
Proceedings of the 13th European Workshop on Natural Language Generation (ENLG), pages 121–131,
Nancy, France, September 2011. c©2011 Association for Computational Linguistics

Combining symbolic and corpus-based approaches for the generation of
successful referring expressions

Konstantina Garoufi and Alexander Koller
Area of Excellence “Cognitive Sciences”

University of Potsdam, Germany
{garoufi, akoller}@uni-potsdam.de

Abstract

We present an approach to the generation of
referring expressions (REs) which computes
the unique RE that it predicts to be fastest
for the hearer to resolve. The system oper-
ates by learning a maximum entropy model
for referential success from a corpus and us-
ing the model’s weights as costs in a metric
planning problem. Our system outperforms
the baselines both on predicted RE success
and on similarity to human-produced success-
ful REs. A task-based evaluation in the con-
text of the GIVE-2.5 Challenge on Generating
Instructions in Virtual Environments verifies
the higher RE success scores of the system.

1 Introduction

The generation of referring expressions (REs) is one
of the best-studied problems in natural language
generation (NLG). Traditional approaches (Dale and
Reiter, 1995) have focused on defining the range of
possible valid REs (e.g., as those REs that describe
the target object uniquely) and on simple heuristics
for choosing one valid RE (e.g., minimal REs). Re-
cently, the question of how to choose the best RE
out of the possible ones has gained increasing at-
tention (Krahmer et al., 2003; Viethen et al., 2008).
This process has been accelerated by the systematic
evaluation of RE generation systems in the context
of RE generation challenges (Belz and Gatt, 2007;
Gatt and Belz, 2010).

Almost all of these approaches optimize the hu-
manlikeness of the NLG system, i.e. the simi-
larity between system-generated REs and human-

generated REs from some corpus. However, in or-
der to be most helpful to the user, an NLG system
should arguably produce REs that are easy to under-
stand. As Belz and Gatt (2008) show, these are not
the same: In particular, the scores for humanlikeness
and usefulness in task-based evaluations of systems
participating in the TUNA RE generation challenge
are not correlated. It would therefore be desirable to
optimize a system directly for usefulness.

A second characteristic of most existing RE gen-
eration systems is that they are limited to generat-
ing single noun phrases in isolation. By contrast,
planning-based approaches (Appelt, 1985; Stone et
al., 2003; Koller and Stone, 2007) generate REs in
the context of an entire sentence or even discourse
(Garoufi and Koller, 2010), and can therefore exploit
and manipulate the linguistic and non-linguistic con-
text in order to produce succinct REs (Stone and
Webber, 1998). However, these approaches have not
been combined with corpus-based measures of hu-
manlikeness or understandability of REs.

In this paper, we present the mSCRISP system,
which extends the planning-based approach to NLG
with a statistical model of RE understandability.
mSCRISP uses a metric planner (Hoffmann, 2002)
to compute the best REs that refer uniquely to the
target referent, and thus combines statistical and
symbolic reasoning. We obtain the cost model by
training a maximum entropy (maxent) classifier on
a corpus of human-generated instruction giving ses-
sions (Gargett et al., 2010) in which every RE can be
automatically annotated with a measure of how easy
it was for the hearer to resolve. Although mSCRISP
is in principle capable of generating complete in-
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struction discourses, we only evaluate its RE gener-
ation component here. It turns out that mSCRISP
generates more understandable REs than a purely
symbolic baseline, according to our model’s estima-
tion of understandability. Furthermore, mSCRISP
generates REs that are more similar to high-quality
human-generated REs than either the symbolic or a
purely statistical baseline. Finally, a full task-based
evaluation in the context of the GIVE-2.5 Challenge
on Generating Instructions in Virtual Environments1

(Koller et al., 2010; Striegnitz et al., 2011) verifies
the higher referential success of the system.

Plan of the paper. We first compare our model
to earlier work in Section 2. We then introduce
the planning-based approach to NLG on which
mSCRISP is based in Section 3. Section 4 lays out
how we obtain a maximum entropy model of RE at-
tribute preferences from our corpus, and Section 5
shows how we bring the two approaches together
using metric planning. We present the evaluation in
Section 6 and conclude in Section 7.

