et al. (2009), Bell
and Garland (2009), Goumas et al. (2008)) Al-
though the matrix-vector operations in the 〈T, T 〉
semiring is quite distinct from SpMV in the real
semiring, we anticipate that some of those algo-
rithms will apply, and would be of particular inter-

5Since W2 represents a midpoint, we could alter the defi-
nition to specify that W2 ∈ N, but the standard tropical semir-
ing is adequate and slightly simpler.

est if parsing with grammars more densely popu-
lated than those we explore in this study.

3.4 Vector Data Structure

We have already discussed a memory- and cache-
efficient encoding of G. We must also represent
c efficiently. Although this data structure is not
a primary contribution of this work, we do note
that the choice of vector representation greatly im-
pacts overall parsing efficiency, so we will briefly
describe our choices.

We represent c with a perfect hash of the form
h(l, r) → [m], mapping left and right children to
a matrix column. Since a perfect hash function
ensures no collisions, this function is reversible
(h−1([m]) → (l, r)), allowing recovery of the left
and right children from their hashed representa-
tion. We construct |V | different hash functions,
mapping hi(r) → [mi]. We store the data struc-
tures for these functions adjacently in memory,
such that iterating over the entire range of c ac-
cesses memory in roughly linear order.6 Global
optimization of a perfect hash is an NP-complete
problem. Even though we only create the hash
once during initialization, we want to avoid ex-
ponential effort and instead use a displacement
heuristic (Tarjan and Yao, 1979) to pack the hash
efficiently, achieving 50-80% occupancy for most
grammars. We elected not to use a minimal perfect
hash, since the decrease in storage space comes at
the cost of increased memory access.

4 Evaluation

We compare exhaustive and pruned parsing effi-
ciency with several other competitive parsing im-
plementations. We performed all matrix-encoded
parsing and parallelization experiments using the
open-source BUBS parser (Bodenstab and Dun-
lop, 2011). The parser framework is grammar
agnostic, permitting experiments on grammars of
various sizes, and it implements both exhaustive
inference and ‘Adaptive Beam Pruning’, as de-
scribed in Bodenstab et al. (2011). For exhaustive
parsing, we use BUBS implementation of Algo-
rithms 2 and 3 and Mark Johnson’s highly opti-
mized C implementation, lncky (Johnson, 2006)
as baselines; for pruned inference, we compare
with the Charniak parser (Charniak, 2000), the

6On most modern CPUs, linear memory access patterns
allow aggressive and effective data pre-fetching into cache,
avoiding costly CPU stalls.
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Markov-0 Markov-2 Parent Berkeley SM6
Categories 100 3092 6971 1134
Binarized Rules 3859 13649 25229 1,725,570
F-score 60.7 71.9 77.5 89.3
BUBS Grammar loop (Algorithm 2) 0.16 1.92 23.4 29.9
BUBS Left-child loop (Algorithm 3) 0.13 0.50 0.8 63.0
Johnson (2006) 0.10 0.22 0.3 36.0
SpMV (this paper) 0.04 0.26 1.2 3.2

Table 1: Exhaustive Viterbi parse times (average seconds/sentence, lower is better) over WSJ Section 22 for
various grammars. All parsers produce the same maximum-likelihood parse trees.

Berkeley parser (Petrov et al., 2006), and with
the aforementioned ‘Adaptive Beam Search’ sys-
tem implemented in BUBS. The Charniak parser
is written in C and parses with a lexicalized gram-
mar. The BUBS and Berkeley parsers are imple-
mented in Java and parse with a latent-variable
grammar.7

A brief note about implementation choices is
appropriate here. Java has often been viewed
as notoriously slow, a perception well-established
when Java runtime environments were interpreted
rather than compiled. Recent advances in virtual
machine technology have largely eliminated the
differential between Java and statically-compiled
languages such as Fortran and C (c.f. Amedro
et al. (2010), Kotzmann et al. (2008), Paleczny et
al. (2001), Click et al. (2005), Click et al. (2007),
Wrthinger et al. (2007), and Tene et al. (2009)).

We performed all trials on a 12-core Linux ma-
chine (2 × Intel® Xeon X5650 CPUs). Each core
can execute 2 simultaneous threads, for a total
of 24 concurrent threads. For the parsers imple-
mented in Java, we used the Oracle 1.6.0 26 Vir-
tual Machine.

4.1 Exhaustive Serial Search

In Table 1, we present exhaustive search results
with four grammars, each induced from the Penn
Treebank Sections 2-21 (Marcus et al., 1999).
The Markov-order-0 and Markov-order-2 gram-
mars were markovized as described in Manning
and Schuetze (1999). The parent-annotated gram-
mar further splits the states of the Markov-order-2
grammar by annotating each non-terminal with its
parent category, as described in Johnson (1998).
This expands the vocabulary greatly, but the rule-

7By default, the Berkeley parser marginalizes over the
latent-variables in the grammar and retrieves the Max-Rule
parse tree; for fair comparison with our approach, we report
timings in its simpler Viterbi-search mode.

set somewhat less so. The Berkeley grammar
(Petrov et al., 2006) is a high-accuracy unlexical-
ized grammar, learned by iteratively splitting and
merging non-terminals. Its vocabulary is relatively
small (particularly in comparison with the parent-
annotated grammar), but the ruleset is quite large.
All grammars examined are right-factored, so we
evaluate Algorithm 3, per the trials in Song et al.
(2008).

Johnson’s C implementation outperforms the
default BUBS exhaustive implementations, pri-
marily (we believe) due to BUBS use of memory-
inefficient Java objects. Our matrix grammar en-
coding and SpMV grammar intersection algorithm
perform very well in comparison to both base-
line systems; for the Markov-order-2 and Parent-
annotated grammars, which have large vocabular-
ies and relatively small rulesets, our approach per-
forms similarly to Johnson’s C implementation.
For the grammars with large rulesets relative to
their vocabularies (Markov-order-0 and Berkeley),
our approach provides a dramatic speedup — over
9× vs. our fastest baseline using the Berkeley
grammar. Other experiments not reported here in-
dicate that the grammar representation accounts
for the majority of this speedup, with the grammar
intersection method accounting for an additional
improvement of approximately 35%. We antic-
ipate that potential users will primarily be inter-
ested in high-accuracy grammars, particularly for
non-exact inference, so we focus all other empiri-
cal trials on the Berkeley grammar.

4.2 Pruned Serial Search

Most state-of-the-art context-free parsers resort to
approximate inference techniques to decode ef-
ficiently. These methods include Coarse-to-Fine
(Petrov et al., 2006), A* (Klein and Manning,
2003; Pauls et al., 2010), best-first (Caraballo
and Charniak, 1998; Charniak, 2000), and beam
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F-score Sent/sec
Charniak (2000) 90.3 1.7
Berkeley (CTF Viterbi) 89.3 4.7
Adaptive Beam w/Alg. 3 89.0 10.2
Adaptive Beam w/Alg. 4 89.1 21.9

Table 2: Pruned parse times over WSJ Section 22 (av-
erage sentences/sec, higher is better).

Sentences / Sec

F
−

S
c
o
re

87.5

88.0

88.5

89.0

89.5

90.0

l

l

l

l

l

l

ll
l

ll

lll

5 10 15 20 25

l Charniak

Adaptive Beam Search

Adaptive Beam with SpMV (this paper)

Figure 3: Comparison of F-score vs. speed over a
variety of pruning parameterizations for adaptive cell
pruning and for our algorithm.

search (Collins, 1999). These methods reduce
the search space greatly, allowing effective search
in reasonable time, although only A* guarantees
finding the globally optimal solution. We take as
our primary baseline, the ‘Adaptive Beam Search’
system implemented in BUBS. This technique
predicts the appropriate population of each cell in-
dividually, allowing heavier pruning in areas of the
chart in which the model predicts less ambiguity.
When the lexical context is sufficient to disam-
biguate constituent structure, it prunes entire cells,
and thus generalizes Roark and Hollingshead’s
linear-time chart constraint algorithm (2009). Our
grammar intersection method works well with
Adaptive Beam Search. Table 2 shows a speedup
of over 2× vs. the baseline implementation, and
an even greater advantage vs. other competitive
parsers. The Charniak and Adaptive Beam prun-
ing systems both have tunable parameters, control-
ling their accuracy vs. efficiency operating point.
Figure 3 shows empirical results over a range of
those tuning parameters for those two implemen-
tations and for our approach. For a given param-

eterization, the search space explored by our ap-
proach is identical to that explored by Bodenstab
et al., (modulo minor differences in unary pro-
cessing), so the efficiencies achieved are directly
comparable. We find consistently improved speed
across all pruning thresholds.

4.3 Exhaustive Parallel Search

We now move to evaluating parallelization meth-
ods. Our baseline parsers could be parallelized
at a sentence-level, and possibly at a cell-level,
but having already established dramatic gains vs.
those approaches for serial parsing, we will fo-
cus all these trials on our own SpMV algorithm —
thus, the sentence-level results reported serve as
a ‘baseline’ of sorts, albeit one already demon-
strated to be a dramatic improvement on stan-
dard baselines. We parallelize the SpMV imple-
mentation using the three parallelization strategies
discussed in Section 2.3., and compare through-
put and latency. To explore potential additive
effects, we include a system combining cell-
level and grammar-level parallelism, using several
grammar-level threads for each cell-level thread,
over the same range of total thread count. Note
that some serial processing is required for each
sentence (primarily initialization of the chart and
extraction of the final parse tree), but these opera-
tions consume only 1.5% of the total time.

Executed with a single thread, the cell-level and
grammar-level parallel implementations incur an
overhead of less than 1%, which compares very fa-
vorably with the 500–900% overhead in Ninomiya
et al. (1997). Figure 4 shows throughput and la-
tency of each parallelization approach as thread
count increases. All approaches show improved
throughput with increased thread-count. Cell-
level and grammar-level approaches begin to level
off around 12 threads, when all physical cores are
occupied; combining the two appears to benefit
further from Hyper-threading, achieving through-
put superior to sentence-level threading.

In Figure 4b, we see two interesting effects re-
garding latency: 1) We expected the sentence-
parallel approach to produce fairly constant la-
tency, but instead found that latency jumped con-
siderably after only 4 threads; 2) Row-level and
grammar-level approaches show large decreases in
latency as thread count is increased, and the com-
bination again shows additive gains — an overall
reduction in latency of approximately 9× and an
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Figure 4: Exhaustive SpMV search throughput and latency vs. thread-count.

improvement of nearly 40% vs. cell-level thread-
ing alone.

While an improvement of 9× is quite impres-
sive, we anticipate that further gains might be pos-
sible. We found that both cell-level and grammar-
level methods often leave numerous threads idle,
and CPU monitoring rarely shows all cores be-
ing occupied. Our observations lead us to believe
that much of the ‘lost’ processor time is going to
the task handling and inter-thread communication,
and we are optimistic that hardware threading will
extend the gains observed for these methods.

4.4 Pruned Parallel Search

Figure 5 presents similar trials for pruned parallel
search (once again, all trials use our grammar in-
tersection method). In this case, we find that the
cell-level and combined approaches perform quite
strongly — nearly optimally, in fact. In contrast
to the relatively small serial portions of exhaustive
search, pruned search requires some fairly expen-
sive serial operations. The adaptive cell pruning
initialization is quite costly, consuming over 35%
of the total time (c.f. Bodenstab et al., 2011). In
total, the serial steps account for approximately
45% of the time, so the observed 44% increase
in throughput and reduction in latency, although
much smaller than that of sentence-level thread-
ing, is nearly optimal. We anticipate that paral-
lelizing the pruning initialization should further
improve throughput and latency.

For grammar-level parallelism in Figure 5b,

however, we find a somewhat counterintuitive re-
sult: increasing the thread-count increases latency.
This is due to the characteristics of the grammar
and the severity of pruning during inference. The
Berkeley grammar has a small non-terminal set
(|V | = 1134), but a large ruleset (|Pb| = 1.7
million). When performing exhaustive search,
many cells are densely populated (average cell
population is 450 of 1134). When performing
pruned search, the cell populations are naturally
much sparser (at most 30 entries, and often fewer).
Thus, the grammar-level parallel tasks are much
smaller. Task management overhead grows in im-
portance as the task size shrinks, and quickly over-
whelms the potential gains of additional execution
threads. As already mentioned, hardware thread-
management is likely to ameliorate this problem.

5 Discussion and Future Work

We have presented a novel matrix grammar encod-
ing which has several beneficial properties. Ac-
cess to grammar rules encoded in this manner is
very cache-efficient, and it enables cell population
using a Sparse Matrix× Vector grammar intersec-
tion. As a well-understood matrix operation, this
reduction allows very fine-grained parallelism.

We demonstrated dramatic speedups on exhaus-
tive serial parsing, and a large benefit vs. strong
baselines in pruned inference. We found that
the efficiency of fine-grained parallel parsing is
limited by the thread management overhead, but
nevertheless found considerable improvements in
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Figure 5: Pruned search throughput and latency vs. thread-count.

throughput and latency, which may be of interest
to end-user applications and others with response-
time constraints.

This work is available in the open-source BUBS
parser for further research or practical application.
In future work, we plan to extend our approach
to more parallel architectures, including graphics
processing units. We also plan to parallelize the
adaptive beam width pruning, and we want to ex-
plore the SpMV optimizations discussed in Sec-
tion 3.3.

Acknowledgments

This research was supported in part by NSF Grant
#IIS-0811745. Any opinions, findings, conclu-
sions or recommendations expressed in this pub-
lication are those of the authors and do not neces-
sarily reflect the views of the NSF.

References

Brian Amedro, Denis Caromel, Fabrice Huet,
Vladimir Bodnartchouk, Christian Delb, and
Guillermo L. Taboada. 2010. HPC in
java: experiences in implementing the NAS
parallel benchmarks. In Proceedings of the
10th WSEAS international conference on ap-
plied informatics and communications and 3rd
WSEAS international conference on Biomedical
electronics and biomedical informatics, page
221230.

Michele Banko. 1999. Open Information Extrac-
tion for the Web. PhD dissertation, University
of Washington, Seattle, Washington.

Nathan Bell and Michael Garland. 2009. Imple-
menting sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings
of the Conference on High Performance Com-
puting Networking, Storage and Analysis, pages
1–11, Portland, Oregon. ACM.

Jari Bjrne, Filip Ginter, Sampo Pyysalo, Jun’ichi
Tsujii, and Tapio Salakoski. 2010. Complex
event extraction at PubMed scale. Bioinformat-
ics, 26(12):382–390, June.

Nathan Bodenstab and Aaron Dunlop. 2011.
BUBS parser. http://code.google.com/p/bubs-
parser/.

Nathan Bodenstab, Aaron Dunlop, Brian Roark,
and Keith Hall. 2011. Beam-Width prediction
for efficient Context-Free parsing. In Proceed-
ings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 440–
449, Portland, Oregon, June.

Sharon A Caraballo and Eugene Charniak. 1998.
New figures of merit for best-first probabilis-
tic chart parsing. Computational Linguistics,
24:275298, June.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st North

172



American chapter of the Association for Com-
putational Linguistics conference, pages 132–
139, Seattle, Washington. Morgan Kaufmann
Publishers Inc.

Cliff Click, Gil Tene, and Michael Wolf. 2005.
The pauseless GC algorithm. Proceedings of
the 1st ACM/USENIX international conference
on Virtual execution environments, page 4656.

Clifford N. Click, Christopher A. Vick, and
Michael H. Paleczny. 2007. System and
method for range check elimination via itera-
tion splitting in a dynamic compiler, May. US
Patent 7,222,337.

Michael Collins. 1999. Head-Driven Statistical
Models for Natural Language Parsing. PhD
dissertation, University of Pennsylvania.

Jonathan Samuel Golan. 1999. Semirings and
their Applications. Springer, July.

Georgios Goumas, Kornilios Kourtis, Nikos
Anastopoulos, Vasileios Karakasis, and Nectar-
ios Koziris. 2008. Understanding the perfor-
mance of sparse matrix-vector multiplication.
In PDP08: Proceedings of the 16th Euromi-
cro International Conference on Parallel, Dis-
tributed and Network-based Processing.

Susan L. Graham, Michael Harrison Ruzzo, and
Walter L. 1980. An improved Context-Free
recognizer. ACM Trans. Program. Lang. Syst.,
2(3):415–462.

Mark Johnson. 1998. PCFG models of lin-
guistic tree representations. Comput. Linguist.,
24(4):613–632.

Mark Johnson. 2006. lncky.
http://www.cog.brown.edu/˜mj/Software.htm.

Dan Klein and Christopher D. Manning. 2001.
Parsing with treebank grammars: Empirical
bounds, theoretical models, and the structure
of the penn treebank. In Proceedings of 39th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 338–345, Toulouse,
France, July.

Dan Klein and Christopher D. Manning. 2003.
A* parsing. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics on Hu-

man Language Technology (NAACL ’03), pages
40–47, Edmonton, Canada.

Thomas Kotzmann, Christian Wimmer, Hanspeter
Mssenbck, Thomas Rodriguez, Kenneth Rus-
sell, and David Cox. 2008. Design of the java
HotSpot client compiler for java 6. ACM Trans-
actions on Architecture and Code Optimization
(TACO), 5:7:1–7:32, May.

Werner Kuich and Arto Salomaa. 1985. Semir-
ings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science, Num-
ber 5. Springer-Verlag, Berlin, Germany.

Lillian Lee. 1997. Fast Context-Free parsing re-
quires fast boolean matrix multiplication. In
Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics,
pages 9–15, Madrid, Spain, July. ACL.

Christopher D. Manning and Hinrich Schuetze.
1999. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, June.

Mitchell P Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999.
Treebank-3. Linguistic Data Consortium,
Philadelphia.

Robert C Moore. 2004. Improved left-corner
chart parsing for large context-free grammars.
New developments in parsing technology, page
185201.

Takashi Ninomiya, Kentaro Torisawa, Taura Kin-
jiro, and Tsujii Jun’ichi. 1997. A parallel CKY
parsing algorithm on Large-Scale Distributed-
Memory parallel machines. In PACLING ’97,
pages 223–231, Tokyo, Japan.

Michael Paleczny, Christopher Vick, and Cliff
Click. 2001. The java hotspot server com-
piler. Proceedings of the 2001 Symposium on
Java Virtual Machine Research and Technology
Symposium, pages 1–12.

Adam Pauls, Dan Klein, and Chris Quirk. 2010.
Top-down k-best a* parsing. In Proceedings of
ACL 2010, page 200204, Morristown, NJ, USA.

Gerald Penn and Cosmin Munteanu. 2003. A
tabulation-based parsing method that reduces
copying. In Proceedings of ACL ’03, pages
200–207, Sapporo, Japan.

173



Slav Petrov, Leon Barrett, Romain Thibaux, and
Dan Klein. 2006. Learning accurate, compact,
and interpretable tree annotation. In Proceed-
ings of the 21st International Conference on
Computational Linguistics and the 44th annual
meeting of the Association for Computational
Linguistics, pages 433–440, Sydney, Australia.
ACL.

Brian Roark and Kristy Hollingshead. 2009. Lin-
ear complexity Context-Free parsing pipelines
via chart constraints. In Proceedings of Hu-
man Language Technologies: The 2009 Annual
Conference of the North American Chapter of
the Association for Computational Linguistics,
pages 647–655, Boulder, Colorado, June. ACL.

Brian Roark, Richard Sproat, and Izhak Shafran.
2011. Lexicographic semirings for exact au-
tomata encoding of sequence models. In Pro-
ceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics, Port-
land, Oregon, June. ACL.

Xinying Song, Shilin Ding, and Chin-Yew Lin.
2008. Better binarization for the CKY parsing.
In Proceedings of the 2008 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 167–176, Honolulu, Hawaii, Octo-
ber. ACL.

Robert Endre Tarjan and Andrew Chi-Chih Yao.
1979. Storing a sparse table. Commun. ACM,
22(11):606–611.

Gil Tene, Jack H. Choquette, Scott Sellers, and
Clifford N. Click. 2009. Array access, August.
US Patent 7,577,801.

Reginald P. Tewarson. 1973. Sparse Matrices.
Mathematics in Science and Engineering Vol-
ume 99. Academic Press, April.

Leslie G. Valiant. 1975. General context-free
recognition in less than cubic time. Journal of
Computer and System Sciences, 10(2):308–314,
April.

Samuel Williams, Leonid Oliker, Richard Vuduc,
John Shalf, Katherine Yelick, and James Dem-
mel. 2009. Optimization of sparse matrix-
vector multiplication on emerging multicore
platforms. Parallel Computing, 35(3):178–194,
March.

Thomas Wrthinger, Christian Wimmer, and
Hanspeter Mssenbck. 2007. Array bounds
check elimination for the java HotSpot\ client
compiler. Proceedings of the 5th international
symposium on Principles and practice of pro-
gramming in Java, page 125133.

Yi Youngmin, Lai Chao-Yue, Slav Patrov, and
Kurt Keutzer. 2011. Efficient parallel CKY
parsing on GPUs. In Proceedings of the 12th
International Conference on Parsing Technolo-
gies, Dublin, Ireland, October.

174



Proceedings of the 12th International Conference on Parsing Technologies, pages 175–185,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

Efficient Parallel CKY Parsing on GPUs

Youngmin Yi 1 Chao-Yue Lai2 Slav Petrov3 Kurt Keutzer 4

1University of Seoul
Seoul, Korea

ymyi@uos.ac.kr

2,4University of California, Berkeley
Berkeley, CA, USA

{colbylai,keutzer}
@eecs.berkeley.edu

3Google Research
New York, NY, USA
slav@google.com

Abstract

Low-latency solutions for syntactic parsing
are needed if parsing is to become an inte-
gral part of user-facing natural language ap-
plications. Unfortunately, most state-of-the-
art constituency parsers employ large prob-
abilistic context-free grammars for disam-
biguation, which renders them impractical
for real-time use. Meanwhile, Graphics Pro-
cessor Units (GPUs) have become widely
available, offering the opportunity to alle-
viate this bottleneck by exploiting the fine-
grained data parallelism found in the CKY
algorithm. In this paper, we explore the de-
sign space of parallelizing the dynamic pro-
gramming computations carried out by the
CKY algorithm. We use the Compute Uni-
fied Device Architecture (CUDA) program-
ming model to reimplement a state-of-the-
art parser, and compare its performance on
two recent GPUs with different architectural
features. Our best results show a 26-fold
speedup compared to a sequential C imple-
mentation.

1 Introduction

Syntactic parsing of natural language is the task of
analyzing the grammatical structure of sentences
and predicting their most likely parse trees (see
Figure 1). These parse trees can then be used in
many ways to enable natural language process-
ing applications like machine translation, ques-
tion answering, and information extraction. Most
syntactic constituency parsers employ a weighted
context-free grammar (CFG), that is learned from
a treebank. The CKY dynamic programming algo-
rithm (Cocke and Schwartz, 1970; Kasami, 1965;
Younger, 1967) is then be used to find the most
likely parse tree for a given sentence of lengthn

in O(|G|n3) time. While often ignored, the gram-
mar constant|G| typically dominates the runtime
in practice. This is because grammars with high
accuracy (Collins, 1999; Charniak, 2000; Petrov et
al., 2006) have thousands of nonterminal symbols
and millions of context-free rules, while most sen-
tences have on average only aboutn = 20 words.

Meanwhile, we have entered a manycore com-
puting era, where the number of processing cores
in computer systems doubles every second year,
while the clock frequency has converged some-
where around 3 GHz (Asanovic et al., 2006).
This opens up new opportunities for increasing
the speed of parsers. We present a general ap-
proach for parallelizing the CKY algorithm that
can handle arbitrary context-free grammars (Sec-
tion 2). We make no assumptions about the size of
the grammar and we demonstrate the efficacy of
our approach by implementing a decoder for the
state-of-the-art latent variable grammars of Petrov
et al. (2006) (a.k.a. Berkeley Parser) on a Graphics
Processor Unit (GPU).

We first present an overview of the general ar-
chitecture of GPUs and the efficient synchroniza-
tion provided by the Compute Unified Device Ar-
chitecture (CUDA (Nickolls et al., 2008)) pro-
gramming model (Section 3). We then discuss
how the hundreds of cores available on a GPU
can enable a fine-grained parallel execution of the
CKY algorithm. We explore the design space
with different thread mappings onto the GPU and
discuss how the various synchronization methods
might be applied in this context (Section 4). Key
to our approach is the observation that the compu-
tation needs to be parallelized over grammar rules
rather than chart cells. While this might have been
difficult to do with previous parallel computing
architectures, the CUDA model provides us with
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Figure 1: An example of a parse tree for the sentence
“I love you .”

fine-grained parallelism and synchronization op-
tions that make this possible.

We empirically evaluate the various parallel im-
plementations on two NVIDIA GPUs (GTX480
and GTX285) in Section 5. We observe that some
parallelization options are architecture dependent,
emphasizing that a thorough understanding of the
programming model and the underlying hardware
is needed to achieve good results. Our implemen-
tation on NVIDIA’s GTX480 using CUDA results
in a 26-fold speedup compared to the original se-
quential C implementation. On the GTX285 GPU
we obtain a 14-fold speedup.

Parallelizing natural language parsers has been
studied previously (see Section 6), however, pre-
vious work has focused on scenarios where only
a limited level of coarse-grained parallelism could
be utilized, or the underlying hardware required
unrealistic restrictions on the size of the context-
free grammar. To the best of our knowledge, this
is the first GPU-based parallel syntactic parser us-
ing a state-of-the-art grammar.

2 Natural Language Parsing

While we assume a basic familiarity with prob-
abilistic CKY parsing, in this section we briefly
review the CKY dynamic programming algorithm
and the Viterbi algorithm for extracting the highest
scoring path through the dynamic program.

2.1 Context-Free Grammars

In this work we focus our attention on con-
stituency parsing and assume that a weighted CFG
is available to us. In our experiments we will use
a probabilistic latent variable CFG (Petrov et al.,
2006). However, our algorithms can be used with
any weighted CFG, including discriminative ones,
such as the ones in Petrov and Klein (2007a) and

I love 

you .

love 

you .

you .

you
I

I love

I love 

you 

(0,1)

(0,2)

(0,3)

(0,4)

(1,4)

(2,4)

(2,3)(1,2)

love

love 

you 

(1,3)

.

0 1 2 3 4

(3,4)

Execution order

Figure 2: The chart that visualizes the bottom-up pro-
cess of CKY parsing for the sentence “I love you .”

Finkel et al. (2008).1 The grammars in our experi-
ments have on the order of thousands of nontermi-
nals and millions of productions.

Figure 1(a) shows a constituency parse tree.
Leaf nodes in the parse tree, also called termi-
nal nodes, correspond to words in the language.
Preterminals correspond to part-of-speech tags,
while the other nonterminals correspond to phrasal
categories. For ease of exposition, we will say that
terminal productions are part of a lexicon. For ex-
ample, (L1) in Figure 1(b) is a lexical rule provid-
ing a score (of−0.23) for mapping the word ”I” to
the symbol “PRP.” We assume that the grammar
has been binarized and contains onlyunary and
binary productions. We refer to the application of
grammar rules asunary/binary relaxations.

2.2 Sequential CKY Parsing

The CKY algorithm is an exhaustive bottom-
up algorithm that uses dynamic programming
to incrementally build up larger tree structures.
To keep track of the scores of these structures,
a chart indexed by the start and end positions
and the symbol under consideration is used:
scores[start][end][symbol] (see also Figure 2).
After initializing the preterminal level of the chart
with the part-of-speech scores from the lexicon,
the algorithm continues by repeatedly applying all
binary and unary rules in order to build up larger
spans (pseudocode is given in Figure 3). To recon-
struct the highest scoring parse tree we perform a
top-down search. We found this to be more effi-
cient than keeping backpointers.2

One should also note that many real-world ap-
plications benefit from, or even expectn-best lists
of possible parse trees. Using the lazy evaluation
algorithm of Huang and Chiang (2005) the extrac-

1For feature-rich discriminative models a trivially paral-
lelizable pass can be used to pre-compute the rule-potentials.

2This observation is due to Dan Klein,p.c.
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Algorithm: parse(sen, lex, gr)
Input: sen /* the input sentence */

lex /* the lexicon */
gr /* the grammar */

Output: tree /* the most probable parse tree */

1 scores[][][] = initScores();
2 nWords = readSentence(sen);
3 lexiconScores(scores, sen, nWords, lex);
4 for length = 2 to nWords

5 binaryRelax(scores, nWords, length, gr);
6 unaryRelax(scores, nWords, length, gr);
7 tree = backtrackBestParseTree(scores);
8 return tree;

Figure 3: Pseudocode for CKY parsing.

tion of ann-best list can be done with very little
overhead after running a slightly modified version
of the CKY algorithm. Our parallel CKY algo-
rithm could still be used in that scenario.

3 GPUs and CUDA

Graphics Processor Units (GPUs) were origi-
nally designed for processing graphics applica-
tions, where millions of operations can be exe-
cuted in parallel. In order to increase the efficiency
by exploiting this parallelism, typical GPUs (Lind-
holm et al., 2008) have hundreds of processing
cores. For example, the NVIDIA GTX480 GPU
has 480 processing cores calledstream proces-
sors(SP). The processing cores are organized hi-
erarchically as shown in Figure 5: A group of
SPs makes up astreaming multiprocessor(SM). A
number of SMs form a single graphics device. The
GTX480, for example, contains 15 SMs, with 32
SPs in each SM, resulting in the total of 480 SPs.
Despite this high number of processors, it should
be emphasized that simply using a GPU, without
understanding the programming model and the un-
derlying hardware architecture, does not guarantee
high performance.

3.1 Compute Unified Device Architecture

Recently, Nickolls et al. (2008) introduced the
Compute Unified Device Architecture (CUDA). It
allows programmers to utilize GPUs to acceler-
ate applications in domains other than graphics.
CUDA is essentially the programming language
C with extensions for thread execution and GPU-
specific memory access and control. A CUDA
threadis executed on an SP and a group of threads
(called a thread block) is executed on an SM.
CUDA enables the acceleration of a wide range

Algorithm: binaryRelax(scores, nWords, length, gr)
Input: scores /* the 3-dimensional scores */

nWords /* the number of total words */
length /* the current span */
gr /* the grammar */

Output: None

1 for start = 0 to nWords− length

2 end = start + length;
3 foreachsymbol ∈ gr

4 max = FLOAT MIN;
5 foreach ruler per symbol // defined by gr
6 // r is "symbol ⇒ l sym r sym"
7 for split = start + 1 to end− 1
8 // calculate score
9 lscore = scores[start][split][ l sym];
10 rscore = scores[split][end][r sym];
11 score = rule score + lscore + rscore;
12 // maximum reduction
13 if score > max

14 max = score;
15 scores[start][end][symbol] = max;

Figure 4: Binary relaxations in CKY parsing.

of applications in various domains by executing
a number of threads and thread blocks in paral-
lel, which are specified by the programmer. Its
popularity has grown rapidly because it provides a
convenient API for parallel programming. In or-
der to better utilize the massive parallelism in the
GPU, it is typical to have hundreds of threads in a
thread block and have hundreds or even thousands
of thread blocks launched for a singlekernel: a
data-parallel function that is executed by a num-
ber of threads on the GPU.

