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Abstract

The Bacteria Gene Renaming (RENAME)
task is a supporting task in the BioNLP Shared
Task 2011 (BioNLP-ST’11). The task con-
sists in extracting gene renaming acts and gene
synonymy reminders in scientific texts about
bacteria. In this paper, we present in details
our method in three main steps: 1) the doc-
ument segmentation into sentences, 2) the re-
moval of the sentences exempt of renaming act
(false positives) using both a gene nomencla-
ture and supervised machine learning (feature
selection and SVM), 3) the linking of gene
names by the target renaming relation in each
sentence. Our system ranked third at the of-
ficial test with 64.4% of F-measure. We also
present here an effective post-competition im-
provement: the representation as SVM fea-
tures of regular expressions that detect com-
binations of trigger words. This increases the
F-measure to 73.1%.

1 Introduction

The Bacteria Gene Renaming (Rename) supporting
task consists in extracting gene renaming acts and
gene synonymy reminders in scientific texts about
bacteria. The history of bacterial gene naming has
led to drastic amounts of homonyms and synonyms
that are often missing in gene databases or even
worse, erroneous (Nelson et al., 2000). The auto-
matic extraction of gene renaming proposals from
scientific papers is an efficient way to maintain gene
databases up-to-date and accurate. The present work
focuses on the recognition of renaming acts in the
literature between gene synonyms that are recorded

in the Bacillus subtilis gene databases. We assume
that renaming acts do not involve unknown gene
names. Instead, our system verifies the accuracy of
synonymy relations as reported in gene databases by
insuring that the literature attests these synonymy re-
lations.

1.1 Example
This positive example of the training corpus is rep-
resentative of the IE task:
”Thus, a separate spoVJ gene as defined by the 517
mutation does not exist and is instead identical with
spoVK.”

There are 2 genes in this sentence:

ID Start End Name
T1 17 22 spoVJ
T2 104 109 spoVK

Table 1: Example of provided data.

There is also a renaming act: R1 Renaming For-
mer:T1 New:T2

Given all gene positions and identifications (Tn),
the Rename task consists in predicting all renaming
acts (Rn) between Bacillus subtilis genes in multi-
sentence documents. The gene names involved are
all acronyms or short names. Gene and protein
names often have both a short and a long form. Link-
ing short to long names is a relatively well-known
task but linking short names together remains lit-
tle explored (Yu et al., 2002). Moreover, specifying
some of these synonymy relations as renaming ap-
pears quite rare (Weissenbacher, 2004). This task
relates to the more general search of relations of
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synonymous nicknames, aliases or pseudonyms of
proper nouns from definitory contexts in encyclope-
dia or dictionaries. For instance, in Alexander III
of Macedonia commonly known as Alexander the
Great the synonymy relation is supported by com-
monly known as between the proper noun Alexan-
der III of Macedonia and the nickname Alexander
the Great. Renaming act extraction differs from the
search of coreferences or acronyms by the linguistic
markers involved.

1.2 Datasets
The renaming corpus is a set of 1,648 PubMed refer-
ences of bacterial genetics and genome studies. The
references include the title and the abstract. The
annotations provided are: the position and name of
genes (see Table 1) for all sets and the renaming acts
in the training and the development sets only.

Train Dev. Test
Documents 1146 246 252
Genes 14372 3331 3375
Unique Genes 3415 1017 1126
New genes 0 480 73
Relations 308 65 88
Words / Doc 209 212 213
Genes / Doc 12.5 12.7 13.4
Unique Genes / Doc 3.0 4.1 4.5
Relations / Doc 0.27 0.26 0.35

Table 2: Datasets of the Rename task corpus.

2 Methods

An early finding is that renaming acts very seldom
span several sentences (i.e. former and new are in
the same sentence). For the training set, 95.4% of
the relations verify this claim and in the develop-
ment set, 96.1%. Thus, it is decided to first segment
the documents into sentences and then to look for re-
naming acts inside independent sentences. Thus the
maximum expected recall is then 96.1% on the de-
velopment set. This is done by automatically filter-
ing all the sentences out that do not contain evidence
of a renaming act and then to relate the gene names
occurring in the renaming sentences. The AlvisNLP
pipeline (Nédellec et al., 2009) is used throughout
this process (see Fig. 1).