2 Related work

Our work stands in a recent tradition of approaches
that attempt to learn optimal RE generation strate-
gies from corpora. For instance, Viethen et al.
(2008) tune the parameters of the graph-based algo-
rithm of Krahmer et al. (2003) by learning attribute
costs from the TUNA corpus (Gatt et al., 2007).
Stoia et al. (2006) share with us a focus on situated
generation in a virtual environment. They train a
decision tree learner using a wide range of context
features, including dialog history, spatio-visual in-
formation and features capturing relations between
objects in the scene. The context features we use in
this paper are partially inspired by theirs. However,
our work differs from this line of research in that we
do not primarily attempt to replicate the REs pro-
duced by humans, but to train a system to produce
REs that are easy to understand by humans.

There are a number of related systems which
optimize for understandability. Paraboni et al.
(2007) present two rule-based RE generation sys-
tems which can deliberately produce redundant REs,
and evaluate these systems to show that they out-

1http://www.give-challenge.org/research/
page.php?id=give-2.5-index

perform earlier systems in terms of understandabil-
ity. On the other hand, their approach is not corpus-
based and is therefore harder to fine-tune to the com-
municative needs of hearers using empirically de-
termined parameters. Golland et al. (2010) present
a maximum entropy model which acts optimally
with respect to a hearer model; but their system is
focussed on spatial descriptions of objects in non-
dynamic scenes. Furthermore, dialogue and NLG
systems based on reinforcement learning optimize
their expected utility for human or simulated users.
However, because of the complexity of reinforce-
ment learning, this has for the greatest part been ap-
plied to RE generation only in the most rudimentary
way, e.g. to distinguish whether or not to use jargon
in a technical dialogue (Janarthanam and Lemon,
2010). Decision-making problems of a broader
scope have started getting addressed by such tech-
niques only very recently (Dethlefs et al., 2011).

Finally, NLG systems based on planning, such
as Koller and Stone (2007), typically optimize for
RE size instead of either humanlikeness or under-
standability. One exception is Bauer and Koller
(2010), where sentence generation with a probabilis-
tic grammar formalism is performed using a metric
planner. That work generates REs which are proba-
ble and therefore in a certain sense humanlike; yet it
focuses on syntactic choice and does not take under-
standability into account, neither has it been evalu-
ated on RE generation tasks.

3 Planning utterances in situated context

We build upon CRISP (Koller and Stone, 2007), a
planning-based NLG model which encodes sentence
generation with tree-adjoining grammars (TAG;
(Joshi and Schabes, 1997)) as an automated plan-
ning problem. The CRISP model solves the prob-
lem of translating a given communicative goal into a
complete natural language sentence in a single step.
Although we only use CRISP to generate REs that
are individual noun phrases here, these are in fact
part of a comprehensive integrated sentence plan-
ning and realization process, which has also been
extended to the generation of entire discourses of
navigation instructions (Garoufi and Koller, 2010).

CRISP assumes a TAG lexicon in which each el-
ementary tree has been enriched with semantic and
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redN:x1
left N:x1 * 

Figure 1: A simplified example of a CRISP lexicon and
the derivation of the RE “the red button” describing b1.

pragmatic information in addition to the syntactic in-
formation it encodes. The generator obtains aware-
ness of the domain entities a hearer knows about,
their semantic content and the relations holding be-
tween them by tapping into a knowledge base that
models the scene. It then generates REs for these
entities by reasoning about how its lexicon entries
can be combined into well-formed derivation trees
that amount to correct and distinguishing descrip-
tions of the referents. Given an example knowledge
base {button(b1), red(b1), button(b2), blue(b2),
left–of(b2, b1))}, and a communicative goal that in-
volves describing b1, Figure 1 shows with a simpli-
fied version of CRISP’s lexicon how the derivation
of “the red button” referring to b1 is performed.

