
Proceedings of the 13th European Workshop on Natural Language Generation (ENLG), pages 296–301,
Nancy, France, September 2011. c©2011 Association for Computational Linguistics

CL system: Giving instructions by corpus based selection

Luciana Benotti
PLN Group, FAMAF

National University of Córdoba
Córdoba, Argentina

luciana.benotti@gmail.com

Alexandre Denis
TALARIS team, LORIA/CNRS

Lorraine. Campus scientifique, BP 239
Vandoeuvre-lès-Nancy, France

alexandre.denis@loria.fr

Abstract

The CL system uses an algorithm that, given a
task-based corpus situated in a virtual world,
which contains human instructor’s speech acts
and the user’s responses as physical actions,
generates a virtual instructor that helps a user
achieve a given task in the virtual world. In
this report, we explain how this algorithm can
be used for generating a virtual instructor for a
game-like, task-oriented virtual world such as
GIVE’s.

1 Introduction

There are two main approaches toward automati-
cally producing dialogue utterances. The most used
one is the generation approach, in which the output
is dynamically assembled using some composition
procedure, e.g. grammar rules. The other is the se-
lection approach, in which the task is to pick the ap-
propriate output from a corpus of possible outputs.
The selection approach has only been used in con-
versational systems that are not task-oriented such
as negotiating agents (Gandhe and Traum, 2007a),
question answering characters (Kenny et al., 2007),
and virtual patients (Leuski et al., 2006). In this
paper, we describe the algorithm used by the sys-
tem CL for giving instructions by selecting utter-
ances from automatically annotated human-human
corpora. Our algorithm is the first one proposed for
doing generation by selection for task-oriented sys-
tems, for details see (Benotti and Denis, 2011).

The advantages of corpus based generation are
many. To start with, it affords the use of complex
and human-like sentences without detailed analysis.

Moreover, the system may easily use recorded au-
dio clips rather than speech synthesis and recorded
video for animating virtual humans. Finally, no rule
writing by a dialogue expert or manual annotations
is needed. Nowadays, most conversational systems
require extensive human annotation efforts in order
to be fit for their task (Rieser and Lemon, 2010). Se-
mantic annotation and rule authoring have long been
known as bottlenecks for developing conversational
systems for new domains.

The disadvantage of corpus based generation is
that the resulting dialogue may not be fully coherent.
Shawar and Atwell (2003; 2005) present a method
for learning pattern matching rules from corpora in
order to obtain the dialogue manager for a chat-
bot. Gandhe and Traum (2007b) investigate several
dialogue models for negotiating virtual agents that
are trained on an unannotated human-human corpus.
Both approaches report that the dialogues obtained
by these methods are still to be improved because
the lack of dialogue history management results in
incoherences. Since in task-based systems, the di-
alogue history is restricted by the structure of the
task, the absence of dialogue history management is
alleviated by tracking the current state of the task.

In the next section we introduce the corpora used
by the CL system. Section 2 presents the two
phases of our algorithm, namely automatic annota-
tion and generation through selection. In Section 3
we present a fragment of an interaction with a virtual
instructor generated using the GIVE-2 Corpus (Gar-
gett et al., 2010) and our algorithm. Finally, Sec-
tion 5 discusses its advantages and drawbacks with
respect to hand-coded systems.

296



2 The algorithms

Our algorithm consists of two phases: an annotation
phase and a selection phase. The annotation phase
is performed only once and consists of automatically
associating the DG instruction to the DF reaction.
The selection phase is performed every time the vir-
tual instructor generates an instruction and consists
of picking out from the annotated corpus the most
appropriate instruction at a given point.

2.1 The automatic annotation
The basic idea of the annotation is straightforward:
associate each utterance with its corresponding re-
action. We assume that a reaction captures the se-
mantics of its associated instruction. Defining re-
action involves two subtle issues, namely boundary
determination and discretization. We discuss these
issues in turn and then give a formal definition of
reaction.

We define the boundaries of a reaction as follows.
A reaction Rk to an instruction Uk begins right af-
ter the instruction Uk is uttered and ends right before
the next instruction Uk+1 is uttered. In the follow-
ing example, instruction 1 corresponds to the reac-
tion 〈2, 3, 4〉, instruction 5 corresponds to 〈6〉, and
instruction 7 to 〈8〉.