3.2 Single Instruction Multiple Threads

One of the most important features of the GPU ar-
chitecture is commonly known as Single Instruc-
tion Multiple Threads (SIMT). SIMT means that
threads are executed in bundles (calledwarps),
to amortize the implementation cost for a large
number of processing cores. In typical GPUs, a
warp consists of 32 threads that share the units
for instruction fetching and execution. Thus, a
thread cannot advance to the next instruction if
other threads in the same warp have not yet com-
pleted their own execution. On the other hand,
threads in different warps are truly independent:
they can be scheduled and executed in any or-
der. Inside a warp, if some threads follow differ-
ent execution paths than others, the execution of
the threads with different paths is serialized. This
can happen for example in if-then-else structures
and loop constructs where the branch condition is
based on thread indices. This is called adivergent
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branchand should be avoided as much as possi-
ble when designing parallel algorithms and map-
ping applications onto a GPU. In the programming
model of CUDA, one or more warps are implic-
itly grouped into thread blocks. Different thread
blocks are mapped to SMs and can be executed
independently of one another.

3.3 Shared Memory

Generally speaking, manycore architectures (like
GPUs) have more ALUs in place of on-chip
caches, making arithmetic operations relatively
cheaper and global memory accesses relatively
more expensive. Thus, to achieve good perfor-
mance, it is important to increase the ratio of Com-
pute to Global Memory Access (CGMA) (Kirk
and Hwu, 2010), which can be done in part by
cleverly utilizing the different types of shared on-
chip memory in each SM.

Threads in a thread block are mapped onto the
same SM and can cooperate with one another
by sharing data through the on-chipshared mem-
ory of the SM (shown in Figure 5). This shared
memory has two orders of magnitude less latency
than the off-chipglobal memory, but is very small
(16KB to 64KB, depending on the architecture).
CUDA therefore provides the programmer with
the flexibility (and burden) to explicitly manage
shared memory (i.e., loading a value from global
memory and storing it).

Additionally, GPUs also have so calledtexture
memoryand constant memory. Texture memory
can be written only from the host CPU, but pro-
vides caching and is shared across different SMs.
Hence it is often used for storing frequently ac-
cessed read-only data. Constant memory is very
small and as its name suggests is only appropriate
for storing constants used across thread blocks.

3.4 Synchronization

CUDA provides a set of APIs for thread synchro-
nization. When threads perform a reduction, or
need to access a single variable in a mutually ex-
clusive way,atomic operationsare used. Atomic
operation APIs take as arguments the memory lo-
cation (i.e., pointer of the variable to be reduced)
and the value. However, atomic operations on
global memory can be very costly, as they need
to serialize a potentially large number of threads
in the kernel. To reduce this overhead, one usu-
ally applies atomic operations first to variables de-
clared in the shared memory of each thread block.
After these reductions have completed another set
of atomic operations is done.

In addition, CUDA provides an API
( syncthreads()) to realize a barrier synchro-
nization between threads in the same thread block.
This API forces each thread to wait until all
threads in the block have reached the calling line.
Note that there is no API for the barrier synchro-
nization between all threads in a kernel. Since a
return from a kernel accomplishes a global barrier
synchronization, one can use separate kernels
when a global barrier synchronization is needed.

4 Parallel CKY Parsing on GPUs

The dynamic programming loops of the CKY
algorithm provide various types of parallelism.
While the loop in Figure 3 cannot be parallelized
due to dependencies between iterations, all four
loops in Figure 4 could in principle be parallelized.
In this section, we discuss the different design
choices and strategies for parallelizing the binary
relaxation step that accounts for the bulk of the
overall execution time of the CKY algorithm.

4.1 Thread Mapping

The essential step in designing applications on a
parallel platform is to determine which execution
entity in the parallel algorithm should be mapped
to the underlying parallel hardware thread in the
platform. For a CKY parser with millions of gram-
mar rules and thousands of symbols, one can map
either rules or symbols to threads. At first sight
it might appear that mapping chart cells or sym-
bols to threads is a natural choice, as it is equiva-
lent to executing the first loop in Figure 4 in par-
allel. However, if we map a symbol to a thread,
then it not only fails to provide enough parallelism
to fully utilize the massive number of threads in
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Algorithm: threadBasedRuleBR(scores, nWords, length, gr)
Input: scores /* the 3-dimensional scores */

nWords /* the number of total words */
length /* the current span */
gr /* the grammar */

Output: None

1 for start = 0 to nWords− length in parallel
2 end = start + length;
3 foreach ruler ∈ gr in parallel
4 shared int sh max[NUM SYMBOL] =

FLOAT MIN;
5 // r is "symbol ⇒ l sym r sym"
6 for split = start + 1 to end− 1
7 // calculate score
8 lscore = scores[start][split][ l sym];
9 rscore = scores[split][end][r sym];
10 score = rule score + lscore + rscore;
11 // local maximum reduction
12 if score > local max

13 local max = score;
14 atomicMax(&sh max[symbol], local max);
15 // global maximum reduction
16 foreachsymbol ∈ gr in parallel
17 atomicMax(&scores[start][end][symbol],

sh max[symbol]);

Figure 6: Thread-based parallel CKY parsing.

GPUs,3 but it can also suffer from load imbal-
ance due to the fact that each symbol has a varying
number of rules associated with it. Since threads
in the same warp execute in SIMT fashion, this
load imbalance among threads results in divergent
branches, degrading the performance significantly.
It is therefore advantageous to map rules rather
than symbols to threads.

4.1.1 Thread-Based Mapping

If we map rules to threads, the nested loops in line
3 and line 5 of Figure 4 become one flat loop that
iterates over all rules in the grammar and the loop
can be executed in parallel as shown in line 3 of
Figure 6. Since the grammar we use has about one
million rules, this mapping provides sufficient par-
allelism to fully utilize the GPU, without running
into load imbalance issues. We call this mapping
thread-based mapping.

Unfortunately, thread-based mapping has a ma-
jor drawback. Since each rule is mapped to a dif-
ferent thread, threads for rules with the same par-
ent symbol need to be synchronized in order to
avoid write conflicts. In this mapping, the syn-
chronization can be done only through atomic op-
erations (shown in line 14 and line 17 of Figure 6),
which can be costly.

3#threads/warp × max(#warps)/SM × #SM =
32× 48× 15 = 23,040 threads in the GTX480.

Algorithm: blockBasedRuleBR(scores, nWords, length, gr)
Input: scores /* the 3-dimensional scores */

nWords /* the number of total words */
length /* the current span */
gr /* the grammar */

Output: None

1 for start = 0 to nWords− length in parallel
2 end = start + length;
3 foreachsymbol ∈ gr in parallel
4 shared int sh max = FLOAT MIN;
5 foreach ruler per symbol in parallel
6 // r is "symbol ⇒ l sym r sym"
7 for split = start + 1 to end− 1
8 // calculate score
9 lscore = scores[start][split][ l sym];
10 rscore = scores[split][end][r sym];
11 score = rule score + lscore + rscore;
12 // local maximum reduction
13 if score > local max

14 local max = score;
15 atomicMax(&sh max, local max);
16 // global maximum reduction
17 foreachsymbol ∈ gr in parallel
18 atomicMax(&scores[start][end][symbol], sh max);

Figure 7: Block-based parallel CKY parsing.

4.1.2 Block-Based Mapping

Another mapping can be obtained by exploiting
the two levels of granularity in the GPU archi-
tecture: threads and thread blocks. We can map
each symbol to a thread block, and the rules as-
sociated with each symbol to threads in the re-
spective thread block. This mapping creates a bal-
anced load because an SM can execute any avail-
able thread block independently of other thread
blocks, instead of waiting for other SMs to com-
plete. For example, when the first SM completes
the computation of a thread block (because the as-
sociated symbol has few rules), it can proceed to
the next available thread block (which corresponds
to another symbol). This corresponds to mapping
each iteration of the loop in line 3 of Figure 4 to
thread blocks and the loop in line 5 to threads. We
call this mappingblock-based mappingand pro-
vide pseudocode in Figure 7. The main advantage
of this mapping is that it allows synchronization
without using costly atomic operations.

Another advantage of the block-based mapping
is that we can quickly skip over certain symbols.
For example, the preterminal symbols (i.e. part-
of-speech tags), can only cover spans of length 1
(i.e. single words). In block-based mapping, only
one thread needs to check and determine if a sym-
bol is a preterminal and can be skipped. In con-
trast, in thread-based mapping, every thread in the
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Figure 8: Creating virtual symbols whenever a symbol
has too many rules.

thread block needs to perform the check. Since
this check involves a global memory access, it is
costly. Minimizing the number of global memory
accesses is key to the performance of parallel al-
gorithms on GPUs.

A challenging aspect of the block-based map-
ping comes from the fact that the number of rules
per symbol can exceed the maximum number of
threads per thread block (1,024 or 512 depending
on the GPU architecture). To circumvent this lim-
itation, we introduce virtual symbols, which host
different partitions of the original rules, as shown
in Figure 8. Introducing virtual symbols does not
increase the complexity of the algorithm, because
virtual symbols only exist until we perform the
maximum reductions, at which point they are con-
verted to the original symbols.

4.2 Span-Level Parallelism

Another level of parallelism, which is orthogonal
to the previously discussed mappings, is present
in the first loop in Figure 4. Spans in the same
level in the chart (see Figure 2), are independent
of each other and can hence be executed in par-
allel by mapping them to thread blocks (line 1 of
Figure 6 and Figure 7). Since CUDA provides up
to three-dimensional(x, y, z) indexing of thread
blocks, this can be easily accomplished: we create
two-dimensional grids whose X axis corresponds
to symbols in block-based mapping or simply a
group of rules in thread-based mapping, and the Y
axis corresponds to the spans.

4.3 Thread Synchronization

Thread synchronization is needed to correctly
compute the maximum scores in parallel. Syn-
chronization can be achieved by atomic operations
or by parallel reductions usingsyncthreads()as
explained in Section 3. The most viable synchro-

> > > >

> >

>

step 1

step 2

step 3

Figure 9: Parallel reduction on shared memory between
threads in the same thread block with 8 threads.

nization method will of course vary depending on
the mapping we choose. In practice, only atomic
operations are an option in thread-based mapping,
since we would otherwise need as many execu-
tions of parallel reductions, as the number of dif-
ferent parent symbols in each thread block. In
block-based mapping, on the other hand, both par-
allel reductions and atomic operations can be ap-
plied.

4.3.1 Atomic Operations

In thread-based mapping, to correctly update the
score, each thread needs to call the atomic API
max operation with a pointer to the desired write
location. However, this operation can be very slow
(as we will confirm in Section 5), so that we in-
stead perform a first reduction by calling the API
with a pointer to the shared variable (as shown
in line 14 of Figure 6), and then perform a sec-
ond reduction with a pointer to thescoresarray
(as shown in line 17 of Figure 6). When we
call atomic operations on shared memory, shared
variables need to be declared for all symbols.
This is necessary because in thread-based map-
ping threads in the same thread block can have dif-
ferent parent symbols.

In block-based mapping we can also use atomic
operations on shared memory. However, in this
mapping, all threads in a thread block have the
same parent symbol, and therefore only one shared
variable per thread block is needed for the par-
ent symbol (as shown in line 15 of Figure 7).
All the reductions are performed on this single
shared variable. Compared to thread-based map-
ping, block-based mapping requires a fraction of
the shared memory, and costly atomic operations
on global memory are performed only once (as
shown in line 18 of Figure 7).
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4.3.2 Parallel Reductions

Parallel reduction is another option for updating
scores in block-based mapping. Each thread in the
thread block stores its computed score in an array
declared as a shared variable and performs paral-
lel reduction with a binary-tree order as shown in
Figure 9 (from leaves to the root). When there
are N threads in a thread block, the maximum
score in the thread block is obtained afterlog 2N

steps and stored in the first element in the array.
Note that when implementing the parallel reduc-
tion syncthreads()needs to be called at the end of
each step to ensure that every thread can read the
updated value of the previous step. This approach
can potentially be faster than the inherently serial
atomic operations, but it comes with the cost of us-
ing more shared memory (proportional to the num-
ber of participating threads). This synchroniza-
tion method is in practice only applicable to block-
based mapping and cannot be applied to thread-
based mapping since it assumes that all threads
in a thread block perform reductions for the same
parent symbol.

4.4 Reducing Global Memory Accesses

By now it should be clear that increasing CGMA
and reducing global memory access is important
for high GPU performance. We can approximately
calculate the CGMA ratio of our kernel by count-
ing global memory accesses and arithmetic oper-
ations per thread. There are three global memory
accesses for each binary rule: the left child sym-
bol ID, right child symbol ID, and the rule score
itself. Moreover, there are two global memory ac-
cesses for referencing the scores with left child ID
and right child ID in the split-point loop in line 7
of Figure 4. The loop in line 7 iterates up to the
lengthof the span. The number of global memory
accesses is thus2 · length + 3. On the other hand,
there are only two additions in the kernel, resulting
in a very low CGMA. To improve performance,
we need to increase the CGMA ratio by better uti-
lizing the shared memory. Since shared memory
is rather limited, and global memory accesses to
thescoresarray in line 9 and 10 of Figure 4 spread
over a wide range of memory locations, it is im-
possible to simply transform those global memory
accesses into shared memory accesses. Instead,
we need to modify the access pattern of the kernel
code to meet this constraint.

If we look into the access pattern (ignoring the
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for split = start + 1 to end− 1
lscore = scores[start][split][ l sym];
rscore = scores[split][end][r sym];
score = rule score + lscore + rscore;

for k = 1 to len− 1
lscore = sh scores L[k][unique l sym];
rscore = sh scores R[k][unique r sym];
score = rule score + lscore + rscore;

Figure 10: (a) Chart example illustrating the access pat-
terns of thescoresarray: the shaded cells are the loca-
tions that the threads withstart = 1, end= 4 accesses.
(b) Better memory access patterns with the new arrays

symboldimension of thescoresarray), we can see
that the accesses actually occur only in restricted
locations that can be easily enumerated. For exam-
ple, the accesses are restricted within the shaded
cells in Figure 10(a) when the current cell is (1, 4).
We can thus introduce two arrays (sh scoresL and
sh scoresR) that keep track of the scores of the
children in the shaded cells. These two arrays can
easily fit into shared memory because there are
only about 1000 unique symbols in our grammar
and the sentence lengths are bounded, whereas
the scoresarray can only reside in global mem-
ory. Figure 10(b) shows how the new arrays are
accessed. For each unique left/right child sym-
bol, we need to load the score fromscores to
sh scoresL andsh scoresRonce through a global
memory access. Thus, the number of global mem-
ory access will be reduced when multiple rules
share the same child symbols.

Another way to reduce global memory accesses
is to use texture memory. Recall that texture
memory can be used for caching, but needs to
be initiated from the CPU side and costs over-
head. Moving thescoresarray to texture mem-
ory seems promising since it is frequently read
to obtain the scores of children symbols. How-
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CPU type Core i7 2.80 GHz
System memory 2GB

GPU type GTX285 GTX480
648 MHz 1400 MHz

GPU memory 1GB 1.5GB
#SM 30 15

#SP/SM 8 32
Shared memory/SM 16KB up to 64KB

L1 cache/SM N/A up to 64KB

Table 1: Experimental platforms specifications.

ever, as the array is updated at every iteration
of binary relaxation, we need to update it also
in texture memory by calling a binding API (be-
tween line 4 and 5 in Figure 3). While it can
be costly to bind such a large array every it-
eration, we can reduce this cost by transform-
ing its layout fromscores[start][end][symbol] to
scores[length][start][symbol], where length =
end−start. With the new layout, we only need to
bind the array up to size(length− 1) (rather than
the entire array), significantly reducing the cost of
binding it to texture memory.

5 Experimental Results

We implemented the various versions of the paral-
lel CKY algorithm discussed in the previous sec-
tions in CUDA and measured the runtime on two
different NVIDIA GPUs used in a quad-core desk-
top environment: GTX285 and GTX480. The de-
tailed specifications of the experimental platforms
are listed in Table 1.

The grammar we used is extracted from the pub-
licly available parser of Petrov et al. (2006). It has
1,120 nonterminal symbols including 636 preter-
minal symbols. The grammar has 852,591 binary
rules and 114,419 unary rules. We used the first
1000 sentences from Section 22 of the Wall Street
Journal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993) as our benchmark set. We verified
for each sentence that our parallel implementation
obtains exactly the same parse tree and score as
the sequential implementation. We compare the
execution times of various versions of the parallel
parser in CUDA, varying the mapping, synchro-
nization methods and memory access patterns.

Figure 11 shows the speedup of the different
parallel parsers on the two GPUs:Threadstands
for the thread-based mapping andBlock for the
block-based one. The default parallelizes over
spans, whileSSstands for sequential spans, mean-

ing that the computation on spans is executed se-
quentially. GA stands for global atomic synchro-
nization, SA for shared atomic synchronization,
andPR for the parallel reduction.SH stands for
the transformed access pattern for thescoresarray
in the shared memory.tex:rule stands for load-
ing the rule information from texture memory and
tex:scoresfor loading thescoresarray from tex-
ture memory.tex:bothmeans both thetex:ruleand
tex:scoresare applied.

The exhaustive sequential CKY parser was
written in C and is reasonably optimized, taking
5.5 seconds per sentence (or 5,505 seconds for
the 1000 benchmark sentences). This is compa-
rable to the better implementations presented in
Dunlop et al. (2011). As can be seen in Figure
11, the fastest configuration on the GTX285 is
Block+PR+SS+tex:scores, which shows a 17.4×
speedup against the sequential parser. On the
GTX480, Block+PR is the fastest, showing a
25.8× speedup. Their runtimes were 0.32 sec-
onds/sentence and 0.21 seconds/sentence, respec-
tively. It is noteworthy that the fastest configura-
tion differs for the two devices. We provide an
explanation later in this section.

On both the GTX285 and the GTX480,
Thread+GA shows the worst performance as
global atomic synchronization is very costly.
Thread+GAon the GTX285 is even about 8 times
slower than the sequential CKY parser. Note that
although it is still the slowest one,Thread+GAon
the GTX480 actually shows a 4.5× speedup.

On the GTX285,Thread+SA, Block+SA, and
Block+PRshow 6.4×, 8.1×, and 10.1× speedups,
respectively. Perhaps somewhat surprisingly, par-
allelizing over spans actually hurts performance.
By not serializing the computations for spans, we
can get speedups of 13% forThread+SA+SSover
Thread+SAand about 40% forBlock+SA+SSand
Block+PR+SSover their parallel spans versions.
In thread-based mapping, the atomic operations
on shared memory are the bottleneck, so that se-
quential processing of spans makes only a small
difference. On the other hand, inBlock+SAand
Block+PR on the GTX285, the global memory
bandwidth is the major limiting factor since the
same rule is loaded from the global memory re-
dundantly for each span when we parallelize over
spans. Hence, executing spans sequentially re-
moves the redundant global memory loads and
substantially improves the performance.
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Figure 11: Speedups of various versions of parallel CKY parser that have different mappings, synchronization
methods, and different memory access optimizations.

On the GTX285, the transformed access pat-
tern for the scores array along with accesses
to the shared memory (Block+PR+SH) im-
proves the performance by about 10%, show-
ing a 11.1× speedup. Placing thescores ar-
ray in texture memory improves all implemen-
tations. The reduced binding cost due to the
array reorganization results in additional gains
of about 25% forBlock+PR+SS+tex:scoresand
Block+PR+tex:scoresagainstBlock+PR+SSand
Block+PR (for a total speedup of 17.4× and
13.0×, respectively). However, placing the rule
information in texture memory improves the per-
formance little as there are many more accesses to
thescoresarray than to the rule information.

The GTX480 is the Fermi architecture
(NVIDIA, 2009), with many features added to the
GTX285. The number of cores doubled from 240
to 480, but the number of SMs was halved from 30
to 15. The biggest difference is the introduction of
L1 cache as well as the shared memory per SM.
For these reasons, all parallel implementations
are faster on the GTX480 than on the GTX285.
On the GTX480, parallelizing over spans (SS)
does not improve the performance, but actually
degrades it. This is because this GPU has L1
cache and a higher global memory bandwidth, so
that reducing the parallelism actually limits the
performance. Utilizing texture memory or shared
memory for the scores array does not help either.
This is because the GTX480 hardware already
caches the scores array into the L1 cache.

Interestingly, the ranking of the various paral-

lelization configurations in terms of speedup is ar-
chitecture dependent: on the GTX285, the block-
based mapping and sequential span processing are
preferred, and the parallel reduction is preferred
over shared-memory atomic operations. Using
texture memory is also helpful on the GTX285.
On the GTX480, block-based mapping is also pre-
ferred but sequential spans mapping is not. The
parallel reduction is clearly better than shared-
memory atomic operations, and there is no need
for utilizing texture memory on the GTX480. It is
important to understand how the different design
choices affect the performance, since one differ-
ent choices might be necessary for grammars with
different numbers of symbols and rules.

6 Related Work

A substantial body of related work on paralleliz-
ing natural language parsers has accumulated over
the last two decades (van Lohuizen, 1999; Gi-
achin and Rullent, 1989; Pontelli et al., 1998;
Manousopoulou et al., 1997). However, none
of this work is directly comparable to ours, as
GPUs provide much more fine-grained possibil-
ities for parallelization. The parallel parsers in
past work are implemented on multicore systems,
where the limited parallelization possibilities pro-
vided by the systems restrict the speedups that can
be achieved. For example, van Lohuizen (1999)
reports a 1.8× speedup, while Manousopoulou et
al. (1997) claims a 7-8× speedup. In contrast, our
parallel parser is implemented on a manycore sys-
tem with an abundant number of threads and pro-
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cessors to parallelize upon. We exploit the mas-
sive fine-grained parallelism inherent in natural
language parsing and achieve a speedup of more
than an order of magnitude.

Another difference is that previous work has of-
ten focused on parallelizing agenda-based parsers
(van Lohuizen, 1999; Giachin and Rullent, 1989;
Pontelli et al., 1998; Manousopoulou et al., 1997).
Agenda-based parsers maintain a queue of priori-
tized intermediate results and iteratively refine and
combine these until the whole sentence is pro-
cessed. While the agenda-based approach is easy
to implement and can be quite efficient, its po-
tential for parallelization is limited because only
a small number of intermediate results can be han-
dled simultaneously. Chart-based parsing on the
other hand allows us to expose and exploit the
abundant parallelism of the dynamic program.

Bordim et al. (2002) present a CKY parser that
is implemented on a field-programmable gate ar-
ray (FPGA) and report a speedup of up to 750×.
However, this hardware approach suffers from in-
sufficient memory or logic elements and limits the
number of rules in the grammar to 2,048 and the
number of non-terminal symbols. Their approach
thus cannot be applied to real-world, state-of-the-
art grammars.

Ninomiya et al. (1997) propose a parallel CKY
parser on a distributed-memory parallel machine
consisting of 256 nodes, where each node con-
tains a single processor. Using their parallel lan-
guage, they parallelize over cells in the chart, as-
signing each chart cell to each node in the ma-
chine. With a grammar that has about 18,000
rules and 200 nonterminal symbols, they report a
speedup of 4.5× compared to an optimized C++
sequential version. Since the parallel machine has
a distributed-memory system, where the synchro-
nization among the nodes is implemented with
message passing, the synchronization overhead
is significant, preventing them from paralleliz-
ing over rules and nonterminal symbols. As we
saw, parallelizing only over chart cells (i.e., words
or substrings in a sentence) limits the achievable
speedups significantly. Moreover, they suffer from
load imbalance that comes from the different num-
ber of nonteriminal symbols that each node needs
to process in the assigned cell. In contrast, we
parallelize over rules and nonterminal symbols, as
well as cells, and address the load imbalance prob-
lem by introducing virtual symbols (see Figure 8).

It should be noted that there are a also number
of orthogonal approaches for accelerating natural
language parsers. Those approaches often rely
on coarse approximations to the grammar of in-
terest (Goodman, 1997; Charniak and Johnson,
2005; Petrov and Klein, 2007b). These coarse
models are used to constrain and prune the search
space of possible parse trees before applying the
final model of interest. As such, these approaches
can lead to great speed-ups, but introduce search
errors. Our approach in contrast preserves opti-
mality and could in principle be combined with
such multi-pass approaches to yield additional
speed improvements. There are also some opti-
mality preserving approaches based on A∗-search
techniques (Klein and Manning, 2003; Pauls and
Klein, 2009) or grammar refactoring (Dunlop et
al., 2011) that aim to speed up CKY inference. We
suspect that most of the ideas therein are orthogo-
nal to our approach, and therefore leave their inte-
gration into our GPU-based parser for future work.

7 Conclusion

In this paper, we explored the design space for par-
allelizing the CKY algorithm for parsing, which
is widely-used in constituency based natural lan-
guage parsers. We compared various implementa-
tions on two recent NVIDIA GPUs. The fastest
parsers on each GPU are different implementa-
tions, since the GTX480 supports L1 cache while
the GTX285 does not, among other different ar-
chitectural features. Compared to an optimized se-
quential C implementation our parallel implemen-
tation is 26 times faster on the GTX480 and 17
times faster on the GTX285. All our parallel im-
plementations are faster on the GTX480 than on
the GTX285, showing that performance improves
with the addition of more Streaming Processors.
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Abstract

We present a deterministic HPSG parser ca-
pable of processing text incrementally with
very fast parsing times. Our system demon-
strates an efficient data-driven approach that
achieves a high level of precision. Through
a series of experiments in different config-
urations, we evaluate our system and com-
pare it to current state-of-the-art within the
field, and show that high quality determin-
istic parsing is realistic even for a ‘deep’
unification-based precision grammar.

1 Motivation

The traditional chart parsing paradigm for text
parsing has been to process one sentence at a time,
and through some type of dynamic programming
algorithm derive the most probable analysis. For
a formalism like HPSG, even short sentences can
license hundreds of valid (i.e. grammatical) analy-
ses, and at some point a statistical model has to
be employed to reduce and pin down ann-best
candidate list. In order to circumvent a costly ex-
traction of the full parse forest, deterministic in-
cremental parsing has enjoyed an increased inter-
est in the research community. Deterministic pars-
ing can mitigate both the time and space complex-
ity challenges often associated with probabilistic
chart parsing methods. The deterministic incre-
mental approach is attractive both from a compu-
tational and a cognitive standpoint. Whereas tra-
ditional chart parsing approaches require the entire
sentence as input before producing an analysis, an
incremental algorithm will incrementally expand a
syntactic/semantic derivation as it reads the input
sentence one word/token at a time. There are sev-
eral attractive features to this approach. The time-
complexity will be linear when the algorithm is
deterministic, i.e. when it does not allow for later
changes to the partial derivation. For a number of
applications, e.g. speech recognition, the ability to

process input on the fly per word, and not per sen-
tence, can also be vital.

This paper introduces a ‘deep’ incremental de-
terministic HPSG parser, dubbedCuteForce. It
has an optional unification mode, ensuring that all
parse derivations are valid HPSG analyses. Uni-
fication is a costly operation, and for certain ap-
plications it may be a desirable trade-off to gain a
significant speed-up by replacing unification with
less expensive constraint checking.

2 Related Work

While there is a rich research tradition in statistical
parsing, the predominant approach derives from
chart parsing and is inherently non-deterministic.
In the following, we review alternative approaches
to statistical parsing, with a focus on deterministic
and incremental processing.

2.1 Deterministic Parsing

Deterministic parsing aims to derive one single
analysis provided the input string and the gram-
mar. As almost any medium to long sentence car-
ries substantial inherent ambiguity given even a
moderately simple grammar, this would in prac-
tice mean to disambiguate on the fly by making a
sequence of local choices that continuously pursue
the globally optimal derivation.

Dependency Grammar Kudo and Matsumoto
(2002) introduced an efficient deterministic de-
pendency parser for Japanese. Their parser out-
performed previous probabilistic models with re-
spect to accuracy and efficiency. Yamada and Mat-
sumoto (2003) applied a similar method for En-
glish, and received a near state of the art accuracy
compared to other dependency grammar parsers.

The method was further investigated with Malt-
Parser (Nivre et al., 2007; Nivre and Scholz,
2004). MaltParser is a platform for data-driven
dependency parsing, which can induce a parsing
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model from treebank data and parse new input us-
ing a pre-compiled parsing model. The parser is
formalized as a transition-based instantiation of a
shift-reduce parser. It has been applied to a range
of different languages, and Nivre et al. (2007) re-
port that dependency accuracy consistently ranges
from 80 to 90 %, “usually with less than a 5%
increase in error rate compared to state-of-the art
parsers for the language in question.”

CFG Sagae and Lavie (2005) present a de-
terministic CFG parser grounded in the same
classifier-based strategy that was pursued by Malt-
Parser. Given that the search-space of constituent
trees is larger than for dependency trees, the poten-
tial efficiency gain of deterministic parsing could
be higher than for dependency parsing, but the
margin of error would also be larger, given that
a deterministic CFG parse is likely to reach more
decision points, with more alternative paths than
the same sentence would have encountered in de-
pendency parsing. Although they do not reach the
same precision/accuracy as ‘classic’ state-of-the-
art parsers (e.g. Collins (1997), Charniak (2000),
Charniak and Johnson (2005)), “the simplicity and
efficiency of deterministic parsers make them at-
tractive in a number of situations requiring fast,
light-weight parsing, or parsing of large amounts
of data.” (Sagae and Lavie, 2005)

HPSG The increased complexity of unification-
based grammars like HPSG could potentially li-
cense a substantial increase in efficiency by pars-
ing deterministically, but the inherent hard con-
straints of unification-based grammar could cause
a high number of parse failures. Parallel to the
development of the CuteForce parser, Ninomiya
et al. (2010; 2009) provide a deterministic shift-
reduce parser for HPSG where this issue is ad-
dressed. To mitigate the problem of parse failures,
they suggest default unification (Ninomiya et al.,
2002; Copestake, 1993; Carpenter, 1993) by over-
writing inconsistent constraints in the grammar,
outlining a deterministic and a non-deterministic
configuration.

Ninomiya et al. (2010) evaluate their parser
on Enju2.3ß, an HPSG for English, which is ex-
tracted from Section 02-21 of the Penn Treebank
(Miyao and Tsujii, 2005; Miyao et al., 2004).
Their deterministic parser using default unification
reaches a coverage of 95%. They further conclude
that “[t]he experiments revealed that determinis-

tic parsing with default unification achieved a high
degree of accuracy of 87.6 per cent for the Penn
Treebank with gold part-of-speech (POS) tags.”
(Ninomiya et al., 2010)

Further, Matsuzaki et al. (2007) provide a fast,
partially deterministic shift-reduce HPSG parser.
The parser requires a preceding non-deterministic
supertagging and CFG-filtering stage prior to the
unification-based parsing which is done through
a deterministic shift-reduce algorithm, and gives
“comparable accuracy with a speed-up by a factor
of six (30 msec/sentence) compared with the best
published result using the same grammar.” (Mat-
suzaki et al., 2007)

2.2 Traditional Unification-Based Parsing

Whereas the parser proposed by Ninomiya et al.
(2010; 2009) is to our knowledge the only other
effort to deterministically parse HPSG, traditional
chart parsing approaches for unification-based
grammars have been presented in a number of re-
search efforts (e.g. Riezler et al. (2000), Kaplan et
al. (2004), Malouf and van Noord (2004), Miyao
and Tsujii (2005), Toutanova et al. (2005)). Since
unification is a destructive, hence non-reversible
operation, a non-deterministic parsing algorithm
will need to preserve the original feature struc-
ture in order to keep the entire parse forest intact.
Keeping the parse forest intact is crucial when
constructing ann-best list over the most probable
HPSG analyses that is licensed by the grammar,
as the individual parse tree will contain diverg-
ing feature structures. This has been addressed
in several research papers, as this could poten-
tially be a major bottleneck for non-deterministic
HPSG parsing (Callmeier, 2000; Oepen and Car-
roll, 2000; Zhang et al., 2007).

PET HPSG Parser The PET platform was
developed as a tool for experimentation with
HPSG processing and implementation techniques
(Callmeier, 2000). It has further been developed
through subsumption-based packing (Oepen and
Carroll, 2000), selective unpacking and statistical
parse ranking (Zhang et al., 2007). It is main-
tained by DELPH-IN1, which is a cooperation be-
tween academic institutions and researchers work-
ing with deep linguistic processing in HPSG.