In order to generate this RE, CRISP converts the
lexicon of Figure 1 and the given communicative
goal into a planning problem, whose operators are
shown in simplified form in Figure 2. Preconditions
of an operator determine which logical propositions
must be true in a given state so that the operator
can be executed, while its effects specify how the
truth conditions of these propositions change after
the execution. It is important to notice that both syn-
tactic preconditions and effects (e.g., subst specifies
open substitution nodes, ref connects syntax nodes
to the semantic individuals to which they refer, and
canadjoin indicates the possibility of an auxiliary
tree adjoining the node) and semantic ones are in-
tegrated into these operators. In particular, red in-
cludes a precondition red(x), whereas left includes
a more complex precondition estimating the eligi-
bility of an entity to be described as “left” at a given
state of the derivation. This way CRISP ensures that
the attributes selected are applicable to the entities
described and that the resulting REs are correct.

The planning problem adopts the facts of the
knowledge base in its initial state and sets as its
goal the fulfillment of the communicative goal along

red(u, x):
Precond: canadjoin(N, u), ref(u, x), red(x), . . .
Effect: ∀y.¬red(y)→ ¬distractor(u, y), . . .

left(u, x):
Precond: ∀y.¬(distractor(u, y) ∧ left–of(y, x)),

canadjoin(N, u), ref(u, x), . . .
Effect: ∀y.(left–of(x, y)→ ¬distractor(u, y)), . . .

the–button(u, x):
Precond: subst(NP, u), ref(u, x), button(x), . . .
Effect: ∀y.(¬button(y)→ ¬distractor(u, y)),

¬subst(NP, u), . . .

Figure 2: Simplified CRISP planning operators for the
lexicon of Figure 1.

with the satisfaction of a set of syntactic and se-
mantic constraints. The former encode syntactic
completeness of the derivation while the latter are
specified as ∀u∀x.¬distractor(u, x), conveying that
a complete derivation tree must eliminate all pos-
sible distractors from any entities it refers to, thus
making sure that all generated REs are distinguish-
ing. With these constraints, it is easy to examine
what reasoning CRISP follows for the generation of
an RE describing b1. Having executed the action
the–button(n1, b1), it can eliminate all entities of
the domain that are not buttons from the set of dis-
tractors for b1. However, the button b2 in the do-
main remains as a distractor. To change this, CRISP
goes on to check the preconditions of other avail-
able operators. It finds that even though left(n1, b1)
is not applicable, as b2 and not b1 is the leftmost but-
ton in the scene, red(n1, b1) is. Since this operator
now eliminates b2 (which is blue) as a distractor, the
goals have been achieved and the planner terminates.

4 A maxent model for successfulness

We now present how to obtain a corpus which al-
lows to determine how fast a hearer understood an
RE, and discuss how to train a maxent model that
predicts this.

4.1 RE attributes in the GIVE-2 corpus
We use the GIVE-2 corpus of Giving Instructions in
Virtual Environments2 (Gargett et al., 2010), which

2http://www.give-challenge.org/research/
page.php?id=give-2-corpus
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Figure 3: Map of a virtual world from the GIVE-2 corpus.

consists of instruction giving sessions in 3D vir-
tual worlds. In these sessions a human instruction
giver (IG) guides a human instruction follower (IF)
through the world with the goal of completing a
treasure hunting task. Although the worlds feature
varied types of objects (e.g. movable objects such
as chairs and immovable features of rooms such as
doorways), instruction followers can directly ma-
nipulate only one type of targets before picking up
the treasure, which is buttons. Figure 3 presents a
bottom-up view of one of the three corpus worlds.

Gargett et al. have annotated the expressions re-
ferring to button targets of manipulation in the cor-
pus with the types of attributes of which they are
made up. In this work we focus on the six most
frequent attribute types, shown in Table 1. Notice
that each attribute type is a semantic concept which
may be realized in different ways, according to the
properties of the referent. We refer to the resulting
realizations as attributes (e.g. “red” and “blue” are
attributes of the type “absolute”). Of the 714 anno-
tated REs in the English edition of the GIVE-2 cor-
pus, 598 only use attributes of the above six types.