DG(1): hit the red you see in the far room
DF(2): [enters the far room]
DF(3): [pushes the red button]
DF(4): [turns right]
DG(5): hit far side green
DF(6): [moves next to the wrong green]
DG(7): no
DF(8): [moves to the right green and pushes it]

As the example shows, our definition of bound-
aries is not always semantically correct. For in-
stance, it can be argued that it includes too much
because 4 is not strictly part of the semantics of 1.
Furthermore, misinterpreted instructions (as 5) and
corrections (e.g., 7) result in clearly inappropriate
instruction-reaction associations. Since we want to
avoid any manual annotation, we decided to use this
naive definition of boundaries anyway.

The second issue that we address here is dis-
cretization of the reaction. It is well known that there
is not a unique way to discretize an action into sub-
actions. For example, we could decompose action 2

into ‘enter the room’ or into ‘get close to the door
and pass the door’. Our algorithm is not dependent
on a particular discretization. However, the same
discretization mechanism used for annotation has to
be used during selection, for the dialogue manager
to work properly. For selection (i.e., in order to de-
cide what to say next) any virtual instructor needs
to have a planner and a planning problem: i.e., a
specification of how the virtual world works (i.e.,
the actions), a way to represent the states of the vir-
tual world (i.e., the state representation) and a way
to represent the objective of the task (i.e., the goal).
Therefore, we decided to use them in order to dis-
cretize the reaction.

For the virtual instructor we present in Section 3
we used the planner LazyFF and the planning prob-
lem provided with the GIVE Framework. The
planner LazyFF is a reimplementation (in Java) of
the classical artificial intelligence planner FF (Hoff-
mann and Nebel, 2001). The GIVE framework (Gar-
gett et al., 2010) provides a standard PDDL (Hsu et
al., 2006) planning problem which formalizes how
the GIVE virtual worlds work.

Now we are ready to define reaction formally. Let
Sk be the state of the virtual world when uttering in-
struction Uk, Sk+1 be the state of the world when ut-
tering the next utterance Uk+1 and Acts be the rep-
resentation of the virtual world actions. The reaction
to Uk is defined as the sequence of actions returned
by the planner with Sk as the initial state, Sk+1 as
the goal state and Acts as the actions.

Given this reaction definition, the annotation of
the corpus then consists of automatically associat-
ing each utterance to its (discretized) reaction. The
simple algorithm that implements this annotation is
shown in Figure 1.

1: Acts← world possible actions
2: for all utterance Uk in the corpus do
3: Sk ← world state at Uk

4: Sk+1 ← world state at Uk+1

5: Uk.Reaction← plan(Sk, Sk+1, Acts)
6: end for

Figure 1: Annotation algorithm

297



2.2 Selecting what to say next

In this section we describe how the selection phase is
performed every time the virtual instructor generates
an instruction.

The instruction selection algorithm, displayed in
Figure 2, consists in finding in the corpus the set of
candidate utterances C for the current task plan P
(P is the sequence of actions that needs to be exe-
cuted in the current state of the virtual world in or-
der to complete the task). We define C = {U ∈
Corpus | P starts with U.Reaction}. In other words,
an utterance U belongs to C if the first actions of the
current plan P exactly match the reaction associated
to the utterance U . All the utterances that pass this
test are considered paraphrases and hence suitable in
the current context.

1: C ← ∅
2: Plan← current task plan
3: for all utterance U in the corpus do
4: if Plan starts with U.Reaction then
5: C ← C ∪ {U}
6: end if
7: end for
8: return C

Figure 2: Selection algorithm

Whenever the plan P changes, as a result of the
actions of the DF, we call the selection algorithm in
order to regenerate the set of candidate utterances C.

While the plan P doesn’t change, because the
DF is staying still, the virtual instructor offers al-
ternative paraphrases of the intended instruction.
Each paraphrase is selected by picking an utterance
from C and verbalizing it, at fixed time intervals
(every 3 seconds). The order in which utterances
are selected depends on the length of the utterance
reaction (in terms of number of actions), starting
from the longest ones. Hence, in general, instruc-
tions such as “go back again to the room with the
lamp” are uttered before instructions such as “go
straight”, because the reaction of the former utter-
ance is longer than the reaction of the later.