The PET HPSG Parser will for each input sen-
tence use a hand-crafted grammar (e.g. LinGO
ERG) to retrieve the candidate analyses that are

1http://www.delph-in.net/
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grounded in the grammar, thus beingwell-formed.
During parsing it attempts to create the full packed
parse forest for each input sentence, and produces
an n-best list based on statistical parse ranking.
Parsing will fail if the full parse forest cannot be
constructed within a preset time limit (normally 60
seconds).

3 LinGO ERG and Redwoods Treebank

There exists a number of different HPSG gram-
mars used for automatic parsing. The parser pre-
sented in this paper uses LinGO (Linguistic Gram-
mars Online) ERG (English Resource Grammar),
which is a broad-coverage, linguistically pre-
cise handcrafted grammar for English (Flickinger,
2000). It is continuously being developed and ex-
panded to increase coverage for new domains.

The Redwoods treebank is a collection of an-
notated corpora from a variety of domains, in-
cluding tourism guides, transcribed scheduling di-
alogs, ecommerce emails and Wikipedia articles
(Oepen et al., 2002). Each analysis in the treebank
is manually disambiguated and assigned an HPSG
analysis in accordance with ERG. Its use in this
project is recorded in Table 1. HPSG signs corre-
sponding to lexical types are developed manually
and assigned in accordance with the lexical cover-
age of the grammar. Each derivation within Red-
woods is grounded in ERG, ensuring that the anal-
yses from each individual treebank are kept con-
sistent with the overall grammar.

WikiWoods WikiWoods is a collection of au-
tomatically annotated Wikipedia articles, in to-
tal 1.3 million articles and 55 million utterances.
WeScience (ws) can be seen as a manually an-
notated subset of WikiWoods (Flickinger et al.,
2010; Ytrestøl et al., 2009). The WikiWoods cor-
pus is parsed with the PET HPSG parser using the
1010 release of ERG, and will contain a propor-
tion of incorrect analyses. In a manual inspec-
tion of 1,000 random utterances, roughly 82 % of
the analyses were deemed correct or nearly correct
(Flickinger et al., 2010).

In this paper we augment the training data with
derivations from WikiWoods, using the deriva-
tions from Section 2000 and onwards. As demon-
strated in this paper, both the supertagger as well
as CuteForce benefits greatly from the augmented
training data.

3.1 Statistics and Example

Table 1 provides an overview of the Redwoods
treebanks which are used in this paper.

Name #Sent ∼Length Usage
ws1-11 7636 14.4 train
ws12 601 15.6 dev
ws13 785 14.1 test
logon 8501 13.3 train
vm 11116 6.8 train
sc 2564 15.1 train

Table 1: The corpora in Redwoods treebank used for
training and testing in this paper.
#Sentrefers to the number of sentences.∼Length
is the average number of tokens per sentence for the
treebank.
ws– WeScience, Wikipedia articles
logon– Tourism guides
vm– Verbmobil corpus, transcribed dialogs
sc– SemCor, subset of English Brown Corpus

Figure 1 presents an HPSG derivation for a
simple sentence. This tree of ERG rules can be
presented as a feature structure, and a semantic
MRS representation can be derived directly from
its structure.

Lexical Rules and Lexical Types The deriva-
tion in Figure 1 is composed of lexical and syn-
tactic rules. Further, each token is assigned a lexi-
cal type, which is conceptually equivalent to a su-
pertag (see Section 4). From the leaves in Figure
1 we see that punctuation is considered a part of
the token, e.g. forRSS-. The lexical types end
with the le suffix. The lexical type for “RSS-”,
n - pn le, provides the HPSG sign template for a
proper noun. The conceptual sign is further aug-
mented by the lexical ERG rules, which end with
*lr . The hyphen in “RSS-” is hence annotated with
w hyphenplr.

For “specialized” the lexical typev np* le de-
notes the lexical category verb (v), with an op-
tional noun phrase subcategorization argument.
v pas odlr denotes a passive verb, andv j-nb-pas-
tr dlr derives an attributive adjective from a tran-
sitive passive verb. Altogether there are 50 lexical
rules in the ERG, and around 1,000 lexical types.

Syntactic Rules Syntactic ERG rules have ac
suffix. The rules can be unary or binary. The root
node in Figure 1,sb-hdmc c, denotes the con-
ventionalhead-subjectmain clause in HPSG, in
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sb-hdmc c

sp-hdn c

d - prt-div le

“some”

aj-hdnnorm c

v j-nb-pas-trdlr

v pasodlr

v np* le

“specialized”

n ms ilr

n - m le

“software”

hd-cmpu c

v vp mdl-p le

“can”

hd-cmpu c

v n3s-bseilr

v np* le

“narrate”

hdn bnp c

np-hdncpd c

hdn bnp-pnc

w hyphenplr

n - pl le

“RSS-”

w period plr

n pl olr

n - mc le

“feeds.”

Figure 1: HPSG derivation from WeScience.

turn connecting ahead+specifier(sp-hdn c) and
a head+complement(hd-cmpu c) phrase in a bi-
nary production. There are in total 145 binary and
55 unary syntactic rules in the ERG.

4 Preprocessing and Supertagging

CuteForce assumes an input buffer consisting of
the tokenized words, part-of-speech tags and lex-
ical types. For tokenization we use the gold stan-
dard ERG tokenization provided by the treebank.
HPSG lexical types are supertags providing a lex-
ical template for the input token (Bangalore and
Joshi, 1999). Currently, there are 1186 lexical
types in the grammar, and these templates can be
seen as an extension to the token, enriching the
word with HPSG lexical information, correspond-
ing to the HPSG sense of a word sign.2 Dri-
dan (2009) showed that supertagging contributes
to both speed-up and increased coverage for the
PET HPSG Parser. Although it would be feasible
to integrate supertagging into the parsing oracle,
assigning supertags incrementally during parsing,
we have opted for a pre-processing stage for per-
formance reasons, a design choice which is paral-
lel to MaltParser.

Dridan (2009) investigated supertagging of lex-
ical types within ERG. The thesis concludes that
the TnT tagger (Brants, 2000) performs better
than C&C Tagger (Clark and Curran, 2007) when

2892 different lexical types are found in the training data.

trained on the limited training data that was avail-
able in 2009. However, the learning curve for
the TnT tagger seemed to flatten out at around
150,000 tokens, whereas the learning curve for
C&C was still rising.

We trained the C&C tagger on the Redwoods
treebank, and augmented it with sentences from
the WikiWoods corpus (see Table 1). The find-
ings in Dridan (2009) suggest that non-gold stan-
dard data may improve the C&C tagger. Addi-
tionally we developed a customized feature model
trained withSV Mhmm, which is an implemen-
tation of structural SVMs for sequence tagging
which learns a hidden Markov model (Joachims et
al., 2009). Whereas the C&C tagger is optimized
for supertagging, and has a relatively fixed config-
uration,SV Mhmm requires that the user designs
features specifically aimed for the classification
task. This allows the user to address certain un-
conventional aspects of ERG supertagging, most
especially the tokenization that includes punctua-
tion. On smaller sets of training data,SV Mhmm

outperformed C&C. However, C&C trains much
faster, and is capable of training on much larger
amounts of data thanSV Mhmm.

Results The best single tag accuracy in Dridan
(2009) refers to Section 2 of WeScience, since
this was released prior to the final release of We-
Science. In Table 2 we present the lexical type ac-
curacies (lt acc.) on WeScience Section 13 for the
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best configurations forSV Mhmm and the C&C
tagger, along with the best single lexical type accu-
racy for WeScience 2 reported in Dridan (2009).#
sentrefers to the number of sentences in the train-
ing data, andcpu hoursis the number of hours it
took to train the model. Although we were able to
train even larger models for the C&C tagger, the
accuracy seemed to flatten out at approximately
6,800,000 tokens on our development set, so we
have applied this model. For the C&C tagger, we
used the default parameter settings.

TnT 3 C&C SV Mhmm

lt acc. 0.864 0.953 0.934
# sent ≈10,000 6,800,000 300,000
cpu hours <0.1 314 480

Table 2: Single tag accuracy on WeScience Section 2
(TnT) and Section 13 (C&C andSV Mhmm).

Consistent with the assumption in Dridan
(2009), augmenting the training data contributes
substantially to the performance of the tagger.
C&C and SV Mhmm (Table 2) are trained on
6,800,000 and 300,000 sentences respectively, ap-
proximately 94 million/4 million tokens. C&C has
a comparatively low accuracy when the amount of
training data is limited. We assume the punctu-
ation regime in ERG works is C&C’s disadvan-
tage when the training data is limited, since it will
result in a large lexicon with comparatively low
frequency per lexical entry. When increasing the
training data, this sparsity problem will have less
impact – it is even plausible that this contributes to
the overall performance of C&C when the amount
of training data is high, because the punctuation
provides enriched information about the token.

Part-of-speech tags are assigned prior to su-
pertagging. POS tags are not part of the final
HPSG derivation, but are used both by the pars-
ing oracle in CuteForce and by the supertagger.
The POS tags used in training and test data are
tagged using the TnT POS tagger, applying the
pre-compiled English WSJ model bundled with
the tagger.

3From the best single tag accuracy reported in Dridan
(2009) on Section 2 ofws. Training time is not stated in Dri-
dan (2009), but in TnT it should only be a matter of minutes
for such a small data set. This model is trained on 1,941 sen-
tences from WeScience, and additional data from the Red-
woods treebank, approximately 10,000 sentences, and We-
Science should hence be considered (mostly) out-of-domain
for this model, compared to the models used in the training
of the C&C andSV M

hmm tagger.

5 CuteForce – Deterministic Incremental
HPSG Parsing

Our parser, CuteForce, employs a classifier-based
oracle to guide the shift-reduce parser that in-
crementally builds a syntactic/semantic HPSG
derivation that conforms to the LinGO English Re-
source Grammar (ERG).

Parser Layout The sentence input bufferβ is a
list of tuples with token, part-of-speech tags and
HPSG lexical types (supertags).

Given a set of ERG rulesR and a sentence
buffer β, a parser configuration is a tuplec =
(α, β, ι, π) where:

• α is a stack of “active” edges4

• β is a list of tuples of word forms
W , part of speech tagsPOS and lexical
types LT derived from a sentencex =
((W1, POS1, LT1), ...(Wn, POSn, LTn)).

• ι is the current input position inβ

• π is a stack of passive edges instantiating an
ERG rule

The stack of passive edgesπ makes up the
full HPSG representation of the input string if the
string is accepted.

Transition System The shift-reduce parser has
four different transitions, two of which are param-
eterized with a unary or binary ERG rule, which
are added to the passive edges, hence building the
HPSG structure. The four transitions are:

• ACTIVE – (adds an active edge to stackα,
and incrementsι)

• UNIT(R1) – (adds unary passive edge toπ

instantiating unary ERG rule(R1))

• PASSIVE(R2) – (pops α and adds binary
passive edge toπ instantiating binary ERG
rule (R2))

• ACCEPT – (terminates the parse of the sen-
tence. π represents the HPSG derivation of
the sentence)

4An “active” edges in our sense is a hypothesis of an ap-
plication of a binary rule where the left daughter is known (an
element ofπ), and the specific binary ERG rule and the right
daughter is yet to be found.
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Parsing Configuration Mode The parser can
operate in three oracle configurations: HPSG Uni-
fication mode, CFG approximation mode and un-
restricted mode.

In HPSG Unification mode, the parser validates
that each transition implies a valid unification.
This is done through an XML-RPC interface to
LKB (Copestake, 2002). We expect that a substan-
tial speedup could be obtained if this implementa-
tion was done natively in CuteForce5. All UNIT
and PASSIVE transitions are implicit unifications.
For each parsing stage, the parsing oracle returns a
ranked list of transitions. The highest-ranked tran-
sition not violating a unification constraint will be
executed. If no transitions yield a valid unifica-
tion, parsing fails for the given sentence. All non-
failing parses (i.e. parses that terminates with the
ACCEPT transition) are ensured to produce a valid
HPSG derivation.

In CFG mode, a naive CFG approximation
of the ERG is employed to guide the oracle.
The CFG approximation consists of CFG rules
harvested from the parser’s training data, aug-
mented with derivations from WikiWoods, in total
300,000 sentences. Each ERG rule instantiation,
using the identifiers shown in Figure 1 as non-
terminal symbols, will be treated as a CFG rule,
and each parser action will be validated against the
set of CFG rules. If the parser action yields a CFG
projection not found among the valid CFG rules in
the CFG approximation, the CFG filter will block
this transition. If the parser arrives at a state where
the CFG filter blocks all further transitions, pars-
ing fails.

In unrestricted mode, the oracle chooses the
highest scoring transition without any further re-
strictions imposed. In this setting, the parser typ-
ically reaches close to 100 % coverage – the only
sentences not covered in this setting are instances
where the parser enters an infinite unit production
loop, and the sentence is dismissed.6

5Specifically, the current unification back-end performs
non-destructive unification, i.e. it does not take advantage of
the deterministic nature of CuteForce.

6One would require additional heuristics to avoid unary
loops in an incremental parsing scheme that allows for such
productions. In Sagae and Lavie (2005) they force a non-
unary production after three consecutive unary transitions in
order to break a potential loop.

5.1 Machine Learning Model

A discriminative machine learning model is used
to predict the parser action. The model is trained
and tested on the WeScience Treebank, a branch
of the hand-annotated LinGO Redwoods treebank
(Ytrestøl et al., 2009; Oepen et al., 2002). Section
1-11 is used for training, Section 12 is used in de-
velopment and Section 13 is held-out for testing.
The training data is further augmented with addi-
tional sentences from other Redwoods treebanks
(see Table 1), and derivations from the automati-
cally annotated Wikiwoods corpus. Parsing results
for CuteForce initially improve when the size of
the training data increases, but the full extent of
the effect of training on partially incorrect training
data is not yet clear. Section 3 provides a more
in-depth presentation of the training data used in
this paper. The parsing is reduced to a classifica-
tion problem. Each HPSG analysis is a derivation
from one unique sequence of parser actionsT =
t1, t2 . . . tn The input histories are feature vectors
representing a parser state, and the output class is
a transitiont. This can be seen as a deterministic
implementation of a History-based model, intro-
duced by Black et al. (1993). Formally, a deriva-
tion D is a sequence of the highest scoring transi-
tionsT :

arg maxti P (ti | Φ(t1, .., ti−1))

The functionΦ maps the current state, orhis-
tory, to a feature vector. The vector is further de-
fined through a set of feature functions, see Sec-
tion 5.2.

For training we use LibLinear (Fan et al., 2008),
which provides a number of solvers. In CuteForce,
we have used the implementation of SVM multi-
class classification of Crammer and Singer’s for-
mula (Vapnik, 1995; Keerthi et al., 2008; Cram-
mer and Singer, 2002), which has given better re-
sults than other learners evaluated during the de-
velopment.

5.2 Feature Model

CuteForce is equipped with a rich feature model
optimized for a large (100,000+) set of training
derivations. In our training data of 150,000 train-
ing derivations, we have approximately 6 million
training instances, where each instance represents
a parser action and is mapped to a feature vector.
We distinguish betweenstatic and dynamicfea-
tures, where the static features are defined prior
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to parsing and only depend on the properties of
the input buffer, whereas the dynamic features are
defined by the HPSG derivation that is partially
built during parsing. Part-of-speech tags and ERG
lexical types (supertags) are annotated in a prepro-
cessing stage.

For the history-based model, we expand the for-
mal parser definition in Section 5 with a position
indexj for α andπ, where 0 denotes the top of the
stack, -1 denotes the next stack element etc.

Feature Functions We define a set of feature
functions to describe the features used in the fea-
ture vector:

• β(ι) is theιth W /POS/LT tuple in the input
buffer, whereι denotes the current buffer po-
sition.

• BL is the length of bufferβ

• W(ι) is theιth word form inβ.

• LT(ι) is theιth lexical type inβ.

• POS(ι) is theιth Part-of-Speech tag inβ, an-
notated by the preprocessor (TNT).

• LC(ι) is the lexical category tag derived from
LT(ι).

• SubCat(ι) is the Subcategorization field de-
rived fromLT(ι).

• IP(ι) and FP(ι) denote word-initial and
word-final punctuation in the wordW(ι), re-
spectively.

• α(j) is the jth unification candidate edge
from the top of the active edge stack.

• π(j) is thejth edge from the top of the passive
edge stack.

• l(e) is the left-branched daughter of the edge
e.

• r(e) is the right-branched daughter of the
(passive) edgee.

• h(e) is the HPSG head of the edgee. h∗

(e)
denotes the head-relation down to the pre-
terminal.

• ER(e) is the ERG rule of the (passive) edge
e.

• S(α/π) denotes the size of theα andπ stacks.

Feature Templates Each training instance maps
70 features to the feature vector. In this paper we
limit ourselves to presenting the feature functions
corresponding to the atomic features extracted for
each parsing state (see Table 3). In the feature vec-
tor, most of the atomic features occur in conjunc-
tion with other features, and only a few of the fea-
tures will occur by themselves. A combination of
two or more features is necessary to represent the
inherent dependence many features have on one
another, given that we train the model linearly. For
our model derived from 150,000 sentences, we ex-
tracted approximately 6 million features, using a
frequency cutoff of 3.

SF W(ι−1,ι,ι+1),POS(ι−1,ι,ι+1,ι+2)

LC(ι−1,ι,ι+1,ι+2),ι, BL− ι

LT(ι−1,ι,ι+1,ι+2),FP(ι),IP(ι)

SubCat(ι,ι+1,ι+2)

DF S(α),ER(π(0)),ER(h(π(0))
),ER(h(h(π(0))

))

ER(h∗

(π(0))
),ER(h(l(α(0))

)),ER(h(h(l(α(0))
))
)

ER(h∗

(l(α(0))
)
),ER(l(π(0))

),ER(r(π(0))
)

ER(l(l(α(0))
)),ER(r(l(α(0))

)),ER(l(α(−1))
)

Table 3: Static and dynamic features.

5.3 Training Data

Given the available treebanks and corpora we have
at our disposal (see Section 3), we evaluated a
number of different training data configurations.
In addition to corpora from the Redwoods tree-
bank, we can extend the training model with Wiki-
Woods data.

In Figure 2 we observe that the accuracy of
CuteForce improves when extending the number
of training derivations. Figure 2 presents results
for parsing without CFG or Unification filtering
using gold standard lexical types.

Training data from the WeScience treebank
amounts to 7,636 sentences. When training on the
same amount of sentences from other (out of do-
main) treebanks from Redwoods, we see a clear
drop in precision – both the in-domain WeScience
treebank, and maybe more surprisingly, the an-
notated WikiWoods corpus is a better source for
training than the out-of-domain, yet gold standard,
Redwoods data.

Training solely on WikiWoods annotation
yields lower performance when the amount of
training data is limited, but from 30,000 sen-
tences there are only minor differences in the per-
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Figure 2: The exact match proportion (proportion of sentences with an HPSG analysis identical to the gold stan-
dard) increases when adding more training sentences. The WeScience Treebank augumented with WikiWoods
derivations, totally 150,000 sentences, reaches the highest accuracy.

formance for the two in-domain configurations.
There are at least two trends in Figure 2 that
seem obvious: First, in-domain data is a better
training source than out-of-domain data – even
when the training data contains a proportion of er-
rors. Second, when the amount of training data is
very limited, training on the WeScience treebank
yields the best results. However, when we ex-
tend the amount of WikiWoods derivations in the
training data, these differences diminish, and from
100,000 training sentences onwards, there seems
to be no substantial differences between the train-
ing data configurations. At about 150,000 deriva-
tions, the curve appears to flatten out, and even
starting to decline. For the remainder of the pa-
per, we continue using the model trained on We-
Science, augmented with Wikiwoods annotation,
totally 150,000 derivations, as this configuration
achieved the highest accuracy on the development
data set.

In this iteration we have indiscriminately used
WikiWoods sentences from Section 2000 and on-
wards. It could prove beneficial to reject sentences
in the training data that are obvious outliers. This
could be very short (one word) sentences, very
long sentences, sentences partially or completely
in a foreign language7, or sentences that have other
properties that may imply that they are unsuited to
use as training data. This will be subject for fur-

7Certain articles in the English Wikipedia contain large
amount of foreign texts, for example articles concerning a
specific language.

ther research.

6 Evaluation

CuteForce is evalutated on Section 13 from We-
Science (ws13), and the experiments were carried
out on an Intel Xenon(R) server with 2 GHz CPU.

6.1 Deterministic HPSG Parsers

To our knowledge, the parser outlined in Ni-
nomiya et al. (2010) is the only effort in incremen-
tal deterministic unification-based parsing, along
side with CuteForce. However, a complete head-
to-head comparison of the parse analyses pro-
duced by the parsers is not possible due to formal
and technical difference in the underlying gram-
mars. Whereas the HPSG Enju grammar used
by Ninomiya et al. (2010) is induced from the
Penn Treebank, the ERG is a handcrafted gram-
mar. Where the granularity of an induced gram-
mar like Enju is largely determined by informa-
tion available in the treebank, the ERG includes
more fine-grained and richer analyses, for example
with respect to subcategorization patterns (includ-
ing relational nouns and adjectives), multi-word
expressions and other subtle linguistic properties
that cannot easily be extracted from a treebank
with heuristics alone.

Even if the parser proposed by Ninomiya et al.
(2010) had been publicly available, adapting it to
ERG would not be straightforward, because the
typed feature structure logic assumed in the ERG
is formally richer than that of Enju. Alternatively,
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one could opt for a partial evaluation of the analy-
ses generated by the two parsers, e.g. by extracting
dependency relations (Clark and Curran (2007),
Cahill et al. (2008)). This would be subject for
further investigation.

Instead of directly comparing the two determin-
istic parsers, we can however see how they relate
to traditional non-deterministic parsers. Ninomiya
et al. (2010) present an extensive evaluation of
their deterministic parser, compared to other non-
deterministic Enju HPSG parsers. In the follow-
ing, we will compare CuteForce to the PET HPSG
Parser, which is the de facto HPSG parser for the
DELPH-IN consortium.

6.2 CuteForce vs PET HPSG Parser

The PET HPSG Parser is the most widely used
parser for ERG. Its design is distinctly different
from CuteForce (see Section 2.2). Comparing
the two parsers based on available testing data
is non-trivial: Whereas Ytrestøl et al. (2009) re-
port a parsing coverage of 86 % for the sentences
annotated in WeScience, it is only the sentences
that were actually covered that appear in the We-
Science Treebank. Hence, the PET Parser will
have a 100 % coverage in all the test sentences we
are able to evaluate. To accommodate for this, we
have evaluated the parsers on test sentences where
the coverage overlaps for both parsers, hence we
have divided the results according to the parser
mode in which CuteForce is operating. Table 4
presents the parser scores onws13 when Cute-
Force is using gold standard supertags, whereas
Table 5 presents the same score when CuteForce
is applying supertagged input.

6.3 Parsing Results

The oracle mode determines the coverage for
CuteForce, hence the subset of the test data that
is evaluated for each configuration.M in Table 4
and 5 refers to the CuteForce oracle mode, where
N in unrestricted,C is CFG approximation mode,
andU is unification mode.Ex is the proportion of
sentences that was parsed identically to the gold
standard derivation.Cov refers to the correspond-
ing coverage, only relevant for CuteForce8. F1 is
the Parseval F1-score when treating the gold stan-
dard and the parsed analysis as a CFG tree struc-

8Since the treebanks only consist of sentences that the
PET parser was able to parse, PET will have 100 % cover-
age in all configurations.

ture.TA is the lexical type (supertag) accuracy. All
tree derivation scores are computed byevalb9.

Val is the proportion of the parsed analyses that
are valid HPSG derivations, and∼SLrefers to the
average sentence length for the subset.mpsis the
average number of millisecond per sentence used
by the parser (this excludes preprocessing time
done by the supertagger).

In Table 4 and 5 we see that with gold stan-
dard supertags, CuteForce is comparable, and even
more accurate than PET in certain validation ma-
trices. When parsing with supertagged input, PET
is in overall better. However, when considering the
F1-score, it seems clear that the parse derivations
produced by CuteForce have high quality. Pars-
ing time is consistently 15 msec/sentence unless
we apply unification. This is to our knowledge the
fastest parsing time reported by a parser on a ma-
jor HPSG grammar.

We see that the proportion of sentences that are
well-formed HPSG derivations are in the range
from 0.47-0.59, depending on the configuration.
Although a fairly high share of the derivations will
not yield a unifiable HPSG derivation, it is how-
ever likely that one could extract a partially well-
formed semantic structure through robust unifica-
tion (Fouvry, 2003). This is also addressed in
Zhang and Krieger (2011), and will be evaluated
in further studies.

7 Future Work

There are alternative paths that could be pursued
to attempt to improve on the current configura-
tion. Instead of using single tags, one could let the
supertagger assign multiple supertags. Zhang and
Clark (2011) present a shift-reduce parser for CCG
where the parsing oracle chooses between a set of
candidate supertags assigned by the supertagger.
Hence they are able to take syntactic information
into account when choosing the supertag. A simi-
lar approach could be beneficial for CuteForce.

Allowing for non-determinism would open for
a number of strategies. Ytrestøl (2011) evaluated
a backtracking algorithm where ranking is applied
to locate and redo an incorrect transition done by
CuteForce. Alternatively, one could consider a
beam-search strategy in line with Ninomiya et al.
(2010). This will be subject for further study.

9http://nlp.cs.nyu.edu/evalb/
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M Cov Ex F1 TA Val ∼SL mps
CF N 0.99 0.42 0.86 1 0.51 14.1 15
PET - 1 0.48 0.87 0.965 1 14.1 2.3k
CF C 0.81 0.52 0.89 1 0.59 12.0 15
PET - 1 0.55 0,88 0.966 1 12.0 2.3k
CF U 0.57 0.77 0.94 1 1 8.6 1.6k
PET - 1 0.66 0.90 0.972 1 8.6 2.3k

Table 4: Parsing results for CuteForce (gold standard lexical types) and PET HPSG Parser onws13, evaluated on
sentences where the coverage overlaps for both parsers.

M Cov Ex F1 TA Val ∼SL mps
CF N 0.99 0.36 0.82 0.953 0.47 14.0 15
PET - 1 0.48 0.87 0.965 1 14.0 2.3k
CF C 0.79 0.45 0.85 0.959 0.59 11.9 15
PET - 1 0.55 0.88 0.966 1 11.9 2.3k
CF U 0.52 0.70 0.92 0.974 1 8.1 1.6k
PET - 1 0.69 0.90 0.976 1 8.1 2.3k

Table 5: Parsing results for CuteForce (supertagged lexical types) and PET HPSG Parser onws13, evaluated on
sentences where the coverage overlaps for both parsers.

8 Concluding Remarks

We have presented an efficient deterministic pars-
ing approach to HPSG. Whereas unification-based
parsing traditionally has been associated with non-
deterministic parsers, we have demonstrated a de-
terministic system capable of achieving a high
level of precision with very fast parsing times. Al-
though it is questionable if a deterministic sys-
tem could ever reach the same precision-level as
state-of-the-art non-deterministic systems, deter-
ministic parsing would be attractive for applica-
tions where it is desirable to trade some precision
for high-speed incremental parsing.
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Abstract

We present a novel corpus-driven approach
towards grammar approximation for a lin-
guistically deep Head-driven Phrase Struc-
ture Grammar. With an unlexicalized prob-
abilistic context-free grammar obtained by
Maximum Likelihood Estimate on a large-
scale automatically annotated corpus, we
are able to achieve parsing accuracy higher
than the original HPSG-based model. Dif-
ferent ways of enriching the annotations car-
ried by the approximating PCFG are pro-
posed and compared. Comparison to the
state-of-the-art latent-variable PCFG shows
that our approach is more suitable for the
grammar approximation task where train-
ing data can be acquired automatically. The
best approximating PCFG achieved ParsE-
val F1 accuracy of 84.13%. The high ro-
bustness of the PCFG suggests it is a viable
way of achieving full coverage parsing with
the hand-written deep linguistic grammars.

1 Introduction

Deep linguistic processing technologies have
been evolving closely around the development
of rich formalisms which typically introduce
mild context-sensitivity. Examples of well-
adopted frameworks include various Tree Adjoin-
ing Grammars, Combinatory Categorial Gram-
mars, Lexical Functional Grammars (with untyped
Features Structures in F-structures), and Head-
Driven Phrase Structure Grammars (with Typed
Featured Structures). Such formalisms have been
successfully powering the modern formal linguis-
tic studies. However, the intrinsic complexity
of deeper formalisms1 hinders the deployment of

1In the context of this paper, by deeper formalism we
mean formalisms which are at least mildly context-sensitive,

such resources in language technology applica-
tions.

Take HPSG for example. The linguistic frame-
work is built on top of the typed feature logic for-
malisms (e.g., Carpenter (1992)). The monostratal
representation integrates various syntactic and se-
mantic information concerning a linguistic object
(and all its sub-components) in a single typed fea-
tures structure. And the integration of information
and compatibility checking is achieved by the uni-
fication operation. Such a formalism is especially
suitable for developing and implementing a lin-
guistic theory. But the lack of a polynomial upper-
bound time complexity in unification-based pars-
ing raises concerns of the processing efficiency.

Meanwhile, from the grammar engineering per-
spective we see grammar developers constantly
joggling between two somewhat conflicting goals:
on the one hand, to describe the linguistic phenom-
ena in a precisely constrained way; on the other
hand, to achieve broad coverage when parsing un-
seen real-world texts. As a result, many of these
large-scale grammar implementations are forced
to choose to either compromise the linguistic pre-
ciseness, or to accept the low coverage in parsing.

In this paper, we propose PCFG approxima-
tion as a way to alleviate some of these issues
in HPSG processing. While HPSG framework is
great for linguistic description, we show that when
carefully designed, a much simpler approximat-
ing probabilistic context-free grammar can be ex-
tracted automatically, and is capable of achieving
good parsing accuracy while maintaining high ro-
bustness and efficiency.

The rest of the paper is organized as the fol-
lowing: Section 2 gives an overview of HPSG as
an linguistic theory and its application in parsing;

in a comparative sense to the context-free grammars.
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Section 3 reviews the previous related work on
CFG approximation of HPSG; Section 4 presents
the corpus-driven PCFG approximation with both
internal and external annotations; Section 5 de-
scribes the evaluation setup and results; Section 6
compares our approach with other related work on
parsing (such as self-training), and foresees the ap-
plication of the approximating PCFGs; Section 7
concludes the paper.

2 Parsing with Head-Driven Phrase
Structure Grammars

Head-Driven Phrase Structure Grammar (Pol-
lard and Sag, 1994) is a constraint-based highly
lexicalized non-derivational generative grammar
framework. Based on a typed feature structures
formalism, the HPSG theory describes a small set
of highly generalized linguistic principles, with
which the rich information derived from the de-
tailed lexical types interacts to produce precise lin-
guistic interpretations.

Several large-scale HPSG-based NLP parsing
systems have been built in the past decade.
Among them are the Enju English & Chinese
parser (Miyao et al., 2004; Yu et al., 2010), the
Alpino parser for Dutch (van Noord, 2006), and
the LKB & PET (Copestake, 2002; Callmeier,
2000) for English, German, Japanese and a dozen
more other DELPH-IN2 grammars of various
languages. These systems are successful show-
cases of where modern grammar engineering con-
tributes to the state-of-the-art parsing systems.
With the modern processing techniques such as
quasi-destructive unification (Tomabechi, 1991),
quick check (Kiefer et al., 1999), ambiguity pack-
ing (Oepen and Carroll, 2000) and selective un-
packing (Zhang et al., 2007), the practical parsing
efficiency has been greatly improved. But none
of these changes the underlying formalism, there-
fore the parser still can run into exponential pars-
ing time in theory.