4.2 Successfulness of REs

Annotated REs in the GIVE-2 corpus are issued by
the human IGs in order to help their partners iden-
tify targets of manipulation in the world. In this
task-based setting, we can assess whether an RE has
served its purpose with success or not by determin-
ing whether it leads the IF to manipulating the in-
tended referent. A manual annotation of RE success
reveals that 92% of all human-produced REs in the

RE attribute type %
Absolute property (color; e.g. “red”) 79.83
Taxonomic property (type; e.g. “button”) 59.80
Viewer-centered 19.33
(e.g. “on the right”, “the left one”)
Micro-level landmark intrinsic 17.37
(e.g. “by the chair”)
Macro-level landmark intrinsic 8.54
(e.g. “next to the doorway”)
Distractor intrinsic 7.00
(e.g. “next to the yellow button”)

Table 1: The six most frequent attribute types in the En-
glish edition of the GIVE-2 corpus.

corpus allow the IF to correctly identify the referent.
This task-based success measure could be a good

candidate for determining the understandability of
a RE, except that data in which one class accounts
for 92% of all instances is too skewed to be useful
for machine learning. We can achieve a more even
split of the data by assuming that an IF who under-
stands the RE easily will walk towards the correct
referent quickly and directly; in other words, the av-
erage speed at which they approach the referent is
a measure of understandability. We define the suc-
cessfulness succ(r) of an RE r as follows:

succ(r) =
{

0 if r was not correctly resolved
∆S
∆T otherwise,

where ∆S is the distance in the GIVE world (in-
cluding turning distance) between the target referent
and the hearer’s location at the time when they are
presented with the RE, and ∆T is the time elapsed
between the presentation of the RE and the manip-
ulation of the referent. We can now split the REs
in the corpus into a class of high successfulness and
one of low successfulness as follows:

succ∗(r) =
{

0 if succ(r) ≤ S̃
1 otherwise

(1)

where S̃ is the median of all values that succ(r)
takes for all REs r in the data. This binarized suc-
cessfulness abstracts away from the exact numeric
value of an RE’s successfulness, which is not im-
portant for our purpose, and allows us to create a
balanced dataset with two classes of equal size.
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4.3 Context features

We assume that in any given context, all attributes
of the same type are equally easy to understand for
a hearer. However, we do not assume that the same
attribute types are easy to understand (i.e., have high
successfulness) in all possible contexts. A color at-
tribute may be easier to understand in a scene where
there are no distractors of the same color as the
referent—not just because it is conspicuous, but also
because the hearer will not be visually distracted by
similar distractors. Conversely, if a visually salient
landmark is available for describing the target refer-
ent, it might be harder to process the referent’s color
than its location relative to the landmark (Viethen
and Dale, 2008).

We model this connection of the RE resolution
process with the currently visible scene through a
collection of ten context features, which we list in
Table 2. For our experiments, we extract most of
these features from the corpus automatically, except
for the Round and ReferenceAttempt features, which
we annotated manually. For each object relations
and referent’s distinctiveness feature, we consider as
scope of comparison (near the referent, in the refer-
ent’s room or in the whole virtual world) the one
that yields best results in Subsection 6.1. Note that
some context features (such as MicroLandmarkIn-
Room) take binary values, whereas others (e.g. An-
gle) take a range of numeric values.

4.4 The maximum entropy model

Now we combine the information we have about hu-
man RE choices, the context in which they were
issued and their relative successfulness in order to
train a maximum entropy model that can estimate
the successfulness of any RE in any context. We
model an RE r as a set of attributes and let aj(r) = 1
(where j = 1, . . . , 6) iff r contains an attribute
of type aj . We further assume that ci(s) (where
i = 1, . . . , 10) takes the value of the feature ci on
the scene s, and combine attributes and context fea-
tures into derived features of the form

φij(r, s) = ci(s) · aj(r).