It is important to notice that the discretization
used for annotation and selection directly impacts
the behavior of the virtual instructor. It is crucial
then to find an appropriate granularity of the dis-

cretization. If the granularity is too coarse, many in-
structions in the corpus will have an empty reaction.
For instance, in the absence of the representation of
the user orientation in the planning domain, instruc-
tions like “turn left” and “turn right” will have empty
reactions making them indistinguishable during se-
lection. However, if the granularity is too fine the
user may get into situations that do not occur in the
corpus, causing the selection algorithm to return an
empty set of candidate utterances. It is the respon-
sibility of the virtual instructor developer to find a
granularity sufficient to capture the diversity of the
instructions he wants to distinguish during selection.

3 A sample interaction

In this section we illustrate the interaction between
the CL system and the user using the GIVE-2 Cor-
pus (Gargett et al., 2010).

For the actual CL system we collected a corpus on
each of the GIVE 2.5 evaluation worlds. The corpus
was collected by using the GIVE Wizard (Gargett et
al., 2010). 13 volunteers were recruited (4 female
and 9 male) to play the DF role. The DG role was
played always by the same person which was famil-
iar with the virtual worlds.

On Figures 4 to 7 we show an excerpt of an in-
teraction between the system and a user. The fig-
ures show a 2D map from top view and the 3D in-
game view. In Figure 4, the user, represented by a
blue character, has just entered the upper left room.
He has to push the button close to the chair. The
first candidate utterance selected is “red closest to
the chair in front of you”. Notice that the referring
expression uniquely identifies the target object us-
ing the spatial proximity of the target to the chair.
This referring expression is generated without any
reasoning on the target distractors, just by consid-
ering the current state of the task plan and the user
position.

After receiving the instruction the user gets closer
to the button as shown in Figure 5. As a result of the
new user position, a new task plan exists, the set of
candidate utterances is recalculated and the system
selects a new utterance, namely “the closet one”.

The generation of the ellipsis of the button or the
chair is a direct consequence of the utterances nor-
mally said in the corpus at this stage of the task plan

298



L go
yes left
straight now go back
go back out now go back out
closest the door down the passage
go back to the hallway nowin to the shade room
go back out of the room out the way you came in
exit the way you entered ok now go out the same door
back to the room with the lamp go back to the door you came in
Go through the opening on the left okay now go back to the original room
okay now go back to where you came from ok go back again to the room with the lamp
now i ned u to go back to the original room Go through the opening on the left with the yellow wall paper

Figure 3: All candidate selected utterances when exiting the room in Figure 7

Figure 4: “red closest to the chair in front of you”

Figure 5: “the closet one”

(that is, when the user is about to manipulate this ob-
ject). From the point of view of referring expression

Figure 6: “good”

Figure 7: “go back to the room with the lamp”

algorithms, the referring expression may not be op-
timal because it is over-specified (a pronoun would

299



be preferred as in “click it”), Furthermore, the in-
struction contains a spelling error (‘closet’ instead
of ‘closest’). In spite of this non optimality, the in-
struction led our user to execute the intended reac-
tion, namely pushing the button.

Right after the user clicks on the button (Figure 6),
the system selects an utterance corresponding to the
new task plan. The player position stayed the same
so the only change in the plan is that the button no
longer needs to be pushed. In this task state, DGs
usually give acknowledgements and this is then what
our selection algorithm selects: “good”.

After receiving the acknowledgement, the user
turns around and walks forward, and the next ac-
tion in the plan is to leave the room (Figure 7). The
system selects the utterance “go back to the room
with the lamp” which refers to the previous interac-
tion. Again, the system keeps no representation of
the past actions of the user, but such utterances are
the ones that are found at this stage of the task plan.

We show in Figure 3 all candidate utterances se-
lected when exiting the room in Figure 7. That is, for
our system purposes, all the utterances in the figure
are paraphrases of the one that is actually uttered in
Figure 7. As we explained in Section 2.2, the utter-
ance with the longest reaction is selected first (“go
back to the room with the lamp”), the second ut-
terance with the longest reaction is selected second
(“ok go back again to the room with the lamp”), and
so on.

4 Portability to other virtual environments

The other systems that participated in the challenge
do not need a corpus in a particular GIVE virtual
world in order to generate instructions for any GIVE
virtual world, while our system cannot do without
such corpus. As a result these systems are more
complex (e.g. they include domain independent
algorithms for generation of referring expressions)
and take a longer time to develop.