Another disadvantage of deep grammar lies in
the difficulty of proper statistical modeling of
the richer representation. For example, Abney
(1997) shows that naı̈ve MLE is not consistent
for unification-based grammars, and proposes ran-
dom fields as an alternative. In practice, we see
most HPSG parsing systems opt for a discrimi-
native Maximum Entropy Model (MEM) for parse
ranking on top of the hypothesis space licensed by

2http://www.delph-in.net/

the HPSG grammar (Miyao and Tsujii, 2002; Mal-
ouf and van Noord, 2004; Toutanova et al., 2005).
For further efficiency, the hypothesis space of the
HPSG parses is pruned with supertagging or sym-
bolic CFG filtering rules (Matsuzaki et al., 2007) at
early stages. It is however unclear how these sep-
arate models can be unified to guide the best-first
construction of HPSG parses without an exhaus-
tive creation of the (packed) parse forest or ad hoc
pruning.

Moreover, the heavily constraint-based nature
of the grammar poses a difficult choice between
linguistic preciseness and practical parsing robust-
ness. As a result, many HPSG parser implementa-
tions have to sacrifice on the linguistic side in trade
for a decent parsing coverage.

3 Related Work

Previous work in the direction of HPSG approxi-
mation has seen two major approaches: grammar-
based approach and the corpus-driven approach.

The grammar-based approach (Kiefer and
Krieger, 2004) tries to compile out a huge set
of categories by flattening the TFSes into atomic
symbols. This approach can in theory guarantee
the equivalence of the grammars in both parsing
and generation. However, in practice it generates
billions of CFG productions. Even when carefully
choosing a subset of the HPSG features, the result-
ing grammar is too large to be useful for parsing
or generation.

The corpus-based approach (Krieger, 2007), on
the other hand, builds the approximating CFG by
observing the growth of the chart when parsing
texts with the HPSG. Passive edges on the chart
represent the successful application of HPSG rules,
hence are modeled by an approximating CFG pro-
duction. Also, the symbols in CFG only carry
partial information from a small set of feature-
paths used in quick check (Kiefer et al., 1999), i.e.,
the frequently failed feature-paths in unification,
hence the most discriminating ones.

Both approaches are symbolic in the sense that
there is no probabilistic model produced to disam-
biguate the CFG parses. In the case of corpus-
based approach, one can also acquire frequency
counts for each CFG rule. But since not all passive
edges occur in a full parse tree, and not all parses
are correct, the statistics obtained is not suitable
for the parsing task.

Kiefer et al. (2002) propose to use a PCFG in a
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two-stage parsing setup, where the PCFG predicts
derivations in the first step, followed by the replay
of unification. The experiment was carried out on
a relatively small grammar. And due to the un-
availability of large-scale treebank at the time, un-
supervised Inside-Outside algorithm was used for
the probability estimation.

Cahill et al. (2004) reported an application of
the PCFG approximation technique in LFG pars-
ing and the recovery of long distance dependen-
cies on the f-structures. Two main differences be-
tween their work and the one presented in this pa-
per should be noted. First, the approximation tar-
get for Cahill et al. (2004) is a treebank-induced
grammar, while this paper targets for a large-
scale hand-crafted grammar. Second, the monos-
tratal representation in HPSG entails that a cor-
rect derivation tree will also guarantee the correct
recovery of unbounded dependencies represented
by the underlying feature structures, while in the
LFG universe these have to be resolved on the f-
structures instead of the c-structures.

4 Probabilistic Context-Free
Approximation of HPSG

Unlike the approaches in previous work which
approximates the symbolic HPSG alone, we pro-
pose a PCFG approach which approximates the
combination of the grammar and its disambigua-
tion model. This allows us to closely model the
deep parser behavior with a single approximation
PCFG.

For the experiments in this paper, we use
the English Resource Grammar (ERG; Flickinger
(2002)) and the accompanying treebanks (see Sec-
tion 5.1 for detailed descriptions). But the tech-
nique presented in this section can be easily ap-
plied to other languages and HPSG grammar im-
plementations.

4.1 Derivation Normalization

A complete HPSG analysis is recorded in a deriva-
tion tree. The terminals of the tree are surface
tokens in the sentence. The preterminals are the
names of the activated lexical entries. The non-
(pre)terminal nodes (except for the root) corre-
spond to grammar rules applied to create the HPSG
signs. An extra root node denotes the “root” con-
dition fulfilled to license a complete HPSG parse.
An example derivation of ERG is given in Figure 1.

Before extracting the approximation grammar,

we perform several normalizing transformations
on the original derivations. First, in order to ac-
quire an unlexicalized grammar, we replace the
lexical entry names on the preterminal with their
corresponding lexical type defined in the ERG lex-
icon. Second, we collapse the unary chain of mor-
phological rules together with the preterminal lex-
ical types to form the so-called “supertag”. As
shown in Figure 1, these unary rules always oc-
cur above the preterminals and below any syntac-
tic constructional rules. Practice shows that this
helps improve the parsing accuracy of the PCFG.
The last normalization concerns with the treatment
of punctuations. In ERG (as for release 1010),
punctuations are treated as affixes instead of in-
dependent tokens by themselves. For better com-
patibility with other annotations, we convert the
original punctuation-attaching unary rule (applied
above the morphological rules and below the syn-
tactic rules) into a binary branch. The normalized
derivation tree of the previous example is shown in
Figure 2. It is worth noting that all the normalizing
steps can be reversed without introducing ambigu-
ity. The approximating PCFGs will be extracted
from the normalized derivations, while the evalu-
ation will be reported on the original derivations
(though the tagging accuracy will be calculated on
the lexical types).

4.2 PCFG with External Annotation

Although the derivation tree records all necessary
information to recover the complete HPSG anal-
ysis (i.e. carrying out unification on each node
of the tree with corresponding grammar rules and
lexical entries), it does not always encode the nec-
essary information in an explicit way, due to the
fact that rules in HPSG are highly generalized (see
Section 2). For example, the rule “hd-cmp u c”
in ERG can be used to express a head-complement
composition without specifying the syntactic cat-
egory of the head. Thus a node marked only with
“hd-cmp u c” could be a VP, PP, or NP. There-
fore it will be difficult to accurately predict the
derivation without such information. To compen-
sate for the lack of information in the derivation
tree, we add additional annotations to the non-
terminals. We further differentiate external anno-
tation, i.e., additional information from the context
of the tree node, and internal annotation, i.e. infor-
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ROOT STRICT

SB-HD MC C

SP-HD N C

THE 1

The

HDN-AJ RC C

N SG ILR

COMPUTER N1

computer

CL RC FIN NWH C

SB-HD NMC C

HDN BNP PN C

N SG ILR

JOHN

John

HD XCOMP C

V PST OLR

BUY V1

bought

HD OPTCMP C

W PERIOD PLR

V PST OLR

CRASH V1

crashed.

Figure 1: Example of an original ERG derivation tree

ROOT

ROOT STRICT

SB-HD MC C

SP-HD N C

d - the le

The

HDN-AJ RC C

n - c le&N SG ILR

computer

CL RC FIN NWH C

SB-HD NMC C

HDN BNP PN C

n - pn-msc le&N SG ILR

John

HD XCOMP C

v np le&V PST OLR

bought

HD OPTCMP C

W PERIOD PLR

v pp unacc le&V PST OLR

crashed

PUNCT PERIOD

.

Figure 2: Example of a normalized derivation tree
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mation coming from the HPSG sign.3

For the external annotation, we mark each non-
terminal node with up to n grandparents. This is
an effective technique used in both PCFG pars-
ing (Klein and Manning, 2003)4 and HPSG parse
disambiguation (Toutanova et al., 2005). As ERG
rules are either unary or binary, we do not an-
notate nodes with sibling information, though for
a grammar with flat rules this could potentially
help, as shown by Klein and Manning (2003) (so-
called horizontal markovization). We choose not
to annotate the preterminal supertags with grand-
parents, for the overly fine-grained tagset hurts the
parsing coverage.

4.3 PCFG with Internal Annotation

While the external annotation enrich the derivation
tree by gathering context information, the internal
annotation explores the detailed HPSG sign asso-
ciated with the tree node. Note that an average
ERG sign contains hundreds of feature-paths and
their corresponding values, it is important to pick a
suitable small yet effective subset of them as anno-
tation. Following the practice of (Krieger, 2007),
we choose to use up to six top-ranked quick-check
paths (see Table 1), which are the most frequently
failed feature-path in unification.

To access the HPSG sign, feature structures are
reconstructed by unifying the corresponding TFS
of the HPSG rule with the instantiated TFSes of its
daughters. This can be done efficiently even with
naı̈ve unification algorithms, for there is no search
involved. And the unification never fails when the
original derivation tree is produced by the ERG.
Next, the value of the annotation is determined
by the type of the TFS at the end of each given
feature-path (or *undef* in case the path was not
defined in the TFS). For example, for feature-path
SYNSEM.LOCAL.CAT.COMPS (the remaining list
of complements for the sign), value *null* denotes
an empty list, while *olist* denotes a list with only
optional complements. Figure 3 shows an exam-
ple of an annotated tree with 1-level grandparent
and HEAD feature-path annotation.

3Our notion of internal and external annotation is slightly
different to that of (Klein and Manning, 2003). In our notion,
internal annotation refers to the information from the local
HPSG sign.

4This technique is called vertical markovization in (Klein
and Manning, 2003).

Feature-Path
1 SYNSEM.LOCAL.CAT.HEAD
2 SYNSEM.LOCAL.CONJ
3 SYNSEM.LOCAL.AGR.PNG.PN
4 SYNSEM.LOCAL.CAT.VAL.COMPS
5 SYNSEM.LOCAL.CAT.HEAD.MOD
6 SYNSEM.LOCAL.CAT.VAL.COMPS.FIRST.OPT

Table 1: Top feature-paths used for internal annotation

4.4 Grammar Extraction & Probability
Estimation

To extract the approximating PCFG, we need a dis-
ambiguated treebank annotated with HPSG deriva-
tions. The treebank is constructed by first parsing
the input sentences with the HPSG parser, then dis-
ambiguated either manually or automatically by
the parse selection model. The CFG symbols and
production rules are extracted directly from the an-
notation enriched derivation trees from the tree-
bank. Each tree node contributes to one frequency
count of the corresponding CFG rule with the par-
ent’s symbol as the LHS, and the symbols of its
daughters as the RHS. For the experiments in this
paper, we do not prune the CFG symbols or rules.
The rule probability is calculated with Maximum
Likelihood Estimate (MLE) without smoothing.

Pr(A→ β) = P (A→ β|A) =
#(A→ β)

#A
(1)

The lexical model, however, does receive
smoothing for unknown word handling. More
specifically, words are assigned a signature
(sig(w)) based on their capitalization, suffix, digit
and other character features. We then use the MLE
estimate of P (T |sig(w)) as a prior against which
observed taggings T were taken:

P (T |w) =
#(T,w) + α · P (T |sig(w))

#T + α
(2)

P (T |w) is then inverted to give P (w|T ).
The grammar extraction procedure is very ef-

ficient. The time required is linear to the size
of the treebank. Even with the richest annota-
tions (with unification operations involved), the
procedure marches through thousands of trees per
minute. This allows us to scale up the extraction
with millions of trees.

4.5 Hierarchically Split-Merge PCFG
For comparison we also trained a hierarchically
split-merge latent-variable PCFG with the Berke-
ley parser (Petrov et al., 2006). The latent-variable
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ROOT

ROOT STRICT
ˆROOT [verb full]

SB-HD MC C
ˆROOT STRICT [verb full]

SP-HD N C
ˆSB-HD M C [noun]

d - the le

The

HDN-AJ RC C
ˆSP-HD N C [noun]

n - c le&N SG ILR

computer

CL RC FIN NWH C
ˆHDN-AJ RC C [verb full]

SB-HD NMC C
ˆCL RC-FIN-NWH C [verb full]

HDN BNP PN C
ˆSB-HD NMC C [noun]

n - pn-msc le&N SG ILR

John

HD XCOMP C
ˆSB-HD NMC C [verb full]

v np le&V PST OLR

bought

HD OPTCMP C
ˆSB-HD MC C [verb full]

W PERIOD PLR
ˆHD OPTCMP C [verb full]

v pp unacc le&V PST OLR

crashed

PUNCT PERIOD
.

Figure 3: Example tree with 1-level grandparent and HEAD feature-path annotation

approach has proven to deliver state-of-the-art
parsing performance for multiple languages. The
key advantage is that it automatically induces sub-
categories from the treebank and produces a finer
grained grammar without manual intervention. On
treebanks with coarse-grained categories (which is
typical for manually annotated treebanks), this is
particularly effective.

In our experiment, we train the split-merge
latent-variable PCFG on the derivation trees.
The Expectation-Maximization training process is
much more expensive than our MLE-based PCFG
extraction. Also, given that the categories in
the normalized derivations are already quite fine-
grained (hundreds of non-terminal symbols and
thousands of tags), the grammar stopped improv-
ing after only three rounds of split-merge itera-
tions.

5 Experiments

5.1 Grammar & Data

We use the 1010 release of the English Re-
source Grammar for the approximation experi-
ments. This version of the ERG contains a total
of 200 syntactic constructional rules, and 50 lex-

ical/inflectional rules. 145 of the 200 syntactic
rules are binary, while the remaining 55 are unary.
All lexical/inflectional rules are unary. In addi-
tion, the grammar contains a hand-compiled lex-
icon with around 1000 leaf lexical types and over
35K base-form entries.

Several large treebanks have been developed
with the ERG. Unlike the traditional manually an-
notated treebanks, these are referred to as the
Redwoods-style dynamic treebanks (Oepen et al.,
2002). Sentences from the corpus are first parsed
by the ERG, and then manually disambiguated
(mostly by the grammarian himself). For the
experiments in this paper, we use the manually
disambiguated WeScience Treebank (Ytrestoel
et al., 2009), which currently contains a to-
tally of over 11K sentences from a selection of
Wikipedia articles in the domain of Natural Lan-
guage Processing with an average length of 18 to-
kens per sentence, pre-processed to strip irrelevant
markups, and divided into 13 sections. Of all the
sentences, about 78% received exactly one “gold”
analysis. The rest either fail to be parsed by the
ERG, or there is no single acceptable reading. We
will only use the subset of sentences with a “gold”
parse for the experiment. More specifically we
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keep “ws12” for development and “ws13” for the
final testing. Sections “ws01” to “ws11” contain
a total of 7,636 “gold” trees, which are used for
training.

Apart from the WeScience, we also use
the large-scale automatically disambiguated
WikiWoods Treebank (Flickinger et al., 2010).
Currently, WikiWoods contains about 55M
English sentences extracted from the English
Wikipedia articles. The corpus is parsed with
the 1010 version of the ERG, and automatically
disambiguated with a Maximum Entropy model
trained with the manually disambiguated trees.
Only 1 top-ranked reading is preserved. Since the
correctness of the parse is unchecked, the dataset
is potentially noisy. The total amount of trees
available for training is about 48M.

5.2 The Parser

The approximating PCFG tends to grow huge
when rich annotations and large corpora are used.
For efficient application of the resulting gram-
mar, we implemented a CKY-style parser with bit-
vector-based algorithm as the one proposed by
Schmid (2004). The algorithm shows its strength
in extensibility for grammars with millions of
rules and hundreds of thousands of non-terminal
symbols.

A slight deviation of our implementation from
the BitPar algorithm is that, after constructing
the bit-vector-based recognition chart, we do not
apply the top-down filtering routine before cal-
culating the Viterbi probabilities. Practice shows
that in our case the recognition chart is normally
sparse, and the filtering routine itself costs more
time than what it saves from the additional calcu-
lations in the Viterbi step.

For correctness checking, we reproduced the
unlexicalized PCFG parsing accuracy reported by
Klein and Manning (2003) on PTB with our bit-
vector parser while achieving better efficiency (in
both training and testing) than the Stanford Parser.
Even though our parser is implemented in Java
(for better cross-platform compatibility), the low-
level bit-vector-based operations make our system
competitive even in comparison to the BitPar
implemented in C++.

As mentioned early, we do not prune the PCFG
rules during parsing. For the lexical look-up, we
allow the lexical model to propose multiple tags
(cut by certain probability threshold). In case a

full parse is not found, a partial parsing model
tries to recover fragmented analysis according to
the Viterbi probabilities of the constituents. With
careful design of the PCFG and sufficient train-
ing data, the parser normally delivers close to full
parsing coverage even without the fragmented par-
tial parsing mode.

5.3 Evaluation & Results

For the evaluation of our approximating PCFGs,
we compare the top-1 parses produced by the
PCFG with the manually disambiguated gold trees
in “ws13”. We assume the inputs have been pre-
tokenized but not tagged. All comparisons are
done on the original derivations. Several accuracy
measures are used, including the ParsEval labeled
bracketing precision, recall, F1 and exact match
ratio. Since the ParsEval scores ignore the preter-
minal nodes, we also report the (lexical type) tag-
ging accuracy. Several different training sets are
used.

WS contains 7636 “gold” trees from the sec-
tions “ws01-ws11” of the WeScience. The MEM
parse selection model is trained with this dataset.
The dataset is too small to acquire high coverage
PCFGs with heavy annotations. Therefore, only
PCFG(0) and PCFG(FP1) results are reported here.

WW000 contains 85,553 automatically parsed
and disambiguated trees from the WikiWoods
(all fragments with 000 as suffix). This is less than
0.2% of the entire WikiWoods, but close to the
limit for the latent-variable PCFG training with the
Berkeley Parser.

WW00 contains about 482K sentences (all frag-
ments with 00 as suffix), roughly 1% of the entire
WikiWoods. We were able to successfully train
PCFGs with relatively rich annotations.

WW contains the complete WikiWoods with
∼48M parsed tress. With feature-path annota-
tions, the training of the models takes too long.
Also, excessive annotation makes it difficult to
parse with the resulting huge grammar. We stop
at two levels of grandparent annotation, a PCFG
with almost 4M rules and over 128K non-terminal
symbols.

Table 2 summarizes the results of the accu-
racy evaluation. All results are reported on
the 785 trees from the section “ws13” of the
WeScience. MEM is the accuracy of the HPSG
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parser disambiguation model given the candidate
parse forest. PCFG(0) is the unannotated PCFG
read off the bare (normalized) derivation trees.
PCFG(GPm,FPn) is the annotated PCFG model
withm-levels of grandparents and n feature-paths.
And PCFG-LA(SM3) is the latent-variable PCFG
after three split-merge iterations.

With the small WS training set, the baseline
PCFG without annotation achieved F1 of merely
60.96. Even one level of grandparent annotation,
the parsing coverage drops by over 10%. With 1
feature-path annotation, F1 improved significantly
to 66.45.

On the larger WW-000, the performance of the
baseline PCFG decreases by two 2% of F1, most
likely due to the noise introduced by the auto-
matic disambiguation. However, the larger train-
ing set enables 1-level grandparent annotation,
which brings F1 up to 71.42. The latent-variable
PCFG also performs well, delivering the best F1

at 71.87 after three split-merge iterations. But the
learning curve of the Berkeley parser has already
flatten out at this point, and we were unsuccessful
in further scaling up the training set.

With our annotated PCFGs, significant improve-
ments are achieved on the even larger WW-00. The
baseline PCFG seems to have recovered from the
previous drop, and outperforms the one trained
with the “gold” trees. With the mixture of 1-
level of grandparent and some feature-path anno-
tations, F1 reached over 80. The best performance
on WW-00 is achieved with PCFG(GP1,FP5). 2-
levels of grandparents alone outperforms 1-level
of grandparent, but the grammar quickly reaches
its size limit on this training set and starts to loose
coverage when more feature-path annotations are
added.

Finally, with the complete WikiWoods, both
PCFG(GP1) and PCFG(GP2) improved further,
with PCFG(GP2) reaching the highest F1 at 84.13.
It is interesting to note that this is even higher than
the F1 of the MEM disambiguation model. This is
partially due to the self-training effect on the huge
corpus. Another explanation is that the objective
function of the discriminative MEM was optimized
on the complete parse match instead of individ-
ual constituents, which will explain its high exact
match ratio at 43.57%.

6 Discussion

It is important to note that the grammar approxi-
mation task we take on in this paper is different
from the traditional treebank-based parsing. Al-
though the accuracy evaluation for both tasks are
done on a fixed set of “gold” trees, in the grammar
approximation task we have access to the theoret-
ically infinite pool of training data automatically
generated by the original grammar. Some com-
plex grammar extraction algorithms which work
fine on a small training corpus fail to scale up to
handle millions of trees. On the other hand, our
MLE-based PCFG extraction shows its advantage
in extensibility.

The approach of training a PCFG with automat-
ically annotated treebank is in a sense similar to
the self-training approach in semi-supervised pars-
ing (McClosky et al., 2006). However, instead of
parsing the unlabeled data with the PCFG directly,
we rely on the HPSG grammar and its disambigua-
tion model. The highly constrained ERG analy-
ses on unseen data allow us to obtain high quality
trees. And the penalty on introducing noisy data is
quickly compensated by the huge amount of data.

The approximating PCFG is much less con-
strained than the ERG. From the linguistic point
of view, it is difficult to interpret the huge set of
PCFG rules. And unlike the ERG, the PCFG is un-
suited in making grammaticality judgment. How-
ever, for the parsing task, the approximating PCFG
has its advantage in being flexible and robust,
needless to mention its cubic parsing time com-
plexity. One can choose various combinations of
annotations for a balanced efficiency, accuracy and
coverage. Although the experiments reported in
Section 5 are only testing on sentences which the
ERG can parse, we have also applied the PCFGs
on the remaining ∼20% texts and got close to full
parsing coverage (less than 1% failure). Although
the derivation tree constructed by the PCFG does
not guaratee a unifiable HPSG analysis with typed
feature structures, it provides an approximate pre-
diction on how the HPSG analysis should look
like. It is conceivable that with robust unification
under the open-world assumption of the type hier-
archy (Fouvry, 2003), one can get a partially well-
formed semantic structure with the guidance of the
approximating PCFG. Also, it would be interesting
to evaluate its impact on the overall parser perfor-
mance based on the semantic structures instead of
the theory-specific derivations.
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#Rule #NT #T P R F1 Ex TA

w
s

MEM - - - 82.70 82.91 82.80 43.57 96.87
PCFG(0) 10,251 208 1,152 63.53 58.59 60.96 19.49 86.19
PCFG(FP1) 12,178 669 1,152 70.02 63.22 66.45 20.51 86.20

w
w
-
0
0
0 PCFG(0) 25,859 236 1,799 60.18 57.34 58.73 14.14 85.33

PCFG(GP1) 64,043 3,983 1,799 72.61 70.28 71.42 21.02 86.92
PCFG-LA(SM3) * * * 73.12 70.66 71.87 23.18 89.81

w
w
-
0
0

PCFG(0) 61,426 247 2,546 63.61 61.14 62.35 16.56 88.59
PCFG(GP1) 187,852 5,828 2,546 77.87 77.41 77.64 24.84 91.83
PCFG(GP1,FP4) 271,956 16,731 2,546 80.60 79.84 80.22 29.04 93.20
PCFG(GP1,FP5) 319,511 21,414 2,546 80.94 80.32 80.63 28.54 93.33
PCFG(GP1,FP6) 320,630 21,694 2,546 80.92 80.31 80.61 28.41 93.33
PCFG(GP2) 489,890 45,658 2,546 79.68 79.56 79.62 28.92 92.01
PCFG(GP2,FP2) 559,006 66,218 2,546 79.78 79.46 79.62 32.23 92.71

w
w PCFG(GP1) 1,007,563 8,852 4,472 80.34 79.60 79.97 28.79 93.45

PCFG(GP2) 3,952,821 128,822 4,472 84.27 83.98 84.13 37.71 94.39

Table 2: Parsing Accuracy on ‘ws13’ with various models and training sets. Reported are grammar size (#Rule,
#NT, #T); ParsEval precision (P), recall (R), F1, and exact match ratio (Ex) on the original derivation tree; and
tagging accuracy (TA) on the lexical types.

Looking at the specific annotation strategies,
we compared the internal annotations with the ex-
ternal ones. Experiment result shows that when
the grandparent annotation is added, the grammar
size grows quickly. On a huge training set, this
is rewarded with significant accuracy gain. On
the smaller training set though, over-annotating
with grandparents results in a decrease in accu-
racy due to data sparseness. Instead, annotating
with feature-path information increases the gram-
mar size moderately, allowing one to approach the
optimal granularity of the PCFG.

In comparison to the linguistic annotations used
by Klein and Manning (2003) for PTB parsing,
our annotations are less language or treebank spe-
cific. This is due to the fact that the ERG rules
are relatively fine-grained in treating various lin-
guistic constructions. And the most relevant anno-
tations can be gathered from either the grandpar-
ents or the internal feature structure. Such general
design allows us to experiment with other deep
HPSG grammars in the near future.

For the clarity of the experiment, we have cho-
sen not to do constructional pruning or smooth-
ing, and focused our evaluation mostly on parsing
accuracy. This leaves much room for future in-
vestigation. For instance, we observe that a large
portion of the grammar rules have very low fre-
quency counts and almost no impact on the parsing
accuracy. On the other hand, even with the sim-

ple PCFG(GP1), after training with 45M sentences,
the grammar continues to pick up new rules at a
rate of one rule per 160 sentences. Most of these
new rules are the combination of low frequency
supertags.

Last but not the least, given the promising pars-
ing accuracy of the approximating PCFG, we be-
lieve it is worth reconsidering the role of the hand-
written grammars in the deep linguistic process-
ing. In the past, manual grammar engineering
has been taking on the dual role of offering con-
cise and accurate linguistic description on the one
hand, while attending the efficiency and robust-
ness in parsing on the other. The conflicting goal
has hindered the development of large-scale lin-
guistic grammars. The technique as the one pre-
sented in this paper shows one way of liberating
grammarians from the concerns over the process-
ing difficulties.

7 Conclusion

We presented a corpus-driven approach to ap-
proximate a large-scale hand-written HPSG with
a PCFG for robust and accurate parsing. Differ-
ent annotations are used to enrich the derivation
trees. And with the 48M sentence from the En-
glish Wikipedia automatically parsed and disam-
biguated by the ERG, a MLE-based PCFG achieved
F1 of 84.13, higher than the performance of the
discriminative MEM parse selection model (which
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has access to the candidate HPSG parse forest).
The obvious robustness and potential efficiency
advantages of the approximating PCFG suggest its
promising applications in deep linguistic process-
ing.
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Abstract

Radically different approaches have been
proved to be effective for phrase-structure
and dependency parsers in the last decade.
Here, we aim to exploit the divergence in
these approaches and show the utility of fea-
tures extracted from the automatic depen-
dency parses of sentences for a discrimi-
native phrase-structure parser. Our experi-
ments show a significant improvement over
the state-of-the-art German discriminative
constituent parser.

1 Introduction

Both phrase-structure and dependency parsers
have developed a lot in the last decade (Nivre
et al., 2004; McDonald et al., 2005; Charniak
and Johnson, 2005; Huang, 2008). Different ap-
proaches have been proved to be effective for
these two parsing tasks which has implicated a di-
vergence between techniques used (and a grow-
ing gap between researcher communities). In
this work, we exploit this divergence and show
the added value of features extracted from auto-
matic dependency parses of sentences for a dis-
criminative phrase-structure parser. We report re-
sults on German phrase-structure parsing, how-
ever, we note that the reverse direction of our ap-
proach – i.e. defining features from automatic
phrase-structure parses for discriminative depen-
dency parsers – is also manifest which we will ad-
dress as future work.

Some generative parsing approaches exploited
the difference between phrase-structure and de-
pendency parsers. For instance, Klein and Man-
ning (2003) introduced an approach where the ob-
jective function is the product of the probabilities
of a generative phrase-structure and a dependency
parsers. Model 1 of Collins (2003) is based on the
dependencies between pairs of head words. On the
other hand, the related work on this topic for dis-
criminative parsing is sparse, we are only aware
of the following works. Carreras et al. (2008)
and Koo et al. (2010) introduced frameworks for
joint learning of phrase-structure and dependency

parsers and showed improvements on both tasks
for English. These frameworks require special for-
mulation of – one or both – parsing approaches
while our simple approach allows the usage of ar-
bitrary dependency parsers and any feature-based
phrase-structure parser. Wang and Zong (2010)
used automatic dependency parses for pruning the
chart of a phrase-structure parser and reported a
significant improvement. One of our feature tem-
plates can be regarded as the generalization of this
approach.

2 Feature-Rich Parse Reranking

The most successful supervised phrase-structure
parsers are feature-rich discriminative parsers
which heavily depend on an underlying PCFG
(Charniak and Johnson, 2005; Huang, 2008).
These approaches consists of two stages. At the
first stage they apply a PCFG to extract possi-
ble parses. The full set of possible parses can-
not be iterated through in practice, and is usually
pruned as a consequence. The n-best list parsers
keep just the 50-100 best parses according to the
PCFG. Other methods remove nodes and hyper-
edges whose posterior probability is under a pre-
defined threshold from the forest (chart).

The task of the second stage is to select the best
parse from the set of possible parses (i.e. rerank
this set). These methods employ a large feature set
(usually a few millions features) (Collins, 2000;
Charniak and Johnson, 2005). The n-best list ap-
proaches can straightforwardly employ local and
non-local features as well because they decide at
the sentence-level (Charniak and Johnson, 2005).
Involving non-local features is more complicated
in the forest-based approaches. The conditional
random field methods usually use only local fea-
tures (Miyao and Tsujii, 2002; Finkel et al., 2008).
Huang (2008) introduced a beam-search and av-
erage perceptron-based procedure for incorporat-
ing them, however his empirical results show only
minor improvement from incorporating non-local
features. In this study, we experiment with n-best
list reranking and a packed-forest based model as
well along with local features exclusively. Our
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goal is to investigate the extension of the standard
feature set of these models by features extracted
from the automatic dependency parse of the sen-
tence in question.

3 Dependency Parse-Based Features for
Phrase-Structure Parsing

Given the automatic (1-best) dependency parse
of the sentence in question, we defined three
feature templates for representing hyperedges
(i.e. a CFG rule applied over a certain span of
words). We illustrate them on two hyperedges
E1 = (NP die Inseln (PP von Rußland)) and
E2 = (VP fordern (NP die Inseln) (PP von
Rußland)). Let’s assume that the corresponding
dependency subtree consists of the follow-
ing arcs: ROOT→fordern, Inseln DET−−−→die,
fordern OBJA−−−−→Inseln, von PN−−→Rußland,
fordern PP−−→von.

outArc features are counting the dependency
arcs which ”go out” from the constituent in ques-
tion. More precisely we count the words within
the span whose parent in the dependency tree
lays outside the span of words in question. We
use the absolute count and the ratio of outArcs
among the words of the span. The more arcs go
out, the further away is the dependency subtree
over the words of the constituent from a domi-
nating subtree. Hence, these features try to cap-
ture the ”phraseness” of the span of words in
question based on the dependency tree. For E1

we have outArc=2 and outArcRatio=2/4
as the parent of Inseln and von lay outside the
constituent. For E2 we have outArc=1 and
outArcRatio=1/5.