The derived features allow us to cast the problem
as a simple binary classification task, in which our
goal is to estimate the conditional probability of an

RE r issued in a scene s being successful, given a
joint representation of attributes and context:

P (succ∗ (r) = 1 | {φij (r, s)}i,j)

We train a maximum entropy model to learn this
distribution. This choice of model has several ad-
vantages; among others, that we can later convert
the model parameters into parameters for a plan-
ning model quite easily (see Section 5). For train-
ing we use the logistic regression implementation of
the Weka data mining workbench (Hall et al., 2009).
The model estimates the above probability as:

P̂ (succ∗(r) = 0 | {φij(r, s)}i,j) =
1

1 + e−z(r,s)
,

(2)
where z(r, s) =

∑
i,j(wij · φij(r, s)) + w0 for

model coefficients wij and intercept w0. By letting
vj(s) =

∑
i(wij ·ci(s)), we can rewrite this equation

as z(r, s) =
∑

j(vj(s) ·aj(r))+w0. In this way, we
can obtain attribute weights vj(s) for each attribute
type aj . Notice that the weight of an attribute type
depends on the current scene s (as seen through the
context features). In our data, we observe that ev-
ery context feature in Table 2 affects the weight of
at least one attribute type.

5 Optimizing successfulness using metric
planning

We can now describe the mSCRISP system, which
combines the planning-based NLG algorithm from
Section 3 with the maxent model for assigning suc-
cessfulness estimates to REs from Section 4. We
employ for this the formalism of metric planning
(Fox and Long, 2003), which we use to assign to
each planning operator a cost. The cost of a plan is
the sum of the costs of the actions that were used in
it, and a metric planner will try to find a plan of min-
imal total cost. Because the original planning prob-
lem already enforces that an RE must refer uniquely,
this amounts to finding the RE of lowest cost among
the distinguishing ones.

Notice that most off-the-shelf planners (such as
the MetricFF planner (Hoffmann, 2002), which we
used in our experiments) do not guarantee that they
actually find an optimal plan for efficiency reasons,
but in practice the plans that our planner finds are
close to optimal (see Section 6).
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Object relations
RoomSameTypeDisNum the number of distractors of the same type as the referent in the room
MicroLandmarkInRoom whether there are any micro-level (i.e. movable) landmarks in the room
MacroLandmarkNearby whether there are any macro-level (i.e. immovable) landmarks near the referent
Spatio-visual
Distance the Euclidean distance (in GIVE space units) between the IF and the referent
Angle the angle (in radians) between the center of the IF’s field of view and the referent
Referent’s distinctiveness
ColorUnique whether the referent’s color is unique (i.e. not shared by other objects) in the world
LandmarkTypeUnique whether a landmark with unique type in the world exists in the referent’s room
Interaction history
Round the number of times the referent has been target of manipulation in a whole session
ReferenceAttempt the number of times the referent has been referred to in the same round
SeenDeltaTime the time elapsed (in seconds) since the referent was last seen by the IF

Table 2: Features putting the REs of the corpus into context.

5.1 Computing the costs of RE attributes

Each attribute that we might want to use as part of
an RE is represented as a single planning operator in
the planning problem of Section 3. The key problem
we must solve is to determine the cost we want to
assign to each of these operators.

We can approach this problem by inspecting how
the individual attribute weights vj(s) contribute to
the successfulness probability in (2). If for a given
j, vj(s) is a negative value, then an RE r for which
aj(r) = 1 will have a higher P (succ(r) = 1 | r, s)
than an RE r′ that is like r except that aj(r′) = 0. If
vj(s) is positive, then the effect is reversed: choos-
ing aj will lower the probability of high successful-
ness. The effect that choosing aj has on the proba-
bility grows with the absolute value of vj(s).

It therefore seems natural to use vj(s) as the cost
of all planning operators for attributes of type aj . In-
deed, it can be shown that under this assumption, if
a plan expresses the RE r, then the plan has minimal
cost among all correct plans just in case r has max-
imal successfulness probability among all uniquely
referring REs. Therefore we can reduce the problem
of computing a successful RE to that of solving a
metric planning problem.

5.2 Working around planner limitations

There is one final technical complication which we
must address: Most off-the-shelf metric planners do
not accept negative operator costs (because other-
wise the action could be executed again and again

in order to lower the total plan cost), but vj(s) may
be a negative value. Such negative weight attributes
improve the successfulness estimate of an RE even
if they are not necessary to distinguish the referent,
and we would like the NLG system to include them
in the (redundant) RE it generates.