Our algorithm is independent of any particular
virtual world. It can be ported to any other instruc-
tion giving task (where the DF has to perform a
physical task) with the same effort than required to
port it to a new GIVE world. This is not true for
the other systems that participated in the GIVE-2.5
Challenge. The inputs of our algorithm are an off-

the-shelf planner, a formal planning problem rep-
resentation of the task and a human-human corpus
collected on the very same task the system aims to
instruct. It is important to notice that any virtual in-
structor, in order to give instructions that are both
causally appropriate at the point of the task and rel-
evant for the goal cannot do without such planning
problem representation. Furthermore, it is quite a
normal practice nowadays to collect a human-human
corpus on the target task domain. It is reasonable,
then, to assume that all the inputs of our algorithm
are already available when developing the virtual in-
structor.

Another advantage of our approach is that vir-
tual instructor can be generated by developers with-
out any knowledge of generation of natural language
techniques. Furthermore, the actual implementation
of our algorithms is extremely simple as shown in
Figures 1 and 2. This makes our approach promising
for application areas such as games and simulation
training.

5 Conclusions

In this paper we presented the system CL, which
uses a novel algorithm for doing generation by
corpus based selection from human-human corpora
without manual annotation.

The algorithms we presented solely rely on the
plan to define what constitutes the context of utter-
ing. It may be interesting though to make use of
other kinds of features. For instance, in order to inte-
grate spatial orientation and differentiate “turn left”
and “turn right”, the orientation can be either added
to the planning domain or treated as a context fea-
ture. While it may be possible to add orientation
in the planning domain of GIVE, it is not straight-
forward to include the diversity of possible features
in the same formalization, like modeling the global
discourse history or corrections.

In sum, this paper presents the first existing al-
gorithm for fully-automatically prototyping task-
oriented virtual agents from corpora. The generated
agents are able to effectively and naturally help a
user complete a task in a virtual world by giving
her/him instructions.

300



References
Luciana Benotti and Alexandre Denis. 2011. Giving in-

structions in virtual environments by corpus based se-
lection. In Proceedings of the SIGDIAL 2011 Confer-
ence, pages 68–77, Portland, Oregon, June. Associa-
tion for Computational Linguistics.

Sudeep Gandhe and David Traum. 2007a. Creating spo-
ken dialogue characters from corpora without annota-
tions. In Proceedings of 8th Conference in the Annual
Series of Interspeech Events, pages 2201–2204, Bel-
gium.

Sudeep Gandhe and David Traum. 2007b. First
steps toward dialogue modelling from an un-annotated
human-human corpus. In IJCAI Workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems,
Hyderabad, India.

Andrew Gargett, Konstantina Garoufi, Alexander Koller,
and Kristina Striegnitz. 2010. The GIVE-2 corpus
of giving instructions in virtual environments. In Pro-
ceedings of the 7th International Conference on Lan-
guage Resources and Evaluation (LREC), Malta.

Jörg Hoffmann and Bernhard Nebel. 2001. The FF plan-
ning system: Fast plan generation through heuristic
search. JAIR, 14:253–302.

Chih-Wei Hsu, Benjamin W. Wah, Ruoyun Huang,
and Yixin Chen. 2006. New features in SGPlan
for handling soft constraints and goal preferences in
PDDL3.0. In Proceedings of ICAPS.

Patrick Kenny, Thomas D. Parsons, Jonathan Gratch, An-
ton Leuski, and Albert A. Rizzo. 2007. Virtual pa-
tients for clinical therapist skills training. In Proceed-
ings of the 7th international conference on Intelligent
Virtual Agents, IVA ’07, pages 197–210, Berlin, Hei-
delberg. Springer-Verlag.

Anton Leuski, Ronakkumar Patel, David Traum, and
Brandon Kennedy. 2006. Building effective question
answering characters. In Proceedings of the 7th SIG-
dial Workshop on Discourse and Dialogue, SigDIAL
’06, pages 18–27, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Verena Rieser and Oliver Lemon. 2010. Learning hu-
man multimodal dialogue strategies. Natural Lan-
guage Engineering, 16:3–23.

Bayan Abu Shawar and Eric Atwell. 2003. Using di-
alogue corpora to retrain a chatbot system. In Pro-
ceedings of the Corpus Linguistics Conference, pages
681–690, United Kingdom.

Bayan Abu Shawar and Eric Atwell. 2005. Using cor-
pora in machine-learning chatbot systems. volume 10,
pages 489–516.

301