POSRel features intend to tune daughter attach-
ments to the dependency parse based on the POS
tags of the lexical heads. For this we gather the
daughter constituents whose lexical head is linked
in the (undirected) dependency tree to the head of
the parent constituent. We define features from
them using the pair of the two head’s POS tag
and a triplet using the POS tags and the corre-
sponding dependency label. For E1 we cannot
extract features as the lexical head of the par-
ent (Inseln) and the lexical head of the daughter
(von) are not linked in the dependency tree. For
E2 we have the following binary valued features:
VVFIN-NN, VVFIN-NN-OBJA, VVFIN-APPR,
VVFIN-APPR-PP as both daughter attachments

have the corresponding arcs in the dependency
tree.

ConstRel features are similar to POSRel but
use the constituent labels rather than the POS tags
of the heads. Thus, once again we do not have
any positive feature for E1, but for E2 we extract:
VP-NP, VP-NP-OBJA, VP-PP, VP-PP-PP.

We also investigated the role of case
and grammatical functions and extended
the POSRel and ConstRel feature sets
by adding this information to the labels.
For instance besides VVFIN-NN-OBJA
and VP-NP-OBJA from our example E2

we also used VVFIN-NN-Acc-OBJA and
VP-NP-OA-OBJA.

Note that the value of outArc is 1 iff the word
span in question has a dominating dependency
subtree in the automatic parse. Wang and Zong
(2010) prune hyperedges with outArc 6= 1 thus
this feature can be regarded as a generalization of
their approach.

4 Two-Stage Parsing of German

As a first-stage parser, we used BitPar (Schmid,
2004), a fast unlexicalized PCFG parser based on a
first pass where non-probabilistic bottom-up pars-
ing and top-down pruning is efficiently carried out
by storing the chart in bit vectors. Bitpar con-
structs the probabilistic forest only after top-down
pruning, i.e. after computing the posterior proba-
bility of each hyperedge given the input sentence.
The forest is pruned by deleting hyperedges whose
posterior probability is below some threshold.

We used a treebank grammar enriched with
case information, lexicalization of selected prepo-
sitions, conjunctions, and punctuation symbols,
coarse parent category features for adverbs, adver-
bial phrases, prepositions, PPs and special mark-
ers for non-verbal phrases containing a wh expres-
sion, phrases without a head and clauses without
a subject. We applied a second-order markoviza-
tion of rules below a frequency threshold1, but
infrequent second-order Markov symbols are re-
placed by first-order Markov symbols if the fre-
quency is below threshold2. We used simple regu-
lar expressions for unknown word clustering and
estimated POS probabilities for unknown words
of each cluster based on the word suffix. The
relative frequency estimates of the POS probabil-
ities of known words were interpolated with the
respective unknown word POS probabilities using
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Witten-Bell smoothing. To the best of our knowl-
edge Bitpar with this grammar is the state-of-the-
art German generative parser.

At the second stage, we used n-best list and
forest-based rerankers as well. The feature val-
ues of a full possible parse is the sum of the lo-
cal feature vectors (for the hyperedges) (Charniak
and Johnson, 2005). Learning is guided by the
so-called oracle parse which is the full parse in
the set of possible parses most similar to the gold
standard tree. Our oracle extraction method is an
extension of Huang (2008)’s dynamic programing
procedure which takes into consideration POS tag
and grammatical function matches as well and se-
lects hyperedges with higher posterior probability
for tie-breaking. For a detailed description of the
training and supporting algorithms please refer to
Charniak and Johnson (2005) and Huang (2008).

5 Experiments

We evaluate our approach on the Tiger corpora of
the Parsing German Shared Task (PaGe) (Kübler,
2008). Its training, development, and test datasets
consist of 20894, 2611 and 2611 sentences respec-
tively. We decided to use these corpora to be able
to compare our results with other results.

We used the dependency parser of Bohnet
(2010) to generate the parses for the feature extrac-
tion. We selected the parser since it had top scores
for German in the CoNLL Shared Task 2009. The
parser is a second order dependency parser that
models the interaction between siblings as well as
grandchildren. The parser was after the Shared
Task enhanced by a Hash Kernel, which leads to
significantly higher accuracy. We generated the
dependency structures by 10-fold cross-validation
training of the training corpus. The model for the
annotation of the test set and development set was
trained on the entire training corpus.

We evaluated the dependency parses themselves
in line with PaGe. Table 1 shows the labeled
(LAS) and unlabeled attachment scores (UAS) of
the dependency parser and compares it with the
Malt parser (Nivre et al., 2004; Hall and Nivre,
2008), which was the only and therefore best de-
pendency parser that participated in the PaGe’s de-
pendency parsing track. Bohnet’s parser reaches
higher labeled and unlabeled scores. The last row
shows the parsing accuracy with predicted Part-of-
Speech. We used the parses with predicted pos
tags for our reranking experiments.

Table 1: Dependency parser accuracy. 1Gold Part-of-
Speech tags;2Predicted Part-of-Speech tags.

Test Dev.
UAS LAS UAS LAS

Malt1 92.63 90.80 - -
Bohnet1 94.49 92.64 94.80 92.64
Bohnet2 93.69 91.71 93.68 91.70

Regarding the phrase-structure parser,
our grammar extractor used markovization
threshold1 = 20 and threshold2 = 10 resulting
in a grammar with over fifty thousand of rules.
Our prior experiments found the forest pruning
threshold to be optimal at the order of 10−2 which
resulted in packed forests with average node
number of 108. The oracle scores were 87.1 and
91.4 for the 100-best lists and packed forests,
respectively.

At the second stage, we filtered out rare fea-
tures (which occurred in less than 5 sentences).
The new dependency parse-based feature set con-
sists of 9240 and 5359 features before and after
filtering. We employed the ranking MaxEnt im-
plementation of the MALLET package (McCal-
lum, 2002) and the average perceptron training of
the Joshua package (Li et al., 2009). The update
mechanism of the latter one was extended by using
the F-score of the candidate full parse against the
oracle parse as a loss function (see MIRA (Cram-
mer and Singer, 2003) for the motivation). We
used the state-of-the-art feature set of the German
phrase-structure parse reranker of Versley and Re-
hbein (2009) as a baseline feature set. This fea-
ture set is rich and consists of features constructed
from the lexicalized parse tree and its typed de-
pendencies along with features based on external
statistical information (like the clustering of un-
known words according to their context of occur-
rences and PP attachment statistics gathered from
the automatic POS tagged DE-WaC corpus, a 1.7G
words sample of the German-language WWW).
This feature set consists of 1.7 and 0.2 million of
features before and after filtering and enables the
direct comparison of our results with state-of-the-
art discriminative results on German. We use the
evalb implementation of PARSEVAL as evalu-
ation metric hereafter on basic constituent labels
(noGF) and on the conflation of these labels and
grammatical functions (GF). We have to mention
that our F-values are not comparable to the official
results of PaGe – which was our original goal – be-
cause the evaluation metric there was a special im-
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Table 2: Results achieved by dependency feature-based
reranking.

noGF GF
Baseline 78.48 66.34
outArc 79.19 67.21
POSRel 79.99 68.13
ConstRel 79.67 67.72
All 80.20 68.32
All+Case 80.35 68.48

plementation for calculating F-value (which dif-
fers from evalb for example in handling punctua-
tion marks) and it used gold-standard POS tags in
the input (which we thought to be unrealistic). On
the other hand, our results are comparable with re-
sults of Rafferty and Manning (2008) and Versley
and Rehbein (2009).

Table 2 shows the results achieved by the
MaxEnt 100-best list reranker using one out of
the three feature templates alone and their union
(All) on the development set. All+Case refers
to the enriched feature set incorporating case in-
formation for POS tag and grammatical functions
for labels. Baseline here refers to the top parse
of Bitpar (the first stage parser). We note that the
inside probability estimation of Bitpar for an edge
is always in our feature set.

Each of the three feature templates achieved
significant improvements over a strong baseline –
note that our first-stage parser is competitive with
Versley and Rehbein (2009)’s two-stage parser –
. On the other hand, as the All results are just
slightly better than POSRel (the best individual
feature template), the three templates seem to cap-
ture similar patterns. The introduction of case in-
formation also improved the results, thus we in-
corporate them into our final feature set. Table 3
illustrates the added value of the dependency fea-
tures (Dep=All+Case) over the reranking fea-
ture set of Versley and Rehbein (2009) (RR). We
also cite here previously published results on the
same dataset by Rafferty and Manning (2008) (a
generative parser) and Versley and Rehbein (2009)
(a conditional random field-based discriminative
parser). The rows RR, Dep and RR+Dep show
the results achieved by the MaxEnt 100-best list
parser while the AvgPer row show the results of
the forest-based average perceptron approach us-
ing the RR+Dep feature set. We report numbers
only at this feature configuration due to the lack
of space and because the difference between this
and n-best list approaches is similarly moderate at

Table 3: Results achieved by the enriched feature set.
Develop. Test

noGF GF noGF GF
Rafferty’08 77.40 – – –
Versley’09 78.43 67.90 – –
Baseline 78.48 66.29 79.21 66.63
RR 80.51 68.55 80.95 68.67
Dep 80.35 68.48 80.56 68.39
RR+Dep 81.34 69.73 81.49 69.44
AvgPer 81.41 69.67 81.68 69.42

other configurations as well.
The results of Table 3 show that our simple fea-

tures constructed from the automatic dependency
parse of the sentence are as useful as the state-
of-the-art rich feature set for German. Moreover
these two features sets have a certain level of di-
versity as their union could achieve significantly
better results than any of them alone. This is prob-
ably due to fact that most of the RR features are
lexicalized while Dep features are unlexicalized.
Regarding the two discriminative approaches, our
findings are similar to Huang (2008), i.e. the
packed forest-based and n-best list procedures
achieved similar results by using only local fea-
tures. We found that the improvements by apply-
ing the dependency features are similar at the two
evaluation metrics (with and without grammatical
functions).

6 Conclusions and Future Work

We presented experimental results on exploiting
automatic dependency parses in a discriminative
phrase-structure parser. Our simple feature tem-
plates achieved around 1.8 points of improvement
in terms of F-score over Bitpar, the state-of-the-art
generative parser for German and 0.8 when we ex-
tended a rich feature set. Although these results
are promising, we consider them as the first step
on a long road. In the future, we will implement
more sophisticated features derived from depen-
dency parses (like dependency paths rather than
single edges and non-local ones) and investigate
the reverse direction, i.e. whether automatic con-
stituent parses can help dependency parsers.
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Abstract

We compare the use of edited text in the
form of newswire and unedited text in the
form of discussion forum posts as sources
for training material in a self-training exper-
iment involving the Brown reranking parser
and a test set of sentences from an online
sports discussion forum. We find that gram-
mars induced from the two automatically
parsed corpora achieve similar Parseval f-
scores, with the grammars induced from the
discussion forum material being slightly su-
perior. An error analysis reveals that the two
types of grammars do behave differently.

1 Introduction

There have been several successful attempts in re-
cent years to employ automatically parsed data
in semi- and unsupervised approaches to parser
domain adaptation (McClosky et al., 2006b; Re-
ichart and Rappaport, 2007; Huang and Harper,
2009; Petrov et al., 2010). We turn our attention
to adapting a Wall-Street-Journal-trained parser
to user-generated content from an online sports
discussion forum. The sentences on the discus-
sion forum are produced by a group of speakers
who are communicating with each other about a
shared interest and are discussing the same events,
but, who, given the open, unedited nature of the
medium itself, do not follow an in-house writing
style. Our particular aim in this paper is to com-
pare the use of discussion forum comments as a
source of unlabelled training material to the use
of edited, professionally written sentences on the
same theme. We hypothesise that the well-formed
sentences will be more suitable as training mate-
rial since they are likely to be closer syntactically
to the source domain Wall Street Journal (WSJ)
sentences than the noisier discussion forum sen-
tences, while at the same time, remaining lexically
close to the target domain, thus acting as a type of

“self-training bridging corpus” (McClosky et al.,
2006b).

2 Related Work

McClosky et al. (2006b) demonstrate that a WSJ-
trained parser can be adapted to the fiction do-
mains of the Brown corpus by performing a type
of self-training that involves the use of the two-
stage Brown reranking parser (Charniak and John-
son, 2005). Their training protocol is as follows:
sentences from the LA Times are parsed using the
first-stage parser (Charniak, 2000) and reranked in
the second stage. These parse trees are added to
the original WSJ training set and thefirst-stage
parser is retrained. The sentences from the tar-
get domain, in this case, Brown corpus sentences
are then parsed using the newly trained first-stage
parser and reranked using the original reranker, re-
sulting in a Parseval f-score increase from 85.2%
to 87.8%.

McClosky and Charniak (2008) later show that
the same procedure can be used to adapt a WSJ-
trained parser to biomedical text. They also try an
experiment which is very similar to the experiment
described in this paper. Instead of using Medline
abstracts as training material, they use sentences
from a biology textbook under the assumption that
the parses produced for these sentences will be
more accurate (and thus more reliable as training
data) than the sentences in the abstracts since they
are closer to the source domain. They find, how-
ever, that the textbook sentences are less effective
than the target domain material. We attempt to
repeat the experiment with Web 2.0 data, believ-
ing that the two setups are sufficiently different for
our experiment to be worthwhile — our bridging
corpus is closely related in subject matter to our
target corpus (both referring to the same events)
but quite different in form (professionally edited
versus an unedited mix of writing styles), whereas
their bridging corpus is less closely related in con-
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tent (biology textbooks versus Medline abstracts)
and more closely related in form (both profession-
ally edited and syntactically well-formed).

3 Data

Our dataset, summarised in Table 1, consists of a
small treebank of hand-corrected phrase structure
parse trees and two larger corpora of unannotated
sentences.

Discussion Forum Treebank The treebank is
an extension of that described in Foster (2010). It
contains 481 sentences taken from two threads on
the BBC Sport 606 discussion forum in Novem-
ber 2009.1 The discussion forum posts were split
into sentences by hand. The sentences were first
parsed automatically using an implementation of
the Collins Model 2 generative statistical parser
(Bikel, 2004). They were then corrected by hand
using as a reference the Penn Treebank (PTB)
bracketing guidelines (Bies et al., 1995) and the
PTB trees themselves (Marcus et al., 1994). For
more detail on the annotation process, see Foster
et al. (2011). The development set contains 258
sentences and the test set 223. The experiments in
this paper are carried out on the development set
(which we refer to asFootballDev).

Discussion Forum Corpus The same discus-
sion forum used to create the treebank was scraped
during the final quarter of 2010. The content was
stripped of HTML markup and passed through an
in-house sentence splitter and tokeniser, resulting
in a corpus of 1,009,646 sentences. We call this
theFootballTrainDiscussioncorpus.

Edited Text Corpus In order to compare the use
of edited versus unedited text, we also collected a
corpus of professionally written news articles on
the same theme as the discussion forum sentences,
namely, the English Premier League. Content was
scraped from the online BBC sports site2 and arti-
cles dating from April 2010 to February 2011 re-
trieved. Similar preprocessing was carried out on
these as was carried out on theFootballTrainDis-
cussioncontent, i.e. HTML-stripping, sentence
splitting and tokenisation. The resulting corpus,

1http://www.bbc.co.uk/dna/606/F15264075?
thread=7065503&show=50 and http://www.bbc.co.
uk/dna/606/F15265997?thread=7066196&show=50

2http://www.bbc.co.uk/search/sport/
football and http://www.bbc.co.uk/search/
news/football

which we will refer to asFootballTrainEdited,
contains 209,014 sentences.

4 Experiments

We retrain the Brown parser using the self-
training protocol of McClosky et al. (2006b),
that is, we retrain the first-stage parser using
combinations of trees produced by the rerank-
ing parser for sentences from Sections 2 to 21
of the WSJ section of the Penn Treebank and
from FootballTrainEdited|Discussion. We then
parse the sentences inFootballDevusing the re-
trained first-stage parser and the original reranker.

Because we have approximately five times the

Figure 1: Comparing the performance of five gram-
mars trained on disjoint 200k subsections ofFootball-
TrainDiscussionin a Brown self-training experiment.
Results are onFootballDev.

number of sentences inFootballTrainDiscussion
than inFootballTrainEdited, we first train five dif-
ferent FootballTrainDiscussiongrammars. The
graph in Figure 1 shows the results onFootballDev
when the training data contains disjoint subsec-
tions ofFootballTrainDiscussion, each containing
200,000 sentences, along with varying amount of
WSJ2-21trees. This gives us an idea of the amount
of variation we might expect within one train-
ing set source — the f-score noise is roughly 1.5
points wide (= 3 boxes in the graph).

We now turn to the main experiment of the pa-
per, i.e. the comparison ofFootballTrainDiscus-
sion andFootballTrainEdited. The graph in Fig-
ure 2 compares the performance of theFootball-
TrainEditedgrammars with the performance aver-
age over the five types ofFootballTrainDiscussion
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Corpus Name #Sen SL Mean SL Med. σ

FootballDev 258 17.7 14 13.9
FootballTest 223 16.1 14 9.7
FootballTrainDiscussion 1,009,646 15.4 12 13.3
FootballTrainEdited 209,014 17.7 17 11.4

Table 1: Basic Statistics on the Web 2.0 datasets: number of sentences, average sentence length, median sentence
length and standard deviation

Figure 2: Comparing the use of discussion forum ma-
terial (FootballTrainDiscussion) and newswire articles
(FootballTrainEdited) in a Brown self-training experi-
ment. Results are onFootballDev.

grammars onFootballDev. Note that a baseline
grammar which is trained on one copy ofWSJ02-
21 and no automatically parsed data achieves a
Parseval f-score of 79.7. The results in Figure 2
appear to refute our original hypothesis, suggest-
ing that there is very little difference between the
two corpora, with the user-generated content of
FootballTrainDiscussionemerging as slightly su-
perior on our development set.3 The only time that
the FootballTrainEditedcurve is above theFoot-
ballTrainDiscussionis when the size of the orig-
inal WSJ training set is restricted. This is an in-
tuitively appealing result — in this scenario, the
sentences in theFootballTrainEditedcorpus are
making up for the lack of WSJ trained material,
although it is not clear whether this is because the
FootballTrainEditedsentences are slightly longer
than theFootballTrainDiscussionsentences (see

3Keeping theWSJ02-21dataset size constant, we test
whether the difference between aFootballTrainEditedgram-
mar and its five correspondingFootballTrainDiscussion
grammars is statistically significant. Of the 150 pairs, 42 dif-
ferences are statistically significant (p<0.05).

Table 1) or because they contain more WSJ-like
constructions.

5 Analysis

We next attempt to determine the strengths and
weaknesses of the two types of training mate-
rial by classifying our development set items into
those that have improved as a result of self-
training, those that have remained unchanged and
those that have deteriorated. We examine all
edited grammars shown in Figure 2, i.e. the thirty
grammars obtained using 200,000 sentences from
FootballTrainEditedand varying sized copies of
WSJ02-21. For the discussion grammars, we
examine the grammars trained using one of the
five disjoint 200,000-sentence subsets ofFoot-
ballTrainDiscussionand varying sized copies of
WSJ02-21— we randomly choose the grammars
marked with squares in Figure 1. Following Mc-
Closky et al. (2006a), we present a breakdown
of our results according to sentence length, num-
ber of co-ordinating conjunctions (CC) in the sen-
tence, and, number of unknown words4 in the sen-
tence. The results are shown in Tables 2, 3 and 4.
Sentence counts are provided along with average
f-score differences between a self-trained gram-
mar and the baseline grammar.

It is not possible to discern strong patterns in
the breakdown of results but we do observe the
following subtle differences between the two types
of grammars:

• TheFootballTrainEditedgrammars are more
conservative than theFootballTrainDiscus-
siongrammars, with a larger number of sen-
tences unchanged by self-training.

• The FootballTrainDiscussiongrammars out-
perform theFootballTrainEdited grammars
for short sentences.

4A word is considered to be unknown if it does not appear
at all inWSJ02-21.
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Table 2: Effect of Self-Training Broken Down by Sentence Length
Discussion 1-9 10-19 20-29 30-39 40-59 >= 60 TOTAL

Better 339 (+21.4) 761 (+14.7) 643 (+11.0) 229 (+9.6) 271 (+12.5) 65 (+5.7) 2308 (+13.6)
No Change 1853 1760 444 119 27 7 4210

Worse 118 (-26.6) 329 (-8.3) 443 (-7.7) 192 (-7.0) 92 (-7.1) 48 (-5.3) 1222 (-9.4)
TOTAL 2310 (+1.8) 2850 (+3.0) 1530 (+2.4) 540 (+1.6) 390 (+7.0) 120 (+1.0) 7740 (+2.6)

Edited 1-9 10-19 20-29 30-39 40-59 >=60 TOTAL
Better 237 (+20.6) 667 (+12.3) 543 (+10.8) 218 (+10.4) 213 (+9.2) 97 (+7.5) 1975 (+12.1)

No Change 1985 1934 656 202 29 1 4807
Worse 88 (-18.5) 249 (-6.8) 331 (-9.4) 120 (-5.8) 148 (-6.3) 22 (-2.5) 958 (-8.5)

TOTAL 2310 (+1.4) 2850 (+2.3) 1530 (+1.8) 540 (+2.9) 390 (+2.6) 120 (+5.6) 7740 (+2.0)

Table 3: Effect of Self-Training Broken Down by Number of Coordinating Conjunctions in a Sentence
Discussion 0 1 2 3 4 TOTAL

Better 1286 (+16.5) 631 (+11.1) 312 (+9.1) 0 (—) 79 (+5.5) 2308 (+13.6)
No Change 3061 981 131 30 7 4210

Worse 573 (-10.8) 518 (-8.3) 97 (-8.8) 0 (—) 34 (-4.6) 1222 (-9.4)
TOTAL 4920 (+3.0) 2130 (+1.3) 540 (+3.7) 30 120 (+2.3) 7740 (+2.6)

Edited 0 1 2 3 4 TOTAL
Better 1052 (+14.5) 561 (+10.0) 234 (+9.8) 18 (+5.2) 110 (+6.3) 1975 (+12.1)

No Change 3414 1168 212 12 1 4807
Worse 454 (-9.6) 401 (-8.0) 94 (-5.4) 0 (—) 9 (-3.6) 958 (-8.5)

TOTAL 4920 (+2.2) 2130 (+1.1) 540 (+3.3) 30 (+3.1) 120 (+5.5) 7740 (+2.0)

Table 4: Effect of Self-Training Broken Down by Number of Unknown Words in a Sentence
Discussion 0 1 2 3 4 5 >=6 TOTAL

Better 488 (+16.2) 865 (+10.8) 360 (+11.2) 319 (+19.1) 91 (+15.8) 107 (+11.9) 78 (+17.2) 2308 (+13.6)
No Change 2028 1277 584 223 58 30 10 4210

Worse 274 (-14.0) 408 (-7.5) 406 (-9.5) 58 (-6.3) 31 (-5.3) 13 (-4.2) 32 (-5.7) 1222 (-9.4)
TOTAL 2790 (+1.5) 2550 (+2.5) 1350 (+0.1) 600 (+9.6) 180 (+7.1) 150 (+8.1) 120 (+9.7) 7740 (+2.6)

Edited 0 1 2 3 4 5 >=6 TOTAL
Better 330 (+14.9) 758 (+11.1) 329 (+8.8) 328 (+15.7) 55 (+14.0) 94 (+9.5) 81 (+10.4) 1975 (+12.1)

No Change 2291 1352 800 241 91 32 0 (—) 4807
Worse 169 (-13.5) 440 (-7.0) 221 (-8.6) 31 (-3.8) 34 (-7.4) 24 (-1.6) 39 (-11.2) 958 (-8.5)

TOTAL 2790 (+1.0) 2550 (+2.1) 1350 (+0.8) 600 (+8.4) 180 (+2.9) 150 (+5.7) 120 (+3.4) 7740 (+2.0)

• TheFootballTrainEditedgrammars appear to
perform better than theFootballTrainDiscus-
sion grammars when there are a relatively
high number of coordinating conjunctions in
a sentence (greater than two).

• Self-training with both FootballTrainDis-
cussionand FootballTrainEditeddata tends
to benefit sentences containing several un-
known words, with the discussion grammars
being superior.

6 Conclusion

We compare the use of edited versus unedited
text in the task of adapting a WSJ-trained parser
to the noisy language of an online discussion fo-
rum. Given the small size of our development
set, we have to be careful how we interpret the
results. However, they do seem to suggest that
the two corpora are performing at similar levels
of effectiveness but exhibit differences. For ex-
ample, if we take the best performingFootball-
TrainEdited and FootballTrainDiscussiongram-
mars from those used in our error analysis of Sec-
tion 5, we get two grammars with a Parseval f-
score of 83.2 onFootballDev. Assuming the ex-
istence of a perfect classifier, which, given an in-
put sentence, can predict which of the two gram-
mars will produce the higher-scoring tree, the f-

score forFootballDevincreases from 83.2 to 85.6.
When we include the baseline grammar (f-score:
79.7), this increases to 86.4. This suggests that the
next step in our research is to build such a classi-
fier including as features the sentential properties
we examined in Section 5, as well as the features
described in McClosky et al. (2010) and Ravi et
al. (2008).
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Abstract

In this paper, we give a summary of vari-
ous dependency chart parsing algorithms in
terms of the use of parsing histories for a
new dependency arc decision. Some pars-
ing histories are closely related to the tar-
get dependency arc, and it is necessary for
the parsing algorithm to take them into con-
sideration. Each dependency treebank may
have some unique characteristics, and it re-
quires for the parser to model them by cer-
tain parsing histories. We show in experi-
ments that proper selection of the parsing al-
gorithm which reflect the dependency anno-
tation of the coordinate structures improves
the overall performance.

1 Introduction

In data-driven graph-based parsing, a chart parser
is frequently combined with a learning method to
derive and evaluate the parse forest and output the
optimal parse tree (Chen et al., 2010; Koo and
Collins, 2010). The proper selection of a parsing
algorithm is important for efficiency and correct-
ness.

Chart parsing is the realization of dynamic pro-
gramming for syntactic analysis. It is suitable
for ambiguous grammars, for example, the gram-
mars of natural languages. Practically, accord-
ing to the diverse implementations of dynamic
programming for dependency syntactic analysis,
there are a number of dependency chart parsing
algorithms. In this paper, we list a number of
bottom-up dependency chart parsing algorithms in
terms of their use of the parsing histories (sec-
tion 2).

Incorporating parsing histories into parse tree
decoding requires changes to the parsing algo-
rithm. For instance, when decoding a dependency
by including the most recently detected sibling
arc, a modified parsing algorithm has been used

in (McDonald et al., 2006) in contrast to the al-
gorithm used in (McDonald et al., 2005). Parsing
histories are partial results generated from previ-
ous parsing steps. In a chart parser, these histories
can be used in subsequent parsing steps. Previous
works have shown that the use of parsing histories
helps to resolve syntactic ambiguities (Yamada
and Mastumoto, 2003; Nivre et al., 2007b; Mc-
Donald et al., 2006; Carreras, 2007; Chen et al.,
2010). Obviously, using more histories provides
better parsing disambiguation. However, there is
a trade-off between using more histories and pars-
ing efficiently. One option is to incorporate only
important histories. The selection of different his-
tories requires changes to the parsing algorithm.

Another reason for the careful selection of pars-
ing algorithms is from the diverse dependency an-
notation strategies. The dependency annotations
for the same linguistic structures, i.e., coordinate
structures can vary (Section 3.1). Additionally,
in our opinion, some linguistic or corpus-oriented
characters exist for each training data set. Differ-
ent parsing algorithms are required to deal with the
diversity of the corpus.

2 Dependency Chart Parsing Algorithms

A chart parser is the realization of dynamic pro-
gramming for syntactic analysis. It parses all the
substrings of the input sentence and stores the
corresponding sub-parse-trees in a data structure
called a chart. Dependency chart parsers can be
categorized into constituent-based and span-based
parsers depending on the type of substring each
cell of the chart yields.

The main difference between constituent-based
and span-based algorithms lies in the type of sub-
strings they process. A constituent-based algo-
rithm identifies and parses substrings correspond-
ing to constituents and a span-based algorithm
does on substrings corresponding to spans.

A constituent-based algorithm is a modification
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of a phrase-structure (PS) chart parsing algorithm.
In a constituent-based dependency parser, the head
word of the substring is derived instead of the non-
terminal of PS parsing, and information related to
the head word is stored in corresponding cell of
the chart. In a modified CYK algorithm(Younger,
1967), the cell reserves the possibility for each
word of the substring to be the head. Thus, n kinds
of sub-dependency-trees are reserved for process-
ing a substring of length n. The space complexity
for a cell is O(n), and the overall space complexity
is O(n3) and time complexity is O(n5) for parsing
of a sentence of length n. For a detailed descrip-
tion, refer to (Nivre, 2006).

A span is a half-constituent that is formed by
splitting a constituent at the position of its head
(Eisner and Satta, 1999). The span is character-
ized by the head being located either on the left
or right edge. In the span-based dependency chart
parser proposed by (Eisner and Satta, 1999), there
are two kinds of subtrees reserved in each cell of
the chart, i.e., the head is the left-most word or the
right-most word. Given this condition, Eisner’s al-
gorithm can parse with a time complexity of O(n3)
and a space complexity of O(n2).

In bottom-up parsing, either a constituent-based
or a span-based algorithm derives parse tree for
a sequence by combining two (or more) sub-
sequences with a new dependency arc. These sub-
sequences have been parsed in earlier steps, and
they are called as parsing histories. These histo-
ries are frequently used for a better evaluation of
the new dependency arc (Chen et al., 2010). Ta-
ble 1 lists a number of dependency chart parsing
algorithms. Each of them adopts different method
to derive a new parse tree from couple of smaller
sequences. In the following, we discuss in detail
how these algorithms differ in their use of the pars-
ing histories for the new dependency arc decision.

2.1 Constituent-Based Algorithms

Table 1 lists the step for various dependency chart
parsing algorithms to decide a new dependency
arc connecting h(ead) and d(ependent). and
present the constituents dominated by h and d re-
spectively.

The derivation of the new constituent in Alg. 1
(Table 1) is processed in one-step, and the one-
step processing can be defined as the function f
of Alg. 1, which involves three parameters: two
constituents and and the evaluation of the

dependency arc . The dependency between
(h, d) is evaluated by score(h, d, ( , )) de-
fined in Table 1. Here, ( , ) is the context of
parsing histories, which are available for the new
dependency arc detection in Alg. 1.

Algs. 2-4 listed in Table 1 are variants of Alg. 1,
and the derivation of the new constituent over
smaller constituents in these algorithms is pro-
cessed in two steps. In Alg. 2, the first step com-
bines one constituent with the detection of the de-
pendency arc, and the process is represented by the
function f ( , ); the combination of the sec-
ond constituent represented as f ( ), is processed
at the second step (Table 1, Alg. 2). With such a
two-step operation, parsing histories available for
the decision of the arc in Alg. 2 is (h, ).
Comparing to Alg.1 of ( , ), the histories in-
cluded in is not available in Alg.2. One benefit
of such a two-step operation is that it reduces the
time complexity O(n5) of Alg. 1 to O(n4).

In Algs. 3 and 4, one of the constituents is di-
vided into two parts (spans). The first step com-
bines the constituent with the closer span and
makes a decision about the new dependency arc.
The other span is attached to the result of the first
step. The available parsing histories is ( , )
for Alg.3, and ( , ) for Alg.4.

The two-step processing requires the reserva-
tion of the partial results generated at the first step:

for Alg. 2, for Alg. 3, and for Alg. 4
(Table 1). Reserving these partial results in the
chart in addition to the constituent , only in-
creases the constant factor, the overall space com-
plexity remains as O(n3).

For more information on Algs. 2 and 3 see (Eis-
ner and Satta, 1999). and Alg. 4 see (Jin, 2011).