We work around this problem by introducing, for
each attribute type aj , a special action non-aj . Exe-
cuting this action in a plan corresponds to the choice
to not include any attribute of type aj in the RE;
because it does not encode a lexicon entry from the
TAG grammar, the action has no preconditions or ef-
fects pertaining to syntax or semantics. We can en-
force that every RE must contain for every j either
an attribute of type aj or the action non-aj by insert-
ing atoms needtodecide(aj , u) whenever some plan-
ning action introduces the RE u, and requiring that
the final state of the planning problem may not in-
clude any needtodecide atoms. These atoms can be
removed only by executing actions for attributes of
type aj or the action non-aj . Now we assign the cost
cost(aj) = max{0, vj(s)} to each attribute action
and the cost cost(¬aj) = max{0,−vj(s)} to non-
aj . Notice that cost(aj)−cost(¬aj) = vj(s) regard-
less of whether vj(s) is positive or negative. Thus
we obtain a metric planning problem in which all ac-
tion costs are zero or positive, and whose minimal-
cost plans correspond to maximal-probability REs.

5.3 An example

As an example, consider the planning operators for
the attribute “red” and for non-absolute, shown in
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red(u, x):
Precond: referent(x), canadjoin(N, u), . . .
Effect: ¬needtodecide(absolute, u), . . .
Cost: cost(absolute)

non-absolute(u):
Precond: needtodecide(absolute, u)
Effect: ¬needtodecide(absolute, u)
Cost: cost(¬absolute)

Figure 4: Simplified mSCRISP planning operators for an
absolute attribute.

Figure 4. These replace the operator for red shown
in Figure 2; the other operators from Figure 2 are
changed analogously.

The initial state of the planner might contain the
atoms subst(NP, n1) and ref(n1, b) indicating that
we want to generate an NP (with node name n1 in
the derivation tree) referring to b. Let’s say it also
contains the atoms button(b) and red(b), indicat-
ing that b is a red button. Lastly, there will be an
atom needtodecide(absolute, n1). The planner can
start by selecting the action the-button(n1, b), in-
curring the cost for a taxonomic attribute. The plan-
ner must then apply either the action red(n1, b), in-
curring the cost for an absolute attribute, or the ac-
tion non-absolute(n1), with the cost of not choos-
ing an absolute attribute; one of the two must be ap-
plied because we cannot be in a final state before all
needtodecide atoms have been removed. If b is the
only button in the domain, the choice between the
two actions depends on which of cost(absolute) and
cost(¬absolute) is greater. If another button exists,
it may be that the planner is forced to apply red in
order to distinguish b, regardless of the relative costs.
In this way, the metric planner will not compute the
cheapest combination of arbitrary attributes, but the
cheapest RE among all uniquely referring ones.

6 Evaluation

We evaluate our model against two baselines. The
MaxEnt baseline builds an RE by selecting all at-
tributes aj for which vj(s) ≤ 0 for a given scene
s. This is a purely statistical model, which does
not verify the applicability or discriminatory power
of the attributes it selects, and thus makes no cor-
rectness or uniqueness guarantees. The EqualCosts
baseline is a version of our mSCRISP model in

Human the green button on the left
MaxEnt the button to the left of the picture

EqualCosts the left button,
to the left of the right button

mSCRISP the button to the left of the picture

Table 3: REs produced by a human IG, our model and the
two baselines in the bottom-left room of Figure 3.

which all attribute costs are equal. This is a purely
symbolic model which always computes a correct
and unique RE, but does this without any empirical
guidance about expected successfulness.

Table 3 presents example REs that a human IG,
our model and the two baselines issue for one of the
buttons in the bottom-left room of Figure 3. As the
IF is entering the room, they see from left to right
a green button, a picture, and another green button.
All REs in this example are distinguishing. How-
ever, the human-produced RE, which favors the use
of an absolute (“green”) and a viewer-centered (“on
the left”) attribute over one pointing to the micro-
level landmark (“to the left of the picture”), was not
particularly successful in the scene: After hearing it,
the IF spent time scanning the room further to the
left before finally approaching the referent. MaxEnt
and mSCRISP generate a different RE, using a land-
mark, which they judge to be more successful. By
contrast, EqualCosts generates a correct but more
complex RE.

6.1 Accuracy of successfulness estimations

We train the maxent model on a dataset consisting
of REs in the virtual worlds 1 and 2 of the GIVE-2
corpus. All evaluations are performed on a test set
consisting of REs in world 3 (Figure 3). Both cor-
pora contain all REs (a) in which the IF is already in
the same room as the referent (so as to prevent in-
terference between navigation instructions and REs)
and (b) which only contain the attribute types shown
in Table 1. This amounts to 358 REs in the training
set and 174 REs in the test set.

The accuracy of the maxent model, i.e. the pro-
portion of REs whose binarized successfulness it es-
timates correctly, differs between the training and
test set. On the training data, the accuracy is 75.1%;
on the test data, it is 62.1%. This compares favor-
ably to a majority classifier, which would achieve
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succ. prob.
Human 0.467***
MaxEnt 0.984**

EqualCosts 0.649***
mSCRISP 0.957

Table 4: Average probabilities of high successfulness.
Differences to mSCRISP are significant at **p < 0.01,
***p < 0.001 (paired t-tests).

50% accuracy on the training dataset (since it is bal-
anced); that is, the maxent model actually does learn
to predict successfulness. The difference in accu-
racy shows that the training and test data are varied
enough for a fair evaluation. In addition, the drop
suggests that more training data might further im-
prove the system’s overall performance.

6.2 Successfulness probability

We now use our system and the two baselines to gen-
erate REs for the referents in the test corpus, and use
the maxent model to estimate the probability (2) that
the generated RE is in the high successfulness class.
We define the domain entity set of the planning-
based models to be the objects that are visible within
the target referent’s room, and we restrict ourselves
to those scenes in which the target is among these
objects. The results are shown in Table 4.

We find that the MaxEnt baseline significantly
outperforms all other models. This is not surprising,
as the metric of evaluation here is exactly what this
baseline directly optimizes for. However, MaxEnt
picks the different attributes independently, ignor-
ing whether the resulting RE is semantically infor-
mative; correctness and uniqueness of an RE are
not captured by the maxent model. Of the mod-
els which guarantee that the generated RE refers
uniquely, mSCRISP performs the best.

6.3 Humanlikeness

Although this was not the main focus of this work,
we also looked at the similarity of the system-
generated REs with the original REs produced by
the IGs. We model the degree of humanlikeness by
the Dice coefficients of the two REs (Dice, 1945;
Gatt et al., 2007). The results are shown in Table 5,
both for all REs in the test set and for the REs of high
and low human-achieved successfulness separately.

DICE
low succ. high succ. all

MaxEnt 0.320*** 0.449* 0.371***
EqualCosts 0.512 0.475 0.497
mSCRISP 0.457 0.519 0.482

#REs 78 51 129

Table 5: Average DICE coefficients across datasets. Dif-
ferences to mSCRISP are significant at *p < 0.05,
***p < 0.001 (paired t-tests).

This test reveals that the REs computed by
MaxEnt are less humanlike than those computed by
either of the planning-based systems. This can be
explained by the fact that, in contrast to MaxEnt,
the planning-based models generate their REs on the
basis of a set of correctness and uniqueness princi-
ples, which are, at least to some extent, shared by
humans. Even though the difference is not statisti-
cally significant, mSCRISP reaches a higher degree
of humanlikeness than EqualCosts on REs of high
successfulness. Importantly, this is reversed in the
low successfulness dataset. The distinction is rele-
vant because mSCRISP does not attempt to mimic
human IG choices under all circumstances; it only
does so when it believes that the human IG choices
are highly successful. If this is not the case, it makes
different choices—those that a more successful IG
might make in the situation.

6.4 Task-based evaluation

To verify the model’s performance in the context
of real interactions with human IFs, we entered
mSCRISP and the correct RE generating baseline
EqualCosts as participating NLG systems for the
2011 edition of the GIVE Challenge (Garoufi and
Koller, 2011; Striegnitz et al., 2011). Both systems
operate by first generating an RE (the first-attempt
RE) for a given button target as soon as the IF is
in the target’s room and can see the target. Subse-
quently, the systems issue follow-up REs at regular
intervals until the IF responds with a manipulation
act or navigates away from the target.