2.2 Span-Based Algorithms

Alg. 5 is the span-based algorithm proposed
by (Eisner, 1996). The algorithm has been
widely used in data-driven graph-based depen-
dency parsers, because of its efficiency by parsing
with a complexity of O(n3). When combined with
a learning method, the training for a data-driven
parser involves repeatedly decoding of parse trees.
Parsing efficiency is an important factor in such
an approach. Some extensions to Alg. 5 have been
proposed (Carreras, 2007; McDonald et al., 2006)
with the aim of enriching the information avail-
able for new dependency arc detection. The work
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Chart combinations
Combination function Time / Space

Score function for new dependency arc Complexity

Alg. 1
f( , , )

O(n5)/ O(n3)

score
(

h, d, ( , )
)

Alg. 2
f ( ) + f ( , )

O(n4)/ O(n3)

score
(

h, d, ( h, )
)

Alg. 3
f ( ) + f ( , , )

O(n4)/ O(n3)

score
(

h, d, ( , )
)

Alg. 4
f ( , , ) + f ( )

O(n4)/ O(n3)

score
(

h, d, ( , )
)

Alg. 5
f ( , , ) + f ( )

O(n3)/ O(n2)

score
(

h, d, ( , )
)

Alg. 6
f ( , , , )

O(n4)/ O(n2)

score
(

h, d, ( , , )
)

Table 1: Comparison of various dependency chart parsing methods. The dashed part is attached in step2. Algs. 5-6
are span-based algorithms, during the step of right-side span construction, the shadowed left-side span remains
unchange.

of (Koo and Collins, 2010) is a similar propose of
the method of Alg. 2 on span-based algorithms.

In terms of the use of the parsing histories, the
amount of information available for a new depen-
dency arc decision with Alg. 5 is ( , ), which
is about half of ( , ) of Alg.1. Some common
but important relations between pair of dependents
for some corpora, such as the relation between the
left and right dependents of a head (the pair of de-
pendency arcs shown in Fig. 1(a)), cannot be mod-
eled using such an algorithm.

Alg. 6 (Table 1), is an alternative to Alg. 5.
The two-step operation in Alg. 5 merges and be-
comes a one-step operation in Alg. 6 by direct
processing over three spans ( , , ) . Such
a ternary-span combination increases the parsing
histories from ( , ) of Alg.5 to three spans as
( , , ) (see the score function of Alg. 6 in
Table 1). However, the time complexity of Alg.6

increases from O(n3) of Alg.5 to O(n4). Compar-
ing to other O(n4) algorithms, Algs.2-4, Alg. 6 is
more efficient with a small constant factor. The
space complexity is also modest as O(n2) which is
the same as that for Alg. 5.

The relation between the left and right depen-
dents of a head can be modeled using Alg. 6.
In span-based algorithms, the left and right spans
sharing the head are treated independently, and the
relations between the left and right dependents are
often ignored in previous span-based algorithms.
To our knowledge, Alg. 6 is the first span-based
algorithm to model this. For detailed implementa-
tion of Alg.5 refer to (Eisner and Satta, 1999), and
Alg.6 to (Jin, 2011).

3 Diverse Dependency Annotation
Strategies

Since the CoNLL’06 shared tasks for multilingual
dependency parsing (Buchholz and Marsi, 2006),
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(a) CCH (b) CCD.I (c) CCD.II

Figure 1: (a) CCH; (b) and (c) two cases of CCD, with
left conjunct as head.

it has become common to construct a universal
parser to derive parse trees of diverse languages
in a unified way, with less consideration about the
varieties among corpora.

In addition to the variations of different lan-
guage, there are some variations because of the
diverse strategies for dependency annotations. It
is clear that a subject or an object takes a verb
as its head. However, for the case of preposi-
tion vs. noun, or complementizer vs. verb in
sub-clauses, there are various dependency anno-
tation strategies. Such diversities of dependency
annotation need corresponding changes for pars-
ing algorithms. Since the same linguistic struc-
tures are presented differently with different an-
notation strategies. In section 3.1, we discuss for
such changes required for the case of coordinate
structures.

3.1 Diversity for Denpendency Annotation of
Coordinate Structures

There are various strategies for annotating depen-
dencies of coordinate structures. These include,
coordinate conjunction as head (CCH), and co-
ordinate conjunction as dependent (CCD) strate-
gies (McDonald and Nivre, 2007), and CCD can
further be categorized into two cases illustrated in
Figures 1(b) and 1(c).

Coordinate structures are characterized by sym-
metries between conjuncts. The symmetries are
important clues for the disambiguation of coor-
dinate structure. The different dependency anno-
tation strategies for coordinate structures require
different methods to model the symmetry shar-
ing between conjuncts. For CCH-type coordinate
structures, it is essential for the parser to model the
pair of dependents shown in Figure 1(a). Existing
span-based approaches (McDonald et al., 2006;
Carreras, 2007; Koo and Collins, 2010) do not
model such relations. That explains why the av-
erage performance for CCH-type coordinate struc-
tures is about 15% to 20% lower than that of CCD-
type in the work of (McDonald et al., 2006), ac-
cording to the analysis given in (McDonald and

Corpus
2nd-order1 Alg. 6

(McDonald et al., 2006)
overall coord. overall coord.

Chinese 88.29% 81.66% 89.41% 85.09%
Slovene 78.93% 58.79% 80.32% 74.06%

1 The results of MSTParser(V0.2), which is available from
http://www.seas.upenn.edu/˜strctlrn/MSTParser/MSTParser.html

Table 2: Results of experiment.

Nivre, 2007). Considering the frequent use of co-
ordinate structures among sentences, for hight per-
formance parsing, it is crucial to select a parsing
algorithm that can parse such structures well.

4 Experiments

We conduct our experiments on two data sets, the
Chinese corpus of CoNLL’07 (Nivre et al., 2007a),
and the Slovene corpus of CoNLL’06 (Buchholz
and Marsi, 2006) shared task for multilingual de-
pendency parsing track. Both corpora are of the
CCH-type.

Table 2 lists the performance of two systems,
i.e., the 2nd-order system of (McDonald et al.,
2006) and the proposed system with Alg. 6 (Ta-
ble 1) as the parse tree decoder. As the discussions
given in the previous section, the 2nd-order gives
low performance for coordinate structures com-
pared to the overall parsing results. The proposed
system gives better coordinate disambiguation by
modeling the relation between dependents located
on different-sides of the head.

5 Conclusion

In this paper, we categorize bottom-up depen-
dency chart parsing algorithms into constituent-
based and span-based algorithms according to the
strings each identifies and parses. We further cat-
egorize algorithms in terms of the use of parsing
histories for new dependency arc detection. We
show that proper selection of the parsing algorithm
helps to improve the overall parsing performance.
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Abstract

We present a perspective on parser evalua-
tion in a context where the goal of parsing
is to extract meaning from a sentence. Us-
ing this perspective, we show why current
parser evaluation metrics are not suitable for
evaluating parsers that produce logical-form
semantics and present an evaluation metric
that is suitable, analysing some of the char-
acteristics of this new metric.

1 Introduction

A plethora of parser evaluation metrics exist,
which evaluate different types of information,
at different levels of granularity, using different
methods of calculation. All attempt to measure the
syntactic quality of parser output, but that is not
the only goal of parsing. The DELPH-IN consor-
tium1 has produced many grammars of different
languages, as well as a number of parsers, all with
the aim of extracting meaning from text. In order
to drive development, we need a parser evaluation
metric that evaluates against that goal. That is,
we require a metric that measures semantic rather
than syntactic output. In the following section,
we reflect on and categorize the semantic informa-
tion we wish to evaluate, and discuss how current
metrics partially overlap with this framework. We
then, after describing some of the specifics of the
tools we work with, present an evaluation metric
that fits within the given framework, and show, us-
ing a couple of case studies, some characteristics
of the metric.

2 Semantic Information

Our primary goal in parsing is to extract meaning
from text. To evaluate progress towards this goal
in a granular fashion, one needs to break up the
semantic information into discrete elements. For

1Seehttp://www.delph-in.net for background.

this purpose, we distinguish three broad classes of
information that contribute to meaning:

class 1 core functor – argument structure,
whether syntactic or semantic

class 2 predicate information, such as the
lemma, word category, and sense

class 3 properties of events and entities,
such as tense, number, and gender

The widely-usedPARSEVAL metric (Black et
al., 1991) evaluates phrase structure, which covers
none of these classes directly. Dependency-based
evaluation schemes, such as those used by Malt-
Parser (Nivre et al., 2004) and MSTParser (Mc-
Donald et al., 2005) evaluateclass 1surface infor-
mation. The annotation used in the Briscoe and
Carroll (2006) DepBank for parser evaluation also
describes justclass 1syntactic information, al-
though the relationships are different to those that
MaltParser or MSTParser produce. The annota-
tion of the original King et al. (2003) PARC700
DepBank does describe all three classes of infor-
mation, but again in terms of syntactic rather than
semantic properties.

A common element between all the dependency
types above is the use of grammatical relations to
describeclass 1information. That is, the depen-
dencies are usually labels likeSUBJ, OBJ, MOD,
etc. While these grammatical functions allow
one to describe the surface linguistic structure,
they do not make the underlying deep structure
explicit. This deep structure describes semantic
rather than syntactic arguments and can be seen
in resources such as the Prague Dependency Tree-
bank (Böhmová et al., 2003) and the Redwoods
Treebank (Oepen et al., 2004b). Using this se-
mantic argument structure for parser evaluation
not only gets closer to the actual sentence mean-
ing that we are trying to extract, but is potentially
more general, as there is generally wider agree-
ment on semantic arguments than on, for example,
whether the main verb depends on the auxiliary, or
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vice versa.2

3 Background

The parser that we will be evaluating in this work
encodes its semantic output in the form of Mini-
mal Recursion Semantics (Copestake et al., 2005),
although the derivation that we use for the evalu-
ation metric should be compatible with any parser
that produces information in classes given in the
previous section.

3.1 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is a flat se-
mantic formalism that represents semantics as a
bag ofelementary predications and a set of under-
specified scopal constraints. An elementary pred-
ication can be directly related to words in the text,
or can reflect a grammatical construction, such as
compounding. Each elementary predication has a
relation name, a label and a distinguished variable
(designatedARG0). Arguments of a predication
are identified by ‘bleached’ARGn roles (which are
to be semantically interpreted for classes of pred-
icates). Figure 1 shows the MRS analysis ofHe
persuaded Kim to leave. Here we see six elemen-
tary predications, four with text referents and two
as construction-specific covert quantifiers. The
ARG1, ARG2 and ARG3 roles of the verbal pred-
icates describe the predicate–argument relations
and demonstrate co-indexation between theARG2

of persuade and theARG1 of leave. Entity and
event variables carry properties such as gender or
tense. An evaluation scheme based on MRS there-
fore allows us to evaluateclass 1information us-
ing the roles,class 2information through predi-
cate names andclass 3information from the prop-
erties of the distinguished variables.

3.2 Setup

We will use the PET parser (Callmeier, 2000) and
associated grammars as our test environment to
evaluate. The traditional accuracy metric for PET
has been sentence accuracy which requires an ex-
act match against the very fine-grained gold analy-
sis, but arguably this harsh metric supplies insuffi-

2At the same time, we wish to focusparser evaluation on
information determined solely by grammatical analysis, i.e.
all contributions to interpretation by syntax, and only those.
For these reasons, the task of semantic role labeling (SRL)
against PropBank-style target representations (Kingsbury et
al., 2002) is too far removed from parser evaluation proper;
Copestake (2009) elaborates this argument.

cient information about parser performance on its
own. In order to evaluate a parser for its use in
an application, we are also interested in knowing
how good the top ranked parse is, rather than only
whether it is the very best parse possible. Even
if the goal of evaluation were just parser devel-
opment, a nuanced granular evaluation may help
reveal what types of mistakes a parser is making.

4 EDM: Elementary Dependency Match

In addition to our focus on semantic information,
we considered two other requirements for an ef-
fective parser evaluation metric. It should be:

1. understandable not just by parser developers,
but also potential users of the parser.

2. configurable to suit the level of detail re-
quired for a particular scenario.

4.1 Elementary Dependencies

The metric we have devised to satisfy these
requirements is Elementary Dependency Match
(EDM), based on so-called Elementary Depen-
dencies (EDs), a variable-free reduction of MRS
developed by Oepen and Lønning (2006).3 In
our work, we use sub-string character spans (e.g.
<3:12>) to identify nodes in the dependency graph,
to facilitate alignment of corresponding elements
across distinct analyses. In keeping with our infor-
mation classes, this allows us to separate the eval-
uation of class 2information fromclass 1. Our
EDM metric hence consists of three triple types
which align with the three information classes:

ARGS: spani rolej spank

NAMES: spani NAME relationi

PROPS: spani propertyj valuej

In these forms,relation is the predicate name
of an elementary predication from the MRS,role

is an argument label such asARG1, property

refers to an attribute such asTENSE or GEND and
value is an appropriate instantiation for the re-
spective property. Figure 2 shows the triples pro-
duced for the MRS in Figure 1. The text segment
associated with each character span is shown for
illustrative purposes, but is not part of the triple.

During evaluation, we compare the triples from
the gold standard analysis with that ranked top by

3In more recent work, Copestake (2009) shows how es-
sentially the same reduction can be augmented with informa-
tion about the underspecified scope hierarchy, so as to yield
so-called Dependency MRS (which unlike EDs facilitates bi-
directional conversion from and to the original MRS).
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〈h1,
h3:pron<0:2>(ARG0 x4{PERS 3, NUM sg, GEND m, PRONTYPE std pron}),
h5:pronoun q<0:2>(ARG0 x4, RSTR h6, BODY h7),
h8: persuade v of<3:12>(ARG0 e2{SF prop, TENSE past, MOOD indicative}, ARG1 x4, ARG2 x10, ARG3 h9),
h11:proper q<13:16>(ARG0 x10{PERS 3, NUM sg}, RSTR h12, BODY h13),
h14:named<13:16>(ARG0 x10, CARG Kim),
h15: leave v 1<20:26>(ARG0 e16{SF prop-or-ques, TENSE untensed, MOOD indicative}, ARG1 x10, ARG2 p

17
)

{ h12 =q h14, h9 =q h15, h6 =q h3 } 〉

Figure 1: MRS representation ofHe persuaded Kim to leave.

“He” <0:2> ARG0 <0:2> “He”
“persuaded” <3:12> ARG1 <0:2> “He”
“persuaded” <3:12> ARG2 <13:16> “Kim”
“persuaded” <3:12> ARG3 <20:26> “leave.”

“Kim” <13:16> ARG0 <13:16> “Kim”
“leave.” <20:26> ARG1 <13:16> “Kim”

“He” <0:2> NAME pronoun q
“He” <0:2> NAME pron

“persuaded” <3:12> NAME persuade v of
“Kim” <13:16> NAME proper q
“Kim” <13:16> NAME named

“leave.” <20:26> NAME leave v 1

“He” <0:2> GEND m
“He” <0:2> NUM sg
“He” <0:2> PERS 3
“He” <0:2> PRONTYPEstd pron

“persuaded” <3:12> MOOD indicative
“persuaded” <3:12> SF prop
“persuaded” <3:12> TENSE past

“Kim” <13:16> NUM sg
“Kim” <13:16> PERS 3

“leave.” <20:26> MOOD indicative
“leave.” <20:26> SF prop-or-ques
“leave.” <20:26> TENSE untensed

Figure 2: Gold triples forHe persuaded Kim to leave.

the parser, and calculate precision, recall and F1-
score across all triples, as well as across the three
separate triple types (NAME, ARG andPROP).

4.2 Alternate Configurations

The full EDM metric weights each triple equally
which may not be ideal for all scenarios. The divi-
sion by triple type gives one alternative view that
provides a more complete picture of what sort of
mistakes are being made by the parser. For par-
ticular applications, it might be that onlyclass 1
information will be used, and in that case just mea-
suringARGs might be a better metric. Further fine-
tuning is possible by assigning weights to individ-
ual predicate types via a configuration file similar
to the parameter files used with the EvalBPARSE-
VAL script (Sekine and Collins, 1997). This will
allow a user to, for example, assign lower weight
to entity properties, or only evaluateARG1 and

ARG2 roles. One particular configuration we have
found useful is to assign zero weight to thePROP

triples and only evaluateARGs andNAMEs. While
the class 3information is useful for applications
such as machine translation, and ideally would be
evaluated, some applications don’t make use of
this information, and so, in certain scenarios, it
makes sense to ignore these triples in evaluation.
This configuration produces a metric broadly sim-
ilar to the CCG dependencies used by Clark and
Curran (2007) and also to the predicate argument
structures produced by the Enju parser (Miyao and
Tsujii, 2008), in terms of the information classes
included, although the CCG dependencies again
encode syntactic rather than semantic structure.

5 Analysis

To get some idea of the numeric range of the dif-
ferent EDM configurations, we parsed a section of
the SemCor corpus (Miller et al., 1994) using the
English Resource Grammar (ERG: (Flickinger,
2000)), and then calculated the average F1-score
for each rank, as ranked by the statistical model
packaged with the ERG. Figure 3 shows the
relative differences between five configurations:
all triples together (EDM), theNAME, ARG and
PROP triple types separately (EDMN , EDMA

and EDMP , respectively) and measuring just the
NAME andARG types together (EDMNA).

We can see that all configurations show approx-
imately the same trends, and maintain their rela-
tive order. EDMP is consistently higher, which
follows from the fact that many of the properties
are inter-dependent, and that the parser enforces
agreement. Most difficult to identify correctly is
the ARG type, which represent the core semantic
arguments. All of the scores are quite high, even at
the 40th rank parse, which is due to using a highly
constrained grammar with fine-grained analyses
that can vary in only small details.

To get a different view of the information that
EDM provides, we looked at different scenarios
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Figure 3: Average F1 score at each rank (up to 40).

Config 1 Config 2
Sent. Acc. 0.095 0.093

P R F P R F
EDM 0.847 0.677 0.753 0.847 0.693 0.763
EDMNA 0.796 0.635 0.707 0.798 0.652 0.717
EDMA 0.778 0.620 0.690 0.780 0.637 0.701
EDMN 0.815 0.651 0.724 0.815 0.668 0.734
EDMP 0.890 0.714 0.792 0.890 0.729 0.801

Table 1: Comparing unknown word handling configu-
rations.

that allow us to see relative differences in parser
performance, measured using EDM and variants,
as well as the traditional sentence accuracy.

5.1 Cross-Configuration

One possible evaluation scenario involves chang-
ing a parameter in the parser and measuring the
effect. The results in Table 1 come from parsing
a single corpus using a variant of the ERG with a
much smaller lexicon in order to test two unknown
word handling configurations.

The sentence accuracy figures are very low,
since the grammar has been limited, and show no
real difference between the two configurations. In
the EDM results, we can see that, while the preci-
sion between the two configurations is very simi-
lar, recall is consistently lower for Config 1 (which
had a slightly better sentence accuracy).

5.2 Cross-Grammar

In this comparison, we look at two different
grammars, over parallel test data.4 The Span-
ish Resource Grammar (SRG: (Marimon et al.,
2007)) also produces MRS, although properties
are treated differently, so we leave out the EDM

4The MRS test suite was constructed to represent a range
of phenomena and consists of 107 short sentences which have
been translated into multiple languages, maintaining parallel
MRS analyses as far as possible.

SRG ERG
Sent. Acc. 0.95 0.85

P R F P R F
EDMNA 0.97 0.97 0.97 0.92 0.93 0.92
EDMA 0.96 0.95 0.95 0.90 0.91 0.90
EDMN 0.98 0.98 0.98 0.93 0.95 0.94

Table 2: Comparing between the SRG and ERG gram-
mars over a parallel test suite.PROP type triples are
excluded for compatibility.

and EDMP metric for compatibility and compare
to ERG performance over the same small test set.

While the SRG is a less mature grammar, and
does not analyse the full range of constructions
that the ERG parses, EDM allows us to compare
over items and information types that both gram-
mars cover, and in Table 2 we can see that the SRG
ranking model performs better over this data.

6 Conclusion

The current range of parser evaluation metrics
all evaluate the syntactic quality of parser output,
which makes them unsuitable to evaluate parsers
which aim to output semantic analysis. The EDM
metric we describe here allows us to evaluate the
semantic output of any parser that can encode
information in the Minimal Recursion Semantic
framework, and indeed, the derivation that we use
should be generalisable to any logical-form se-
mantic output. This metric can measure three dif-
ferent classes of deep semantic information, and
can be configured to evaluate whatever level is
suitable for the potential application, or for the
parser being evaluated. We have demonstrated that
EDM and its variants, together with sentence ac-
curacy, can give a detailed picture of how accu-
rately a parser can extract meaning from text, al-
lowing useful comparisons in a variety of circum-
stances. Furthermore, since MRS is used in appli-
cations and other semantic research (Oepen et al.,
2004a; Dridan, 2007; Schlangen and Lascarides,
2003; Fuchss et al., 2004), the metric we have de-
scribed here may prove useful in other areas where
semantic comparison is required.
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Barbora Hladká. 2003. The Prague Depen-
dency Treebank: A three level annotation sce-
nario. In Anne Abeill, editor,Treebanks: build-
ing and using parsed corpora. Springer.

Ted Briscoe and John Carroll. 2006. Evaluat-
ing the accuracy of an unlexicalised statistical
parser on the PARC DepBank. InProceed-
ings of the 44th Annual Meeting of the ACL and
the 21st International Conference on Computa-
tional Linguistics, pages 41–48, Sydney, Aus-
tralia.

Ulrich Callmeier. 2000. PET - a platform for
experimentation with efficient HPSG process-
ing techniques. Natural Language Engineer-
ing, 6(1):99–107.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models.Computational Linguis-
tics, 33(4):493–552.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and
Carl Pollard. 2005. Minimal Recursion Seman-
tics: an introduction. Research on Language
and Computation, 3(4):281–332.

Ann Copestake. 2009. Invited talk: Slacker se-
mantics: Why superficiality, dependency and
avoidance of commitment can be the right way
to go. InProceedings of the 12th Conference of
the European Chapter of the ACL (EACL 2009),
pages 1–9, Athens, Greece.

Rebecca Dridan. 2007. Using Minimal Recur-
sion Semantics in Japanese question answering.
Master’s thesis, The University of Melbourne.

Dan Flickinger. 2000. On building a more ef-
ficient grammar by exploiting types.Natural
Language Engineering, 6(1):15–28.

Ruth Fuchss, Alexander Koller, Joachim Niehren,
and Stefan Thater. 2004. Minimal recursion se-
mantics as dominance constraints: Translation,
evaluation, and analysis. InProceedings of the
42nd Annual Meeting of the ACL, pages 247–
254, Barcelona, Spain.

Tracy Holloway King, Richard Crouch, Stefan
Riezler, Mary Dalrymple, and Ronald M. Ka-
plan. 2003. The PARC 700 Dependency Bank.
In Proceedings of the LINC-03 Workshop, pages
1–8, Budapest, Hungary.

Paul Kingsbury, Martha Palmer, and Mitch Mar-
cus. 2002. Adding semantic annotation to the
Penn treebank. InProceedings of the Human
Language Technology 2002 Conference, pages
252–256, San Diego, California.

Montserrat Marimon, Núria Bel, and Natalia
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med trollet? Towards MRS-based Norwegian—
English machine translation. InProceedings
of the 10th International Conference on Theo-
retical and Methodological Issues in Machine
Translation, pages 11–20, Baltimore, USA.

Stephan Oepen, Dan Flickinger, Kristina
Toutanova, and Christopher D. Manning.
2004b. LinGO redwoods: a rich and dynamic
treebank for HPSG. Journal of Research in
Language and Computation, 2(4):575–596.

David Schlangen and Alex Lascarides. 2003.
A compositional and constraint-based approach
to non-sentential utterances. InProceedings
of the 10th International Conference on Head-
Driven Phrase Structure Grammar, pages 380–
390, East Lansing, USA.

Satoshi Sekine and Michael Collins. 1997.
EvalB: a bracket scoring program.http://
nlp.cs.nyu.edu/evalb/.

230



Proceedings of the 12th International Conference on Parsing Technologies, pages 231–240,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

Parsing of Partially Bracketed Structures for Parse Selection

Mark-Jan Nederhof
School of Computer Science

University of St Andrews
St Andrews, United Kingdom

Ricardo Sánchez-Śaez
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Abstract

We consider the problem of parsing a sen-
tence that is partially annotated with infor-
mation about where phrases start and end.
The application domain is interactive parse
selection with probabilistic grammars. It
is explained that the main obstacle is spu-
rious ambiguity. The proposed solution is
first described in terms of appropriately con-
strained synchronous grammars, and then in
terms of a computational model for parsing.
Experiments show the feasibility for a prac-
tical grammar.

1 Introduction

In interactive parse selection, the objective is to
obtain correct parses of sentences in a corpus, by
means of an iterative process, alternately draw-
ing upon a language model and human linguistic
judgement. In a first step, the most likely parse is
computed on the basis of the model. This parse
is displayed to the human annotator, who looks
for possible errors and enters corrections. Each
correction takes the form of an occurrence of a
phrase that the parse should contain. The model
is then consulted anew, to recompute the most
likely parse, but now under the constraint that all
occurrences of phrases entered previously by the
linguist must be included. This process is re-
peated until no more errors remain. Applications
can be found in creation of treebanks (Marcus et
al., 1993) and computer-assisted translation (Bar-
rachina et al., 2009).

Apart from the exact language model used in
the process, there are various ways to implement
interactive parse selection. One obvious approach
is to demand that errors are corrected strictly from
left to right. That is, where the occurrence of a

phrase is asserted by the annotator, it is implic-
itly assumed that all phrases in the latest proposed
parse that are wholly contained in the preceding
prefix are correct. This means that these struc-
tures in a left-hand portion of the parse tree can
no longer change in future iterations.

Another degree of freedom in the design of in-
teractive parse selection is the exact information
that the human annotator provides about occur-
rences of phrases. The most obvious choice would
be a triple consisting of the beginning, the end, and
the syntactic category (‘noun phrase’, ‘preposi-
tional phrase’, etc.). If desired, the category could
be omitted or underspecified. This approach has
been implemented for example by Sánchez-Sáez
et al. (2009; 2010).

The main motivation for interactive parse selec-
tion is that it saves the human annotator manual
labour, by automatic prediction of at least parts of
parses that very often are correct. With the crite-
rion of minimizing human effort, it not clear how-
ever that the optimal design of interactive parse
selection is of the kind outlined above, with a
strictly left-to-right strategy, and with specifica-
tion of both the beginning and the end for each
corrected phrase. One objection against the left-
to-right strategy is that errors may be temporarily
overlooked. Typical implementations may allow
backtracking to deal with this situation, but back-
tracking entails that work needs to be redone.

One objection against having to specify the be-
ginning as well as the end of a corrected phrase
is firstly that this requires more mouse clicks or
keyboard strokes than if, say, only the correct be-
ginning of a phrase were specified. Furthermore,
for long and complex sentences, it may be tedious
to determine both phrase boundaries.

For these reasons we explore a less rigid alter-
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native, namely to allow the human annotator to
specify only the beginning of a phrase, or only the
end of a phrase. This is formalized in the remain-
der of this paper as an unmatched open bracket, or
an unmatched close bracket. Such a bracket may
be labelled with a category or not. Parse selec-
tion is not constrained to be unidirectional, and at
each iteration, brackets can be placed at arbitrary
positions in the input sentence, and thereupon the
most likely parse is (re-)computed that is consis-
tent with the provided brackets so far.

In our notation, the unmatched brackets are
written as square brackets. We refer to them as
‘unmatched’ because the user need not specify
both the beginning and end of a phrase. However,
usersmayspecify both the beginning of a phrase
and the end of the same phrase, by a square open
and a square close bracket, if they so choose.

Next to unmatched brackets, we also allow
matched brackets in the input, which in our no-
tation are written as round brackets. These must
always occur in pairs of one open bracket and one
close bracket, specified together by the user. Un-
like square brackets, pairs of round brackets must
be properly nested. As square brackets, round
brackets may be labelled by categories or may be
unlabelled. Sentences enriched with matched and
unmatched brackets will be calledpartially brack-
etedstrings.

As we will informally illustrate in the follow-
ing section, parsing of partially bracketed strings
by context-free grammars causes particular prob-
lems. The main issue is spurious ambiguity, by
which one input string may be parsed in different
ways all corresponding to one and the same parse
tree by the input grammar. Where the language
model is used to compute the most likely parse,
performance may suffer from having one compu-
tation computed in more than one way. A more
serious consequence is that computation of inside
probabilities is hindered by subparses being rep-
resented more than once. Alson-best parsing al-
gorithms no longer work correctly without further
refinements.

The main contribution of this article is to offer
a solution to avoiding all spurious ambiguity. Our
theoretical framework is that of order-preserving
synchronous context-free grammars, to be sum-
marized in Section 3. With this machinery, map-
pings between unbracketed, bracketed and par-
tially bracketed strings will be presented in Sec-

tion 4. A sketch of a proof that spurious ambiguity
is avoided as claimed is the subject of Section 5.
The actual parsing process, which is based on Ear-
ley’s algorithm, is presented in Section 6.

Section 7 discusses an implementation. The
practicality of our approach is demonstrated by
experiments measuring running time. In addition,
some possible optimizations are proposed. We end
our paper with conclusions, in Section 8.

The issue of avoiding spurious ambiguity was
considered before by (Wieling et al., 2005). Our
treatment differs in that the solution is at the same
time more precise, in terms of synchronous CFGs
rather than grammar transformations, and more
succinct, using simpler constraints on allowable
structures. Also novel is our parsing algorithm,
which is versed towards practical application. Ear-
lier work on partially bracketed strings, such as
that by Pereira and Schabes (1992), has involved
matching brackets only.

2 Informal Illustration

Let us consider the following example context-
free grammar:

NP → Adj NP | N
Adj → big | angry
N → dog

(The vertical bar separates alternative right-hand
sides for the same left-hand side nonterminal sym-
bol.)

The language of all fully bracketed strings is
generated by the following grammar:

NP → (NP Adj NP )NP | (NP N )NP

Adj → (Adj big )Adj | (Adj angry )Adj

N → (N dog )N

We can make such bracketed strings less precise
by:

1. omitting labels of categories at brackets,
and/or

2. replacing a matching pair of round brackets
by a pair of square brackets, of which zero,
one or both may then be omitted.

For example, we can ‘fuzzify’ a fully bracketed
string:

(NP (Adj big )Adj (NP (Adj angry )Adj

(NP (N dog )N )NP )NP )NP (1)
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by a partially bracketed string:

big angry ( dog ) ]NP (2)

Note there is little point in omitting the label of
one round bracket from a pair of matching brack-
ets without also omitting it from the other bracket
in the pair. This is because the one omitted label
could be reconstructed from the remaining label
by casual inspection of the string.

The language of all partially bracketed strings
can thus be naively specified by a context-free
grammar where next to a rule of the form:

A → (A α )A

we also have a rule of the form:

A → ( α )

and nine rules of the form:

A → y(l) α y(r)

wherey(l) is one of[A, [, or the empty stringε, and
y(r) is one of]A, ], or ε.

However, with the resulting grammar, the par-
tially bracketed string in (2) can be parsed in five
different ways, four of which are illustrated in Fig-
ure 1. The trees in (a) and (b) differ in the place-
ment of]NP to the right of a right-most path in the
parse tree with more than one node labelledNP;
in fact, there are three different nodes to which]NP

can be attached. The trees in (c) and (d) differ from
those in (a) and (b) in the placement of the pair of
unlabelled round brackets on either side of a path
in the parse tree involving only unit rules (that is,
rules with right-hand sides of length one).

Because the original grammar was unambigu-
ous, the existence of five different parse trees
for the partially bracketed string should be seen
as spurious ambiguity, given the task of finding
parses of “big angry dog” that are consistent with
the collection of brackets inserted into that string.
As we will explain in more detail later in this arti-
cle, this problem of spurious ambiguity is avoided
by demanding that brackets occur as high as pos-
sible. In the example, this means that the round
brackets are placed around “N” as in (c) or (d)
rather than around “dog” as in (a) or (b). Fur-
ther, ]NP is attached to the highest possible node
labelledNP as in (d) rather than (c). Thus, our
parser would return only the tree in (d). It is not
difficult to see there is always a unique way of
placing brackets as high as possible.

3 Preliminaries

In order to formalize the main problem and its so-
lution, we turn to a restricted type of synchronous
context-free grammar (SCFG), in notation similar
to that in Satta and Peserico (2005). A SCFGG
defines a relation between a source language gen-
erated by a context-free grammarG1 and a target
language generated by a context-free grammarG2.
In the general case, each ‘synchronous’ rule inG
has the form〈A → α,B → β〉, whereA → α is a
rule inG1 andB → β is a rule inG2. The number
of nonterminal symbols inα must equal that inβ.

Each such synchronous rule〈A → α,B → β〉
is also associated with a bijection from the nonter-
minal occurrences inα to the nonterminal occur-
rences inβ. By this bijection, one may express a
reordering of constituents between source and tar-
get structures. In this paper, we will consider a
restricted type of SCFG without such reordering,
or put differently, the bijection implicitly maps the
i-th nonterminal occurrence inα to thei-th nonter-
minal occurrence inβ. We will call this restriction
OP-SCFG (order-preservingSCFG).

Let G be an OP-SCFG as above, withS1 the
start symbol ofG1 andS2 the start symbol ofG2.
We first define relationsT (A,B)

G between pairs of
languages, forA a nonterminal inG1 andB a non-
terminal inG2, to be the smallest relations such
that:

1. existence of a synchronous rule

〈A → w0A1w1 · · ·wn−1Amwm,

B → v0B1v1 · · · vm−1Bmvm〉 (3)

2. existence for1 ≤ i ≤ m of stringsxi andyi

such thatxi T
(Ai,Bi)
G yi

together imply that:

w0x1w1 · · · xmwm T
(A,B)
G v0y1v1 · · · ymvm

The transductionTG generated byG is now defined

to beT (S1,S2)
G .

For each 4-tuple (x,A,B, y) such that

x T
(A,B)
G y we can build at least one derivation

tree that shows in reverse howx T
(A,B)
G y was

obtained. More precisely, such derivation trees
can be inductively defined as follows. Let there be
a synchronous rule as in (3), and let eachti, with
1 ≤ i ≤ m, be a derivation tree associated with
a 4-tuple(xi, Ai, Bi, yi) such thatxi T

(Ai,Bi)
G yi.
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Figure 1: Four parses of the same partially bracketed string.

Then a derivation tree can be constructed for the 4-
tuple (x,A,B, y), wherex = w0x1w1 · · · xmwm

andy = v0y1v1 · · · ymvm, by a root node labelled
by the above synchronous rule, and its (ordered)
children are the roots ofti.

Similar to the notion of ambiguity in CFGs,
we say that a pair(x, y) is ambiguous for a fixed
SCFG if more than one derivation tree can be as-
sociated with the 4-tuple(x, S1, S2, y). We say the
SCFG is ambiguous if there is at least one ambigu-
ous pair(x, y). For an example of these concepts,
see the following section.

In this paper, we will assume there are no ep-
silon rules, i.e., rules with empty right-hand sides.

4 Bracketed and Partially Bracketed
Strings

The parsing problem for a CFGG can be de-
scribed in terms of a transduction from unbrack-
eted strings to fully bracketed strings, by means of
the OP-SCFGGbracket that has one synchronous
rule:

〈A → α,A → (A α )A〉

for each ruleA → α in G. The stringsy such that
x TGbracket

y each describe one parse ofx according
to the input CFGG.

A naive transduction to fuzzify fully bracketed
strings can be defined in terms of a SCFGGnaive
of which the synchronous rules are, for each rule
A → α in the input grammar:

• 〈A → (A α )A, A → (A α )A〉,

• 〈A → (A α )A, A → ( α )〉,

• 〈A → (A α )A, A → y(l) α y(r)〉, for all nine
combinations ofy(l) ∈ {[A, [, ε} andy(r) ∈

{]A, ], ε}.

The problem with spurious ambiguity that was the
subject of discussion in Section 2 can now be ex-
pressed in formal terms, as ambiguity of SCFG
Gnaive . Concretely, one and the same fully brack-
eted string can be mapped to one and the same par-
tially bracketed string in different ways. This is
particularly relevant if the transduction is used in
reverse, mapping a given partially bracketed string
to fully bracketed strings, or in other words, build-
ing parse trees according to the input grammar.
As explained in the introduction, the problems this
causes include increased running time, and failure
of probabilistic models andn-best algorithms.

To illustrate this, let us revisit the example from
Figure 1, which corresponds to the following in-
put/output pair:

( (NP (Adj big )Adj (NP (Adj angry )Adj

(NP (N dog )N )NP )NP)NP ,

big angry ( dog ) ]NP ) (4)

With Gnaive , there are five different derivation
trees through which this pair can be obtained. For
example, the tree in Figure 1 (d), which we regard
as the preferred one, corresponds to application of
the following rules:

〈 NP → (NP Adj NP)NP , NP → Adj NP]NP 〉 ,

〈 Adj → (Adj big )Adj , Adj → big 〉 ,

〈 NP→ (NP Adj NP)NP , NP→ Adj NP〉 ,

〈 Adj → (Adj angry )Adj , Adj → angry 〉 ,

〈 NP→ (NP N )NP , NP→ ( N ) 〉 ,

〈 N → (N dog )N , N → dog 〉

As solution we propose a refined SCFGGfuzzy .
It specifies the same transduction asGnaive , but
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now without ambiguity. Intuitively, we ensure that
any brackets in a partially bracketed string are at-
tached as high as possible. Because there can be at
most one way of doing this that corresponds to a
fully bracketed string, the implication is that there
can be at most one derivation tree for each combi-
nation of a source stringx and a target stringy.

The SCFGGfuzzy conceptually keeps records
of where brackets are attached by replacing non-
terminalsA in all possible ways by nonterminals
A(s(l), s(r)), where the valuess(l) ands(r) are ei-
ther ǫ or a bracket. If such a value is a bracket,
that means that this bracket was attached to the
nearest descendant to which it could be attached,
in the left-most (fors(l)) or right-most (fors(r))
path downwards in the parse tree. The definition of
Gfuzzy disallow situations where this bracket could
be moved to the current node, because that would
imply that the bracket is not attached as high as
possible. Note that there is a finite number of
choices fors(l) ands(r), so that the rules are still
within context-free power.

The synchronous rules ofGfuzzy are specified in
Table 1. As expressed by (5) and (6), the round
brackets from the source language can be replaced
with unlabelled or square brackets. If in the target
language there is an open round bracket, either la-
belled or unlabelled, then the close bracket must
be of the same form, and vice versa.

As is clear from (7), only nonterminals are ex-
tended with two arguments. Terminals inΣ are
copied unchanged from source language to target
language. The first line of (8) says that if the cur-
rent rule is a unit rule, and if a pair of round brack-
ets were attached to a node further down, possibly
along more occurrences of unit rules, then there
must be a reason why these brackets cannot be at-
tached to the current node, and the only reason can
be that other bracketsy(l) 6= ε or y(r) 6= ε are al-
ready attached to the current node. The second
and third lines similarly exclude situations where
a square bracket was placed further down, while it
could be attached to the current node.

The information about brackets attached to the
current node, or brackets from further down if no
brackets are attached to the current node, is passed
on bottom-up, as expressed by (9). For technical
reasons, we need to augment the grammar with a
new start symbol, as shown in (10).

5 Correctness

Two properties ofGfuzzy are of interest. The first
is thatTGfuzzy

equalsTGnaive
, and the second is that

Gfuzzy is unambiguous. The first proof is tedious,
but the intuition is simple: if we are given a deriva-
tion tree associated with 4-tuple(x, S, S, y) where
x TGnaive

y, for a fully bracketed stringx and par-
tially bracketed stringy, then we can systemat-
ically change this derivation tree, to preservex

andy but move brackets to be attached as high as
possible in the parse tree ofy. With this attach-
ment of brackets, we can straightforwardly map
this derivation tree into a derivation tree associ-
ated with(x, S†, S†, y) wherex TGfuzzy

y, ensuring
that the constraint in (8) is satisfied. Conversely, if
x TGfuzzy

y then clearlyx TGnaive
y.

The unambiguity ofGfuzzy can be argued as fol-
lows. First, ifGfuzzy were ambiguous, then there
would be a pair(A,B) of nonterminals and a pair
(x, y) of strings, with the length ofxy minimal
andAB minimal according to some fixed lexico-
graphical ordering, such that two or more differ-
ent derivation trees can be associated with 4-tuple
(x,A,B, y) wherex T

(A,B)
Gfuzzy

y. Because of the
minimality of xy andAB, the two derivation trees
must differ in the synchronous rule at the root,
each of which must be of the form in (5). The
remainder of the proof consists of a large number
of case distinctions, and in each the task is to show
a contradiction, by violation of (8). For example,
supposey starts with[ and the two synchronous
rules differ in that one hasy(l) = [ and the sec-
ond hasy(l) = ε. Then in the second case, the
[ must be generated by a rule further down in the
derivation tree, which would violate (8).

6 Parsing

In this section we simplify the discussion by look-
ing only at the context-free rules in the right parts
of the synchronous rules defined in Table 1. These
rules generate the right projection ofTGfuzzy

. We
will discuss a recognition algorithm on the basis
of these rules, with the tacit assumption that this
can be extended to a parsing algorithm, to obtain
fully bracketed strings as output, for a given par-
tially bracketed strings as input.

Naively, one could use any parsing algorithm
instantiated to the set of rules in the right parts
of (5). For example, one could use the classical
Earley algorithm (Earley, 1970; Stolcke, 1995).
This manipulates items of the formJ〈A → α •
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For given CFGG, with setN of nonterminals, setΣ of terminals, and start symbolS ∈ N , the SCFG
Gfuzzy has one synchronous rule:

〈 A → (A X1 · · ·Xm )A, A(s
(l)
0 , s

(r)
0 ) → y(l) Y1 · · ·Ym y(r) 〉 (5)

for each ruleA → X1 · · ·Xm in G, for each choice of the pair:

(y(l), y(r)) ∈ {((A, )A), ((, ))} ∪ {[A, [, ε} × {]A, ], ε} (6)

and for each choice of pairs:

(s
(l)
i , s

(r)
i ) ∈ {((B, )B) | B ∈ N} ∪ {((, ))} ∪ ({[B | B ∈ N} ∪ {[, ε})× ({]B | B ∈ N} ∪ {], ε})

for eachi (1 ≤ i ≤ m) such thatXi ∈ N , and(s
(l)
i , s

(r)
i ) = (ε, ε) for eachi such thatXi ∈ Σ, and:

Yi =

{

Xi(s
(l)
i , s

(r)
i ) if Xi ∈ N

Xi if Xi ∈ Σ
(7)

under the following constraints:

m = 1 ∧ (s
(l)
1 , s

(r)
m ) ∈ {((A, )A), ((, ))} → (y(l) 6= ε ∨ y(r) 6= ε) ∧

(s
(l)
1 = [A ∨ s

(l)
1 = [) → y(l) 6= ε ∧

(s
(r)
m = ]A ∨ s

(r)
m = ]) → y(r) 6= ε

(8)

and:

(s
(l)
0 , s

(r)
0 ) =































































(y(l), y(r)) if (y(l), y(r)) ∈ {((A, )A), ((, ))}

(s
(l)
1 , s

(r)
m ) if m = 1 ∧ y(l) = y(r) = ε ∧ (s

(l)
1 , s

(r)
m ) ∈ {((B, )B) | B ∈ N \ {A}}

(s(l), s(r)) otherwise, where:

s(l) =







y(l) if y(l) ∈ {[A, [}

s
(l)
1 if y(l) = ε ∧ s

(l)
1 ∈ {[B | B ∈ N \ {A}}

ε otherwise

s(r) =







y(r) if y(r) ∈ {]A, ]}
s
(r)
m if y(r) = ε ∧ s

(r)
m ∈ {]B | B ∈ N \ {A}}

ε otherwise

(9)

Gfuzzy further has one synchronous rule:

〈 S† → S, S† → S(s(l), s(r)) 〉 (10)

for each choice of the pair:

(s(l), s(r)) ∈ {((B, )B) | B ∈ N} ∪ {((, ))} ∪ ({[B | B ∈ N} ∪ {[, ε})× ({]B | B ∈ N} ∪ {], ε})

whereS† is a new symbol.

Table 1: The SCFGGfuzzy constructed out of CFGG.
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β〉, i, jK, which means that of a ruleA → αβ from
the grammar, the first partα has been processed
and was found to generate the substringai+1 · · · aj
of a fixed input stringa1 · · · an.

The problem is that there is a very large num-
ber of rules as in the right parts of (5). This num-
ber is in fact exponential in the lengthm of the
largest rule from the original grammarG. Casual
inspection of the constraints on the rules in Table 1
reveals however that only the values ofs

(l)
0 , s

(r)
0 ,

y(l), s(l)1 , s(r)m , y(r) are ever used in the current rule.

The values ofs(l)i for 1 < i ≤ m and the values of

s
(r)
i for 1 ≤ i < m can be safely ignored.

We therefore let the parser manipulate items of
the formJ〈A(s

(l)
0 , s

(r)
0 ) → α′ •β′〉, [s

(l)
1 , s

(r)
m ], i, jK

whereα′β′ = y(l);α; y(r) andA → α is a rule in
G. Each such item can be seen as an abbreviation
of an item for the Earley algorithm for the right
parts in (5), leaving out fields that are not useful.
The values ofs(l)0 , s

(r)
0 , y(l), s

(l)
1 , s

(r)
m , y(r) are ini-

tially the empty string, and are gradually filled in
as these values become known.

The recognition algorithm is presented as de-
duction system in Table 2. Step (11) is the ini-
tialization step of Earley’s algorithm and Step (12)
straightforwardly corresponds to the predictor
step. Steps (14), (15) and (17) correspond to the
scanner step of Earley’s algorithm. In the side
condition of (17), the constraints on the allowable
combinations ofy(l), s

(l)
1 , s

(r)
m , y(r) are checked,

ands
(l)
0 ands

(r)
0 are determined on the basis of the

other values.

The steps (13) and (16) have no direct equiv-
alent in Earley’s original algorithm. They are
motivated by the intention to give uniform treat-
ment to context-free rules with and without brack-
ets. Step (18) straightforwardly corresponds to the
completer step of Earley’s algorithm, given the ab-
breviated form of our items, as explained above.
Acceptance is expressed by step (19).

Deduction systems like this have a com-
mon algorithmic interpretation; see for example
McAllester (2002). The time complexity of our
algorithm isO(n3 · |G|2), where|G| is the size of
the input grammar. This can be brought down as
usual toO(n3 · |G|) using techniques from Gra-
ham et al. (1980), which bring the complexity in
line with the best known practical parsing algo-
rithms for context-free grammars. Note that if the
values ofs(l)0 , s

(r)
0 , y(l), s

(l)
1 , s

(r)
m , y(r) in an item

J〈A(s
(l)
0 , s

(r)
0 ) → α′ • β′〉, [s

(l)
1 , s

(r)
m ], i, jK, with

α′β′ = y(l);α; y(r), are anything other thanǫ, then
they are uniquely determined byi andj. It is for
this reason that the number of possible labelled
and unlabelled brackets does not contribute an ex-
tra factor to the time complexity.

The recognition algorithm can also be straight-
forwardly extended to compute the most likely
parse or the inside probability, similarly to how
this is done by Jelinek et al. (1992). Note that un-
ambiguity is essential in the latter case. The prob-
abilities manipulated by the parser would then be
based on the probabilities of rules from the orig-
inal grammar, similarly to how this is normally
done in probabilistic parsing algorithms based
on Earley’s algorithm (Stolcke, 1995; Nederhof,
2003).

7 Experiments

We have implemented the construction from Ta-
ble 1 and the parsing algorithm from Table 2. Our
aim was to assess the feasibility in practical terms.
The latter algorithm was based on an implemen-
tation of the standard Earley algorithm, which we
used as a base line. The implementation language
is C++ and the experiments were performed on a
laptop computer with a 2.66 GHz Intel Core 2 Duo
processor.

First, a context-free grammar was extracted
from sections 2-21 of the Penn Treebank, with No-
Transform and NoEmpties as in (Klein and Man-
ning, 2001), and unary rules were collapsed. This
grammar has 84613 rules, 372 nonterminals and
44389 terminals (words). With this grammar, we
parsed the (unbracketed) sentences from section
23 that had length 10 or less. Of these, 92 sen-
tences were outside the language generated by the
grammar and were discarded. Parsing of the re-
maining 178 sentences using the standard Earley
algorithm took 8m27s in total.

Next, we tried to construct a context-free gram-
mar that generates partially bracketed sentences
without spurious ambiguity, as the right-projection
of the construction in Table 1. Predictably, this
was found to be infeasible for any but very small
subsets of our input grammar, because of the expo-
nential behaviour in the length of right-hand sides.

Lastly, the extended Earley algorithm from Ta-
ble 2 was applied on the same 178 sentences, but
now in partially bracketed form. We started with
the fully bracketed sentences, as they appear in
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Initialize
J〈S(ε, ε) → •;α; 〉, [ε, ε], 0, 0K

{

(S → α) ∈ G (11)

Predict J〈A(ε, ε) → y(l);α •Bβ; 〉, [s
(l)
1 , s

(r)
m ], i, jK

J〈B(ε, ε) → •; γ; 〉, [ε, ε], i, iK

{

(B → γ) ∈ G (12)

No open J〈A(ε, ε) → •;α; 〉, [ε, ε], i, iK

J〈A(ε, ε) → ; •α; 〉, [ε, ε], i, iK
(13)

Open J〈A(ε, ε) → •;α; 〉, [ε, ε], i, iK

J〈A(ε, ε) → y(l); •α; 〉, [ε, ε], i, i + 1K

{

y(l) = ai+1 ∈ {(A, (, [A, [} (14)

Scan J〈A(ε, ε) → y(l);α • aβ; 〉, [s
(l)
1 , s

(r)
m ], i, jK

J〈A(ε, ε) → y(l);αa • β; 〉, [s
(l)
1 , s

(r)
m ], i, j + 1K

{

a = aj+1 (15)

No close J〈A(ε, ε) → y(l);α•; 〉, [s
(l)
1 , s

(r)
m ], i, jK

J〈A(s
(l)
0 , s

(r)
0 ) → y(l);α; •〉, [s

(l)
1 , s

(r)
m ], i, jK

{

the constraint in (8) withy(r) = ε

(s
(l)
0 , s

(r)
0 ) defined by (9)

(16)

Close J〈A(ε, ε) → y(l);α•; 〉, [s
(l)
1 , s

(r)
m ], i, jK

J〈A(s
(l)
0 , s

(r)
0 ) → y(l);α; y(r)•〉, [s

(l)
1 , s

(r)
m ], i, j + 1K







y(r) = aj+1 ∈ {)A, ), ]A, ]}
the constraint in (8)

(s
(l)
0 , s

(r)
0 ) defined by (9)

(17)

Complete

J〈A(ε, ε) → y(l);α •Bβ; 〉, [s
(l)
1 , s

(r)
m ], i, jK

J〈B(t
(l)
0 , t

(r)
0 ) → z(l); γ; z(r)•〉, [t

(l)
1 , t

(r)
m′ ], j, kK

J〈A(ε, ε) → y(l);αB • β; 〉, [u
(l)
1 , u

(r)
m ], i, kK























u
(l)
1 =

{

t
(l)
0 if α = ε

s
(l)
1 otherwise

u
(r)
m =

{

t
(r)
0 if β = ε

s
(r)
m otherwise

(18)

Accept J〈S(s
(l)
0 , s

(r)
0 ) → y(l); γ; y(r)•〉, [s

(l)
1 , s

(r)
m ], 0, nK

accept
(19)

Table 2: Recognition of partially bracketed strings.
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p time
0.0 25m33s
0.2 68m08s
0.4 51m07s
0.6 34m36s
0.8 21m02s
1.0 11m48s

Table 3: CPU time for recognition of sentences of
length≤ 10 from section 23 of the Penn Treebank, for
a varying probabilityp.

the treebank, and then randomly omitted a vary-
ing percentage of brackets and category labels.

This process of ‘fuzzifying’ a fully bracketed
sentence proceeds in stages, with one potential
step turning a bracket pair(A )A into [A ]A. If
this step does not happen, there is another poten-
tial step turning(A )A into ( ). For each labelled
square bracket individually, a step may remove the
label, which is then optionally followed by a step
removing the bracket altogether. The process is
parameterized with a valuep, which expresses the
probability that a step of fuzzifying does not hap-
pen. Hence,p = 0 means that all annotation is
removed andp = 1 means that all brackets and
labels are kept.

The results are given in Table 3. The first row of
the table corresponds to the sentences in unanno-
tated form. The running time is higher than the
baseline of the standard Earley algorithm. This
was to be expected, as there are some extra steps in
Table 2, introduced for handling of brackets, and
these steps are performed even if the input con-
tains no brackets at all. Nonetheless, the running
time is of the same order of magnitude.

In the next few rows of the table we see that the
running time increases further. Again, this is to be
expected, as the presence of brackets induces mul-
tiple instances of parsing items where there would
be only one in the unbracketed case. When close
to 100 % of the brackets are maintained, the run-
ning time again decreases. This is because the
brackets reduce ambiguity.

One may object that the parsing of fully brack-
eted sentences should take close to 0 seconds, as
those sentences are already parsed. However, we
have not introduced any further optimizations to
the Earley algorithm apart from those presented in
Table 2, and the predictive nature of the algorithm
leads to many steps creating different partial anal-

yses at an open bracket of which all but one is dis-
carded upon finding the matching close bracket.

The main objective was to investigate to which
extent parsing of partially bracketed structures is
possible, under the constraint that no spurious am-
biguity should arise. Our experiments show that
the running time is of the same order of magnitude
as parsing of unbracketed strings using the stan-
dard Earley algorithm. Further refinements can be
expected to reduce the running time.

For example, we found a straightforward op-
timization that is realized by letting parts of the
check from condition (8) happen as soon as pos-
sible, rather than delaying them until completion
of an item in (16) or (17). In concrete terms, the
compatibility of an open brackety(l) and the value
of s

(l)
1 coming from the first member in the right-

hand side can be checked as soon as that first mem-
ber is known. This and other optimizations lead to
a more involved formulation however, and for pre-
sentational reasons we abstain from further discus-
sion.

Further note that the general ideas that led to
Table 2 starting from the construction in Table 1
can as easily be used to derive other parsing al-
gorithms for partially bracketed strings, using any
other parsing strategy such as the bottom-up Ear-
ley algorithm (Sikkel, 1997) and left-corner pars-
ing (Rosenkrantz and Stearns, 1970).

8 Conclusions

This paper has introduced a sound and elegant the-
oretical framework for processing partially brack-
eted strings. That is, an input string may contain
any combination of matched or unmatched and la-
belled or unlabelled brackets.

Our theory, which uses synchronous CFGs, led
us to a procedure based on Earley’s algorithm. Its
effectiveness was shown in experiments using a
practical grammar. Despite having implemented
few optimizations, we found that the time mea-
surements show promising results, and consider-
able speed-ups may be expected by further refine-
ment of the implementation. Use for the purpose
of interactive parse selection therefore seems fea-
sible. Further work will be needed to determine to
which extent linguists benefit from being able to
specify partially bracketed structures.
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Abstract

To detect errors in automatically-obtained
dependency parses, we take a grammar-
based approach. In particular, we develop
methods that incorporate n-grams of differ-
ent lengths and use information about pos-
sible parse revisions. Using our methods
allows annotators to focus on problematic
parses, with the potential to find over half
the parse errors by examining only 20% of
the data, as we demonstrate. A key result
is that methods using a small gold gram-
mar outperform methods using much larger
grammars containing noise. To perform
annotation error detection on newly-parsed
data, one only needs a small grammar.

1 Introduction and Motivation

There is a need for high-quality dependency an-
notation for the training and evaluation of depen-
dency parsers (Buchholz and Marsi, 2006), ideally
large amounts of annotated data. This is a lofty
goal for any language, especially languages with
few, if any, annotated resources. Citing Abeillé
(2003), Hwa et al. (2005) say: “it appears that ac-
quiring 20,000-40,000 sentences — including the
work of building style guides, redundant manual
annotation for quality checking, and so forth – can
take from four to seven years.” As pointed out by
Dickinson (2010), a major bottleneck in obtain-
ing annotation involves the need for human correc-
tion, leading to the following process: 1) automati-
cally parse corpora (van Noord and Bouma, 2009),
which will contain errors, and 2) identify prob-
lematic parses for human post-processing. We de-
velop this second step of detecting errors.

In particular, there is the problem of hav-
ing little annotated data to work with, as in the
cases of: lesser-resourced languages (e.g., Ambati
et al., 2010; Simpson et al., 2009), new annotation
schemes, and new domains with limited in-domain

annotated data (e.g., Plank and van Noord, 2010).
In these situations, there is a large cost to annotate
data, and parsing results are worse than in cases
with more annotated training data (Nivre, 2010).

We develop error detection methods based on a
coarse grammar, comparing parsed rules to rules
in a grammar in order to identify anomalies, as
outlined in section 2. This is akin to theoretically-
driven work in treebanking, where a grammar is
used to guide treebank annotation (e.g., Oepen
et al., 2004; Rosén et al., 2005; Bond et al., 2004),
but it shares an insight with work incorporat-
ing grammatical information to improve parsing,
namely that even simple grammatical information
can inform parse output (e.g., Plank and van No-
ord, 2010; Ambati, 2010; Seeker et al., 2010).

Our methods are simple and efficient, requir-
ing no additional parsing technology. This is es-
pecially beneficial for lesser-resourced languages,
and, as we describe in section 3, makes the meth-
ods applicable to any treebanking scenario. Also,
we want to know “which linguistic constructs are
hard to analyze” (Goldberg and Elhadad, 2010a).
Framing parse failures in terms of grammatical
anomalies makes them easily interpretable, lead-
ing to quicker annotation decisions, as systematic
problems can be seen at a glance (cf. Wallis, 2003;
Hara et al., 2009) and perhaps also helping unearth
latent theoretical decisions (cf., e.g., Leech, 2004).

We improve upon previous methods in two
ways, as described in section 4. First, we stream-
line the different sources of information by adding
the counts for all n-grams within a rule: this
balances concerns over sparse data for longer n-
grams with the fact that longer n-grams are more
informative. Secondly, taking the scores initially
assigned by our methods, we compare them with
scores for possible parse revisions. This checks
whether the parser could have made a better deci-
sion and more directly connects to parse revision
work (e.g., Attardi and Ciaramita, 2007). As we
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show in section 5, these methods have the potential
to help annotation quality go from, e.g., 65% ac-
curacy to 85% by presenting annotators with cases
highly likely to be erroneous. Based on the results
using a noisy grammar in section 6, we also con-
clude that a small gold grammar is more effective
than a large noisy one, a useful result since such
resources can quickly be developed manually.

2 Error Detection

We build from methods for detecting ad hoc, or
anomalous, rules in dependency parses (Dickin-
son, 2010). Dependency rules represent a head
with its arguments and adjuncts, and ad hoc rules
are “used for specific constructions and unlikely
to be used again,” indicating annotation errors and
rules for ungrammaticalities (Dickinson, 2011).

To understand a dependency rule, consider fig-
ure 1 from the Talbanken05 corpus (Nilsson and
Hall, 2005), for the Swedish sentence in (1).1

(1) Det
it

går
goes

bara
just

inte
not

ihop
together

.

‘It just doesn’t add up.’

SS MA NA PL

Det går bara inte ihop
PO VV AB AB AB

Figure 1: Dependency graph example

A grammar rule is comprised of a dependency
relation rewriting as a head with its sequence of
POS-dependent pairs, as in figure 2.

1. TOP→ root ROOT:VV
2. ROOT→ SS:PO VV MA:AB NA:AB PL:AB
3. SS→ PO 5. NA→ AB
4. MA→ AB 6. PL→ AB

Figure 2: Rule representation for (1)

The error detection methods work by compar-
ing an individual parsed rule to rules in a (training)
grammar. Based on comparisons to similar rules,
a score is assigned to each individual element of
a rule, and elements with the lowest scores are

1Category definitions are in appendix A.

flagged. The intuition is that there should be reg-
ularities in dependency structure; non-conformity
to regularities indicates a potential problem.

Dickinson (2010) compares pairs of depen-
dency relations and POS tags (instead of using
only, e.g., dependencies), and we follow suit. Re-
latedly, although scores can be obtained for each
unit in its role as a dependent or as a head, we
score elements based on how they function as de-
pendents (see also section 2.1). In figure 2, for
instance, the PO position is scored with respect to
its role in rule #2, where it is a dependent, and not
rule #3, where it is a head.

As Dickinson (2010) says, “We do not want to
compare a rule to all grammar rules, only to those
which should have the same valents.” For a given
parse rule, we can compare it to rules with the
same head or rules which have the same “mother”
(left-hand side (LHS)) dependency relation. We
follow Dickinson (2010) in comparing to rules ei-
ther with the same LHS or with the same head,
taking the greater value of scores; this gives a rule
more chances to prove its validity. The formula is
given in (2), where ei refers to the ith element in a
rule (r = e1...em) and the score is based on having
the same head (h) or the same LHS (lhs).

(2) S(ei) = max{s(ei, h), s(ei, lhs)}

Most importantly, there is the method of com-
parison itself. Dickinson (2010) explores the bi-
gram and whole rule methods. To see how these
work, consider the bigram method for the rule in
(3), with implicit START and END tags. To score
AT:AJ, the bigram method counts up how often
the bigrams DT:PO AT:AJ and AT:AJ VN appear
in all OO (LHS) or VN (head) rules in the gram-
mar. The whole rule method works similarly, but
comparing full subsequences. We develop more
general methods in section 4, with the same rough
idea: rules with low scores are likely errors.

(3) OO→ DT:PO AT:AJ VN

The formula for the bigram method is given in
(4), where c = comparable item (head or LHS), and
C(x, c) refers to the count of x, c in the grammar.
Which grammar we use is discussed in section 3.

(4) s(ei, c) = C(ei−1ei, c) + C(eiei+1, c)

2.1 Unary Rules
Consider again the “unary” rules in the grammar,
as in SS → PO in figure 2. Dickinson (2010) in-
cluded these rules, as this captures the fact that,
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e.g., PO has no dependents. However, for the way
rules are scored, we can remove these unary rules.

Because unary rules only contain heads, only
items which are the heads in rules are actually af-
fected by such rules. For example, with SS →
PO, only PO-headed rules will be affected. But, as
mentioned above, we score elements by how they
function as dependents. We can thus ignore such
rules. Removing them from a grammar also gives
a better indication of the size of a rule set.

3 Scenarios

As there are different scenarios for building an-
notated corpora—corpora for new languages, cor-
pora of a much larger nature than previously cre-
ated, corpora in a new domain, etc.—the assump-
tions of one’s resources can be quite different. We
sketch different possibilities here.

3.1 Types of Grammars

Our methods are based on having a grammar to
compare parse rules to. Automatically-parsed data
can be obtained in different ways, affecting gram-
mar resources. First, parsed data can be obtained
from a parser trained on gold data. In this case, a
GOLD GRAMMAR can be extracted from the gold
data. For error detection, we can then compare the
parsed data to this fixed grammar (section 5).