Follow-up REs may differ from first-attempt REs,
especially for the mSCRISP system, which relies for
its attribute selection on several dynamically chang-
ing context features of the scene (see Table 2). In-
deed, mSCRISP issues follow-up REs that are dif-
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resol. success successfulness

all non- all non-rephr. rephr.
EqualCosts 86%*** 86% 0.32 0.38***
mSCRISP 95% 89% 0.33 0.52

Table 6: Task-based evaluation results. Differences to
mSCRISP are significant at ***p < 0.001 (Pearson’s χ2

test for resolution success rates; unpaired two-sample t-
tests for the rest).

ferent from the original more often than the purely
symbolic system (in 85% of the cases, as compared
to only 59% for EqualCosts). Follow-up REs are im-
portant for the GIVE task, yet the fact that they are
issued regardless of whether the IF is on the right
track or not poses a problem on automatic methods
of assessing success. We therefore base our analysis
only on first-attempt REs. To control for the effect of
rephrasing, we separately examine the subset of REs
for which all follow-up REs were non-rephrasing,
i.e. exactly the same as the original. We conduct the
analysis on the latest currently available snapshot of
the challenge results, which contains 74 valid games
for each of our two systems. We first look into two
metrics for referential success, as shown in Table 6.

In terms of resolution success, which represents
the rate of REs whose intended referents have been
correctly identified by the hearer (regardless of how
fast), we find that mSCRISP significantly outper-
forms the baseline with a high success rate of
95%. Though the results are measured on differ-
ent datasets and are thus not directly comparable,
it is interesting to note that this surpasses the 92%
success rate of human IGs in the GIVE-2 corpus.
The system’s performance remains better than the
baseline’s, though not significantly so, in the non-
rephrased RE dataset. Turning to the metric of suc-
cessfulness as defined in Subsection 4.2, we see that
the two systems do not differ significantly when all
first-attempt REs are considered. However it is clear
that rephrasing affects the hearer’s response, since
processing new REs takes additional time. Examin-
ing the portion of non-rephrased first-attempt REs,
we find that our model does generate REs that hu-
mans resolve significantly faster.

Finally, from the questionnaire data collected in
the challenge, we consider a subjective metric of

RE success as reported by the IFs in response to
the post-task question “I could easily identify the
buttons the system described to me”. Although a
Tukey’s test does not find the difference to be sta-
tistically significant, it is worth mentioning that our
model receives higher rates than the baseline with
respect to this subjective metric, too. The average
scores for mSCRISP and EqualCosts are 38.59 and
16.42, respectively (on a scale of -100 to 100).

7 Conclusion

In this paper, we have shown how to extend a sym-
bolic system for generating REs with a statistical
model of successful REs. Our system operates by
training a maximum entropy model on a corpus in
which the successfulness of REs is marked up, and
mapping the maxent weights to action costs in a
metric planning problem. Our evaluation, which
also draws from real interactions with human hear-
ers in the task-based setting of the GIVE-2.5 Chal-
lenge, shows that our model learns to distinguish
highly successful attribute choices from less suc-
cessful ones, and outperforms both a purely sym-
bolic and a purely statistical baseline.

Although the system as we have presented it here
builds on a planning-based model, nothing particular
hinges on this choice: As far as generation of noun
phrase REs is concerned, the planner makes similar
choices to e.g. the system of Krahmer et al. (2003),
and our cost function could be used in other systems
as well. However, one strength of planning-based
systems is that they are not limited to generating iso-
lated noun phrases. In a situated setting like GIVE,
it has been shown that they can be made to generate
navigation instructions which (if successful) modify
the non-linguistic context in a way that makes sim-
pler REs possible later (Garoufi and Koller, 2010). It
is an interesting issue for future work to extend our
successfulness model to navigation instructions, and
obtain a system that deliberately interleaves naviga-
tion and RE generation in order to maximize overall
communicative success.
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