One subtype of this is the situation where the
gold grammar is small (SMALL GRAMMAR). To
be in this situation, one could develop a small tree-
bank and extract a grammar from it, or one could
manually write (coarse) grammar rules. We work
with corpus-extracted grammars, but one advan-
tage of the type of approach we take—unlike more
theoretically grammar-driven ways of treebanking
(e.g., Oepen et al., 2004; Rosén et al., 2005; Bond
et al., 2004)—is that grammar-writing is simpler,
using only very coarse categories.

The second type of situation (NOISY GRAM-
MAR) arises when not all the rules in the grammar
are valid, as when rules are extracted straight from
automatically-parsed data. If the data has been
parsed, some parser exists, but it may be the case
that: a) data is exchanged, but the technology is
not; or b) the data is partially hand-corrected. In
either case, a NOISY GRAMMAR can be extracted
from the parsed data (section 6).

This leads to the possibility of hybrid gram-
mars, where some rules have been hand-checked
and others have not—i.e., a concatenation of a

gold and a noisy grammar. Since gold and noisy
grammars are more primary, we focus on them.

Finally, there may be a hand-crafted or spe-
cialized parser, tuned to a particular annotation
scheme. This can arise from continual develop-
ment in a large project (e.g., the Alpino project
(Plank and van Noord, 2010)) or when one uses a
parser without having access to the corpus it was
trained on. If the parser has an accessible gram-
mar, there is a GOLD GRAMMAR; otherwise, a
NOISY GRAMMAR can be extracted.

3.2 Grammar-Based Error Detection

The reason we phrase error detection in terms of
grammars is that some grammar is always avail-
able, whereas we cannot always assume a mod-
ifiable parser. Error detection based on coarse
grammars is applicable to any of these scenar-
ios, as opposed to, e.g., methods which rely on
details of how a parser is likely to fail (e.g., At-
tardi and Ciaramita, 2007; Goldberg and Elhadad,
2010b).2 Additionally, because we can always ob-
tain a grammar from parsed data, we will have ac-
cess to the frequency of occurrence of each rule.3

4 Methods of Comparison

In this section, we develop the best methods of
rule comparison (section 4.1) and introduce a new,
orthogonal way of flagging possible errors (sec-
tion 4.2). In order to compare directly to the pre-
vious work, we use the Swedish Talbanken corpus
(Nilsson and Hall, 2005) with the same data split
as in the CoNLL-X Shared Task (Buchholz and
Marsi, 2006); in section 5 and beyond, we switch
the training and testing data. In all experiments,
we use gold standard POS tags.

To keep the data sets clear across different train-
ing regiments, we refer to them as the large and
small Talbanken data sets. The large Talbanken
data has 11,042 sentences, 191,467 words, 96,517
(non-unary) rule tokens and 26,292 rule types.
The small data set has 389 sentences, 5,656 words,
3,107 rule tokens and 1,284 rule types. As we
show in section 5, even such a small grammar can
be highly effective in detecting parse errors.

2Those methods are of course well-suited to the issue of
improving parsing technology.

3Even for hand-written grammars, the methods we de-
velop can be altered to be type-based instead of token-based.
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4.1 Method Improvement
As discussed in section 2, the main previous meth-
ods of flagging errors look for anomalous bigrams
or anomalous “whole rules.” Each method has its
limitations, looking only at local context (bigram)
or only at the whole context (whole rule). Yet there
is a straightforward, principled way to combine
the methods: add together all n-gram parts of a
rule (cf. Zhao et al., 2010; Bergsma et al., 2009).

To do this, during training we break a rule down
into its component n-grams (cf. steps 1 and 2 be-
low) and store the frequency of the rule for each
n-gram. For rule scoring, we then:

1. Add START and END context tags to the list
of elements in a rule.

2. Calculate all (contiguous) bigrams, trigrams,
etc., up to the length of the whole rule.

3. Calculate the frequency of all n-grams (based
on a training set) containing a given element.

This is encapsulated in the formula in (5).

(5) s(ei, c) =
∑

ngram:ei∈ngram∧n≥2
C(ngram, c)

For example, focusing on AT:AJ back in rule (3)
with the head VN as the comparable item (c), we
count up the grammar frequencies of n-grams, as
in (6). A benefit of this method is that, by using lo-
cal and global contexts, equally-frequent bigrams,
for example, are sorted out by whether they con-
tinue to occur in longer forms.

(6) s(AT:AJ, VN) = C(DT:PO AT:AJ, VN)
+ C(AT:AJ VN, VN)
+ C(START DT:PO AT:AJ, VN)
+ C(DT:PO AT:AJ VN, VN)
+ C(AT:AJ VN END, VN)
+ C(START DT:PO AT:AJ VN, VN)
+ C(DT:PO AT:AJ VN END, VN)
+ C(START DT:PO AT:AJ VN END, VN)

We refer to the new method as the all-gram
(All.) method, and results are reported in table 1
using MaltParser (Nivre et al., 2007). Our goal
is to improve annotation post-editing, and so we
report precision (P) and recall (R) of error detec-
tion, for positions below the threshold. Either an
attachment or labeling error counts as an error.
Precision is thus the complement of a labeled at-
tachment score (LAS); for example, by using no
score, the parser has an LAS of 82.0% and error

detection precision of 18.0%. Two F-scores are
provided—F1 and F0.5, which weights precision
twice as much—and the best value of each is re-
ported. We favor precision, so as to prevent anno-
tators from sorting through false positives.

Score Thr. pos. P R F1 F0.5

None n/a 5,656 18.0% 100% 30.5% 21.5%
All. 0 56 92.9% 5.1% 9.7% 21.0%

60 479 61.8% 29.1% 39.6% 50.5%
390 1,234 42.5% 51.7% 46.7% 44.1%

Tri. 0 215 77.2% 16.3% 27.0% 44.2%
5 478 66.3% 31.2% 42.4% 54.1%
49 1,202 44.1% 52.2% 47.8% 45.5%

High. 0 215 77.2% 16.3% 27.0% 44.2%
5 424 69.6% 29.0% 41.0% 54.4%
90 1,373 42.2% 57.0% 48.5% 44.5%

Table 1: Talbanken error detection results for different
scores: parser = MaltParser trained on large data; gram-
mar = large gold; evaluation data = small data (pos. =
positions below threshold (Thr.))

Comparing the results here on the same data in
Dickinson (2010), we have a slightly higher F1

score than the previous best method (46.7% vs.
46.4% [whole rule]) and a higher F0.5 than the best
method (50.5% vs. 49.9% [bigram]).

4.1.1 Excluding Bigrams
The methods are still very close, so we attempt to
improve further. Consider the tree in figure 3, for
the example in (7), where there is no verb, and a
preposition (PR) is the sentence’s root. The re-
sulting rule, which occurs 79 times in the training
data, is TOP→ root ROOT:PR.

(7) Ur
From

giftermålsbalken
marriage act

5
5

kap
ch.

<
<

1
1

och
and

<
<

2
2

‘From the marriage act, ch. 5, para. (?) 1 and 2’

When bigram information is included in calcu-
lating scores, both root ROOT:PR and ROOT:PR
END get counted 79 times, leading to high scores
for both PRs in (8), when only the first is cor-
rect. Bigrams do not distinguish the correct first
PR from the incorrect second PR attachment in
(8): both have 79 pieces of supporting evidence.

(8) TOP→ root ROOT:PR ROOT:PR

We need both left and right contexts in rule scor-
ing. We thus experiment with using both trigram
information as a model of its own (Tri.) and a
model which uses all trigrams and above (i.e., the
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ROOT PA DT RA DT RA ++ DT CC

root Ur giftermålsbalken 5 kap < 1 och < 2
PR NN RO NN NN EN ++ NN RO

Figure 3: Preposition-rooted sentence (from large Talbanken data set)

same as (5), but with n ≥ 3), which we refer to as
the high-gram method (High.). These are included
in table 1, where we can see improvements in pre-
cision and recall. For example, with a threshold
of 5, we find 29% of all errors by examining 424
instances (i.e., 7.5% of the parsed corpus).

Trigrams are the minimum length to obtain con-
textual information on each side, and longer n-
grams (for the high-gram method) give more pre-
cise indication that the rule context is valid. Even
though long n-grams are rare, they are useful,
leading to a positive, albeit small, improvement.

4.1.2 Notes on Evaluation
The intended use of the scores is for annotators
to start with the lowest-scoring positions (i.e., to-
kens) and work upwards. The F-measures give
some sense of this, but we need a way to evalu-
ate across different corpora. To account for this,
we do two things: first, we report the values for
the lowest threshold, so that one can get a sense of
the precision for the highest-priority cases. Sec-
ondly, we use Talbanken for development, find-
ing the best F0.5 score and calculating the percent-
age of the test corpus that the threshold identifies.
In the case of evaluating on the small test corpus,
424

5,656 = 7.5%, so other experiments with a similar
large/small split would be evaluated with a thresh-
old identifying as close to 7.5% of the evaluation
corpus as possible. We reset thresholds for ex-
periments where the large corpus is the test cor-
pus, as these behave differently, due to differing
parser quality; in section 5.1, we will set this at
23%. The bottom two lines of table 7, for instance,
present results for the lowest threhold (0) and the
one which identifies as close to 23% of the tokens
as possible (25). Also, as we emphasize precision,
in future tables we report F0.5 and ignore F1.

4.2 Revision Checking

The n-gram models discussed so far are not very
sophisticated. Low scores conflate two issues: 1)
the element in question is anomalous, or 2) there

was no better attachment or labeling for this ele-
ment, i.e., the parser could not have made a better
decision. Identifying the latter cases could reduce
false positives, i.e., correct low-scoring positions.

For example, for (9), the parser correctly at-
taches hållas (‘hold’) to måste (‘must’) in a VG
relation, as in figure 4. The high-gram scoring
method assigns a score of 0, because UK:UK MV
VG:VV and MV VG:VV END were never ob-
served in the grammar, but there is no better at-
tachment in this instance. By determining that at-
taching to som or hemligt is no better, we can over-
come some limitations of the original scoring. We
refer to the process of checking for a better-scoring
attachment or labeling as a revision check.

(9) Du
You

kommer
come

under
under

din
your

utbildning
education

att
to

få
get

se
see

och
and

höra
hear

sådant
such

som
as

måste
must

hållas
be held

hemligt
secret

.

.
‘You will during your education see and hear
things that must be kept secret.’

UK VG SP

... som måste hållas hemligt
UK MV VV AJ

Figure 4: Correct low-scoring dependency structure

What a better-scoring revision means depends
to a great extent on parser quality. Trained on a
small gold corpus, the parser has not seen much
data. If other attachments or labelings result in
better scores, the parser may not have had enough
information to select the revision and perhaps
should have given it more weight. For a parser
with high accuracy (e.g., trained on large gold
data), on the other hand, the parser should have
considered the revision and rejected it on the basis
of good evidence. The elements which do not have
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a better revision are ones which may represent new
types of constructions. Thus, the parser may do
worse if there are no reasonable revisions—just
the opposite of the expectation for a small corpus.

4.2.1 Revision Checking Algorithm
For an element ei in a rule r (lhs → e1e2, ..., en),
where ei is a (posi, depi) pair:

1. Score ei, ei−1 (left context), and ei+1 (right con-
text) within r, using, e.g., the high-gram method.

2. Check a different labeling in the original rule.

(a) Replace (posi, depi) with all relevant
(posi, depj) pairs (where depi 6= depj)
• Relevant dependency labels occurred in

training with posi; other labels will re-
sult in a score of 0.

(b) Score the modified rule.
(c) Flag the rule if a different labeling results in

an improvement, namely:
i. The modified element’s score increases,

and left/right context scores improve or
stay the same.

ii. The modified element’s score stays the
same, and context scores increase.

3. Check different re-attachments (and re-labelings)
by placing the element in question (ei) into other
rules (x), if appropriate.

(a) Remove ei from the original rule:
i. Remove ei from r to obtain r′.

ii. Score r′ and extract scores for positions
to the left/right of where ei used to be.

iii. If ei−1 or ei+1 is worse than originally
scored, skip next step and do not flag.

(b) Modify and score other rules (x):
i. Insert element into the appropriate posi-

tion within x, following linear ordering.
ii. Determine whether this is an appropri-

ate candidate attachment site:
A. Inserting ei does not introduce a

cyclic structure.
B. Inserting ei does not create a non-

projective structure.
iii. Try all relevant dependency labelings

for this element to obtain different x′.
iv. Score each modified rule x′, in particu-

lar e′, e′−1, and e′+1.
v. Flag the original rule if a different

atttachment+labeling results in an im-
provement (as defined above).

While the idea is straightforward, there are sev-
eral points to note. First, the output is that we flag
an element if any revision shows improvement, but

do not keep track of which revision is better. Sec-
ondly, in step #3bii we use a strict notion of where
an element may be inserted—ensuring no cyclicity
or non-projectivity—but either of these conditions
may be relaxed. Further, we do not check root-
edness, as we do not enforce a globally optimal
tree. Finally, the algorithm can check any element
in any order; if one were to perform rule revision,
the ordering of elements would matter, as scores
would change based on previous revisions.

4.2.2 Using the Flagged Elements
Once rules are flagged as having a better-scoring
revision or not, we can use: a) the original (high-
gram) score, and b) the revision check flag (yes = a
better revision exists). These can be used indepen-
dently or in conjunction. We will evaluate by re-
porting error detection precision and recall for the
lowest-scoring flagged and unflagged positions, as
well as for all flagged and unflagged positions. We
can also view the process as: correct all the flagged
positions and then move to the unflagged ones, and
so we report combinations of all flagged positions
plus some amount of unflagged positions.

In table 2, we report results using the large gold
grammar on the small parsed data. We note first
that the highest precision is recorded for the low-
est unflagged position (82.8% vs. 77.2% without
the flagged/unflagged distinction). As mentioned,
when the parser is high quality, the cases where
we cannot find a better attachment or labeling may
be the most difficult. This gives us some promise
of being able to use these techniques for active
learning (e.g., Sassano and Kurohashi, 2010). Sec-
ondly, the F-scores are lower than the best ones
obtained on this data ignoring the revision flag-
ging. Thus, when the parser is of a high quality, we
want to prioritize the initial high-gram scores over
a revision check. As we will see in section 5.2,
smaller grammars present a different picture.4

5 Small Gold Grammars

Turning to a small gold grammar, we perform
two sets of experiments: in the first, we use
MaltParser5 on the Swedish Talbanken data (sec-
tions 5.1 and 5.2). Then, in section 5.3, we
use MSTParser (McDonald et al., 2006)6 on the

4Determining at what point one switches from “low qual-
ity” to “high quality” is a question for future research.

5http://maltparser.org/
6http://sourceforge.net/projects/

mstparser/
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Score Thr. pos. P R F0.5

L 0 215 77.2% 16.3% 44.2%
LF 0 70 65.7% 4.5% 17.7%
AF 1,269 670 43.1% 28.4% 39.1%
LU 0 145 82.8% 11.8% 37.6%
AU 31,987 4,986 14.6% 71.6% 17.3%
AF+U0 n/a 815 50.2% 40.3% 47.8%
AF+U5 n/a 931 51.5% 47.1% 50.5%

Table 2: Revision checking: same set-up as in table 1,
using high-gram method for checking. (L=lowest,
A=all, F=flagged, U=unflagged, Ux=unflagged up to
threshold x)

dependency-converted English Wall Street Journal
(WSJ) data (Marcus et al., 1993),7 and we vary
the size and appropriateness of the gold grammar.
With these permutations, we demonstrate the wide
applicability of our methods. With little annotated
training data, parser results are worse than before,
placing more priority on error detection.

5.1 Working with a Small Gold Grammar
Swapping the Talbanken data, the training data is
now approximately 10% of the corpus (small data)
and the test data 90% (large data). The results are
given in table 3, where the first thing to note is
the overall worse parser performance, reflected in
a much higher baseline precision (None) of 35.4%
(=64.6% LAS), significantly higher then with the
normal split (P=18.0%, LAS=82.0%, table 1).

Score Thr. pos. P R F0.5

None n/a 191,467 35.4% 100% 40.7%
Freq. 0 116,847 48.1% 82.7% 52.5%
Bi. 0 21,110 85.2% 26.5% 59.0%

6 48,890 70.0% 50.4% 65.0%
Tri. 0 44,297 72.7% 47.5% 65.7%
High. 0 44,297 72.7% 47.5% 65.7%
All. 0 21,110 85.2% 26.5% 59.0%

9 48,690 70.3% 50.4% 65.2%

Table 3: Talbanken error detection results for differ-
ent scores: parser = MaltParser trained on small data;
grammar = small gold; evaluation data = large data

With low parser accuracy, baseline F measures
are higher: by going over every instance, an an-
notator will, in principle, find every error (100%
recall), with 35% precision. However, that means
going through over 190,000 words by hand. To

7We used the LTH Constituent-to-Dependency Conver-
sion Tool (Johansson and Nugues, 2007), selecting options
for CoNLL 2007 format and no NP rebracketing.

improve the corpus with less effort, we want to
identify errors with high precision. Indeed, in the
results in table 3, we find precision around 70%
with recall around 50%.8

Consider the high-gram method, which has the
highest F0.5, 65.7%, at a score of 0—i.e., no rules
in the grammar with any trigrams or longer n-
grams supporting a given rule.9 First, this is much
higher than the 54.4% for the standard data split
(table 1), partly due to the fact that the parser ac-
curacy is lower. Secondly, 44,297 positions are
flagged—23% of the corpus—with 32,209 erro-
neous; annotators could correct nearly 3 out of
every 4 flagged dependencies, fixing 47% of the
errors. We will use 23% of the corpus for other
experiments with large data (cf. section 4.1.2). Fi-
nally, if 32,209 corrections are added to the origi-
nal 123,595 correct positions, the resulting corpus
will have correct dependencies 81.4% of the time
(vs. 64.6% LAS), making the corpus more suit-
able for, e.g., training parsers (cf. Nivre, 2010).

Note also that at the lowest threshold, the bi-
gram method is the most precise (85.2%). What
we observed before (cf. example (8) in sec-
tion 4.1.1) is true—positive evidence of bigrams
may be misleading—but negative evidence from
bigrams may be useful (cf. Dickinson, 2011). If a
position has no bigram support, this is worse than
no trigrams. One can thus consider splitting the
zero high-gram elements into two classes: those
which never occurred as bigrams (more likely to
be erroneous) and those which did.

To gauge an upper bound on error detection, we
use the large gold grammar for an oracle experi-
ment. This helps sort out the effect of the gram-
mar (and its size) from the effect of the compari-
son methods. We can see the results in table 4.

In comparing to table 3, we see that the results
with the much larger grammar are a few points bet-
ter. The best F0.5 measure goes from 65.7% to
69.6%, despite the grammar sizes being 1,284 and
26,292 rule types, respectively (section 4). Even a
small gold grammar is extremely useful for error
detection. Furthermore, the small grammar here is
based on data which is disjoint from the evalua-
tion data, whereas the large grammar comes from
(gold) annotation for the evaluation data.

8Since errors are often inter-related (Hara et al., 2009), it
is likely an annotator would actually have a higher recall, but
we do not explore inter-relatedness here.

9The trigram method performs identically here because
no trigrams means no higher n-grams.
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Score Thr. pos. P R F0.5

None n/a 191,467 35.4% 100% 40.7%
Freq. 0 84,067 57.5% 71.2% 59.8%
Bi. 84 33,197 80.5% 39.2% 66.6%
Tri. 18 39,707 78.8% 46.1% 69.0%
High. 23 39,278 79.8% 46.2% 69.6%
All. 203 39,846 77.0% 45.2% 67.5%

Table 4: Talbanken oracle error detection results: same
set-up as table 3, but grammar = large gold

5.2 Small Gold Grammar Revision Checking

Turning to flagging positions by whether they have
better-scoring possible revisions, we report the re-
sults for Talbanken in table 5. With a previous best
F0.5 of 65.7% for all zero-scoring element, we ob-
serve improvement here (68.2%), obtained by go-
ing over all (21,670) flagged positions and then in-
cluding the (34,343) lowest unflagged positions.

Score Thr. pos. P R F0.5

L 0 44,297 72.7% 47.5% 65.7%
LF 0 9,954 73.8% 10.8% 34.1%
AF 72 21,670 69.1% 22.0% 48.4%
LU 0 34,343 72.4% 36.6% 60.5%
AU 1233 169,797 31.2% 77.9% 35.4%
AF+U0 n/a 56,013 71.1% 58.7% 68.2%

Table 5: Revision checking: same set-up as in table 3,
using high-gram method for checking

This matches the intuition that, when the qual-
ity of the parse is low, such a sanity check can im-
prove parse error detection. Note in this case that
69.1% of all flagged (AF) cases need revision, not
much lower than the overall (lowest) precision of
72.7%. No matter the rule score, if it is flagged,
then it is quite likely to be in need of revision. To
evaluate in other situations with large evaluation
corpora, we will take all flagged positions and then
the lowest-scoring unflagged positions.

Consider the practical effect: 56,013 positions
are identified, with 39,825 (71.1%) erroneous.
Fixing these cases would correct 58.7% of the er-
rors, resulting in 85.4% corpus accuracy (163,420

191,467 ).

False Negatives We investigate some of the
false negatives—i.e., cases which the revision
check does not flag but which are low-scoring—
in order to discover the limitations of the method.
In general, the underflagging often results from
the conservative nature of candidate selection. Be-
cause we do not allow cycles to be introduced, for

example, it is nearly impossible to revise a ROOT
element. The most frequent false negatives are
those with multiple ROOTs, e.g., the erroneous IP
position in TOP→ root ROOT:NN ROOT:IP (not
flagged 82 times). Extremely long rules (e.g., over
10 dependents) are also underflagged. Because we
do not permit non-projectivity, if an element is be-
tween two sister elements, those are often the only
positions which can serve as alternate heads; oth-
erwise, branches have to cross. This is schema-
tized in figure 5, where revisions for D could only
include C and E as heads.

... A B C D E F ...

Figure 5: Schematic for sister relations

5.3 Grammar Size and Quality
As with the Talbanken data, we want to test these
methods on English data using a small amount of
training data and a large amount of test data. To do
this, we train different parser models. We use the
default training options for MSTParser and train
one model on section 00 of the WSJ data, one on
section 24, and one on both. All three models are
then used to parse sections 02-21, with results in
table 6. We use the default settings, as this is a
good fit for using the methods in the real world.10

Par. Tokens Size UAS LAS
00 46,451 7,250 81.7% 73.4%
24 32,853 5,797 80.5% 71.8%
0024 79,304 11,095 83.5% 76.0%

Table 6: Parser accuracies for WSJ models with dif-
ferent training data (Par.), including number of training
Tokens and Size of grammar (non-unary rule types)

In addition to varying the parser, we also vary
the grammar, running tests for each model us-
ing gold standard grammars derived from differ-
ent sections. This set-up allows us to see the ef-
fect of varying the size of the parser training data,
the size of the grammar, and the different gram-
mars across data sets—i.e., error detection using a
grammar from a different section than the one the
parser is trained on. The results are in table 7.

10In development, we also tested parser models with the
optimized settings used for McDonald et al. (2005), but there
was little impact on accuracy: 73.7%, 72.1%, and 76.2% LAS
for the respective training data situations in table 6.
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Par. Gram. Thr. pos. P R F0.5

00 None n/a 950,022 26.6% 100% 31.2%
00 0 143,365 79.5% 45.1% 68.9%

9 217,804 70.8% 61.0% 68.6%
24 0 152,281 78.0% 47.0% 68.9%

6 219,712 69.4% 60.2% 67.3%
0024 0 130,724 81.0% 41.9% 68.3%

16 217,628 70.7% 60.9% 68.5%
24 None n/a 950,022 28.2% 100% 32.9%

00 0 155,889 79.7% 46.4% 69.7%
6 218,227 73.4% 59.8% 70.2%

24 0 157,733 79.1% 46.6% 69.4%
5 217,751 72.6% 59.0% 69.4%

0024 0 139,604 81.3% 42.3% 68.6%
12 218,207 73.3% 59.7% 70.1%

0024 None n/a 950,022 24.0% 100% 28.3%
00 0 127,667 77.7% 43.6% 67.2%

14 219,362 64.6% 62.3% 64.1%
24 0 133,596 76.3% 44.8% 66.9%

9 216,826 64.0% 60.9% 63.3%
0024 0 114,486 79.7% 40.1% 66.5%

25 218,731 64.4% 61.9% 63.9%

Table 7: WSJ: high-gram scores for lowest and 23%
thresholds: parser = default MST trained on differ-
ent data (Par.); grammar = gold from section listed
(Gram.); evaluation data = sections 02-21

Looking at the results for the parser trained
on section 00, there are 252,700 errors (26.6%)
in over 950,000 words. By using the high-gram
method and a grammar extracted from the gold
data for section 00, we obtain a precision of 70.8%
and recall of 61.0% at the 23% threshold: thus,
one could correct 61% of the errors by looking at
only 23% of the corpus (217,804 positions, with
about 154,000 of them erroneous). Alternatively,
using a threshold score of zero on the same data
results in higher precision (79.5%) and lower re-
call (45.1%). This pattern of higher precision at
the lowest threshold and higher recall for the 23%
threshold is consistent across all testing scenarios,
showing the effectiveness of correcting by work-
ing up from the lowest-scoring items.

Within the results for each parser, the grammar
based on section 00 is more effective at sorting
out the errors (i.e., has a higher F0.5 score) than
the other grammars—although the differences are
small. This is true even for the parser trained on
section 24 (70.2% vs. 69.4%), and the reverse situ-
ation (parser=00, grammar=24) even performs on
a par with the other grammars. This indicates that
a grammar from a different (albeit, related) corpus

can be effective in error detection. Future work
can explore applying this work across domains.

As for grammar size, the differences in F0.5

between the smallest (section 24) and the largest
(both sections) for all experiments is <1%. Even
with a small gold grammar, we again conclude that
this method can effectively sort out a majority of
the errors with high precision.

5.3.1 Revision Checking
To gauge the results of revision checking, we re-
port results for the WSJ parser trained only on sec-
tion 00, as shown in table 8. The results for the
other two parsers are not shown for space reasons,
but they follow exactly the same trends, namely a
consistent improvement, verifying the Talbanken
results (section 5.2). For example, comparing to
the 00 parser results without revision checking
in table 7, we observe a greater F0.5 value for
all grammars by taking all flagged positions and
the lowest-scoring unflagged positions (AF+U0).
With the section 00 grammar, for instance, we see
an improvement in F0.5 from 68.9% to 71.6%.

Gr. Score Thr. pos. P R F0.5

00 LF 0 78,805 92.2% 28.8% 66.4%
AF 1,325 141,914 79.7% 44.8% 68.9%
AF+U0 n/a 206,474 74.8% 61.1% 71.6%

24 LF 0 79,755 91.9% 29.0% 64.1%
AF 1,167 138,912 79.4% 43.6% 68.2%
AF+U0 n/a 211,438 73.7% 61.6% 70.9%

0024 LF 0 76,570 92.0% 28.0% 63.3%
AF 3,200 144,041 80.3% 45.8% 69.8%
AF+U0 n/a 198,195 76.1% 59.7% 72.1%

Table 8: WSJ revision checking results, using the high-
gram method, for the parser trained on section 00; same
set-up as in table 7

Perhaps the most notable feature of these results
is the precision of the lowest-scoring flagged po-
sitions, around 92% for all grammars. This means
that for this type of data, annotators could go over
80,000 positions, with very few false positives,
providing much potential for efficient correction.

6 Noisy Grammar

In this section, we switch to using a noisy gram-
mar, i.e., one extracted from the parsed data it-
self. Using the same parser for Swedish as in sec-
tion 5.1 and parsing the large corpus, we extract
a grammar from the parsed data and obtain the
results for the high-gram method in table 9. As
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the parsed rules are from the grammar, this can be
seen as an internal consistency check.

Score Thr. pos. P R F0.5

None n/a 191,467 35.4% 100% 40.7%
No-Rev. 3 267 88.4% 0.3% 1.7%

76 44,274 68.4% 44.6% 61.8%
AF 2,784 12,769 67.9% 12.8% 36.4%
AF+U55 n/a 44,155 68.8% 44.7% 62.1%

Table 9: Talbanken error detection results for the high-
gram method: parser = MaltParser trained on small
data; grammar = large noisy; evaluation data = small
data (No-Rev. = No revision checking)

These results are noticably lower than when us-
ing a small gold grammar (tables 3 and 5). With-
out revision checking, the high-gram F0.5 score
goes from 65.7% to 61.8%, in spite of the fact
that the noisy grammar has 95,900 rule tokens and
25,904 types, compared to 3,107/1,284 in the gold
grammar. That is, a small set of high-quality rules
outperforms a large set of more questionable rules,
possibly because of parser bias in the grammar.

As for the impact of revision checking, the pre-
cision for all 12,769 flagged positions is 67.9%—
on a par with the precision without revision check-
ing. Indeed, for all flagged positions combined
with many lowest-scoring unflagged positions (up
to the 55 threshold, or 23% of the corpus), the F0.5

score is slightly improved, though still well below
the small gold grammar case.

Comparing the noisy grammar in table 10 to the
small gold grammars in table 7, the trend in En-
glish is more pronounced. For example, for the
parser trained on section 00 (and the 00 grammar),
the F0.5 goes from 68.9% to 56.9%. Each noisy
WSJ grammar has over 85,000 rules, yet the noise
greatly pulls down the accuracy, thereby confirm-
ing our preference for (small) gold grammars.11

7 Summary and Outlook

Taking into account different ways in which au-
tomatic dependency parses are obtained, we have
advocated for a grammar-based method of detect-
ing parse errors and have illustrated the gains that
can be made by using such methods, including the
incorporation of revision checking. Methods us-
ing a small gold grammar outperform the meth-
ods using much larger grammars with noise in

11We also tried concatenating the small gold and large
noisy grammars to make a hybrid grammar (section 3), but
the results were hardly better than in tables 9 and 10.

Par. Thr. pos. P R F0.5

00 3 315 90.5% 0.1% 0.6%
460 218,497 58.7% 50.7% 56.9%

24 3 400 90.5% 0.1% 0.7%
438 218,612 61.1% 49.8% 58.4%

0024 3 377 91.8% 0.2% 0.8%
479 218,512 55.7% 53.5% 55.3%

Table 10: WSJ: high-gram scores: parser = default
MST trained on different data (Par.); grammar = ex-
tracted from appropriate parsed 02-21; evaluation data
= 02-21

them. Thus, to employ such methods on new data,
one needs a small grammar, perhaps from a small
hand-annotated corpus. Using our methods can
improve the resulting annotation of large amounts
of parsed data, allowing annotators to focus on
problematic parses and not correct ones.

In the future, one can test these methods on real-
world corpus-building efforts, integrating them
into a particular annotation workflow. Because the
method of scoring parses is very general, one can
also explore using the scores in different contexts,
such as scoring the validity of parse structures in
a parser combination model (e.g., Surdeanu and
Manning, 2010; Sagae and Tsujii, 2007; Sagae and
Lavie, 2006); sorting sentences for active learning
(cf. Sassano and Kurohashi, 2010); or selecting
parse structures for parsing (Chen et al., 2009).
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A Some Talbanken05 categories

POS tags
++ coord. conj.
AB adverb
AJ adjective
EN indef. article
FV få (get)
NN noun
PO pronoun
PR preposition
RO numeral
VN verbal noun
VV verb

Dependencies
++ coord. conj.
AT nominal pre-modifier
CC sister of first conjunct

(binary branching co-
ordination)

DT determiner
FS dummy subject
MA attitude adverbial
NA negation adverbial
PA preposition comp.
PL verb particle
RA place adverbial
SS subject
VG verb group
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