List based filtering

Machine learning based filtering

Attribute selection on lemmas
(AnnotationClassifierAttributeSelection)

Classification: grid search
(AnnotationClassifierTrain)

Selection of best parameters

Bacteria 
Nomenclature

Tagging
(AnnotationClassifierTag)

Lemmatization
(TreeTagger)

Gene search

.a2 files

Fix forms
(SimpleContentProjector)

Word segmentation
(WoSMIG)

Sentence segmentation
(SeSMIG)

Genes
Species

Molecules
Acronyms (imp)

Abreviations (imp)
Bacteria (imp)

Stop words
Bacteria

Regular 
expressions (imp)

Figure 1: Flowchart: Notes represent the resources used
and (imp) represent later improvements not used for the
official submission.

2.1 Word and sentence segmentation
Word and sentence segmentation is achieved by the
Alvis NLP pipeline. Named entity recognition sup-
plements general segmentation rules.

2.1.1 Derivation of boundaries from named
entities

Named entities often contains periods that should
not be confused with sentence ends. Species abbre-
viations with periods are specially frequent in the
task corpus. First, dictionaries of relevant named
entities from the molecular biology domain (e.g.
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genes, species and molecules) are projected onto
the documents before sentence segmentation, so
that periods that are part of named entities are dis-
ambiguated and not interpreted as sentence ends.
Moreover, named enties are frequently multi-word.
Named entity recognition prior to segmentation pre-
vents irrelevant word segmentation. For example,
the projection of named entity dictionaries on the ex-
cerpt below reveals the framed multi-word entities:
”Antraformin, a new inhibitor of Bacillus subtilis
transformation. [...] During this screening program,
Streptomyces sp. 7725-CC1 was found to produce

a specific inhibitor of B. subtilis transformation.”

2.1.2 Word segmenter

The word segmenter (WosMIG in Fig. 1) has the
following properties: 1) primary separator: space,
2) punctuation isolation: customized list, 3) custom
rules for balanced punctuation, 4) fixed words: not
splittable segments The following list of terms is
obtained from the example:
[’Antraformin’ , ’,’, ’a’, ’new’, ’inhibitor’, ’of’,
’ Bacillus subtilis ’, ’transformation’, ’.’, [...],
’During’, ’this’, ’screening’, ’program’, ’,’,
’ Streptomyces sp. ’, ’ 7725-CC1 ’, ’was’, ’found’,
’to’, ’produce’, ’a’, ’specific’, ’inhibitor’, ’of’,
’ B. subtilis ’, ’transformation’, ’.’]

2.1.3 Sentence segmenter

The sentence segmenter (SeSMIG in Fig. 1) has
the following properties: 1) strong punctuation:
customized list; 2) tokens forcing the end of a
sentence (e.g. etc...); 3) an upper case letter must
follow the end of a sentence. The system works
very well but could be improved with supervised
machine learning to improve the detection of
multi-word named entities. Finally, the list of words
is split into sentences:
[[’Antraformin’ , ’,’, ’a’, ’new’, ’inhibitor’, ’of’,
’ Bacillus subtilis ’, ’transformation’, ’.’],
[...],
[’During’, ’this’, ’screening’, ’program’, ’,’,
’ Streptomyces sp. ’, ’ 7725-CC1 ’, ’was’, ’found’,
’to’, ’produce’, ’a’, ’specific’, ’inhibitor’, ’of’,
’ B. subtilis ’, ’transformation’, ’.’]]

2.2 Sentence filtering

Once the corpus is segmented into sentences, the
system filters out the numerous sentences that most
likely do not contain any renaming act. This way,
the further relation identification step focuses on rel-
evant sentences and increases the precision of the
results (Nedellec et al., 2001). Before the filtering,
the recall is maximum (not 100% due to few renam-
ing acts spanning two sentences), but the precision
is very low. The sentence filters aim at keeping the
recall as high as possible while gradually increasing
the precision. It is composed of two filters. The first
filter makes use of an a priori knowledge in the form
of a nomenclature of known synonyms while the
second filter uses machine learning to filter the re-
maining sentences. In the following, the term Bacil-
lus subtilis gene nomenclature is used in the sense of
an exhaustive inventory of names for Bacillus sub-
tilis genes.

2.2.1 Filtering with a gene nomenclature
We developed a tool for automatically building

a nomenclature of Bacillus subtilis gene and pro-
tein names. It aggregates the data from various
gene databases with the aim of producing the most
exhaustive nomenclature. The result is then used
to search for pairs of synonyms in the documents.
Among various information on biological sequences
or functions, the entries of gene databases record
the identifiers of the genes and proteins as asserted
by the biologist community of the species. Bacil-
lus subtilis community as opposed to other species
has no nomenclature committee. Each database cu-
rator records unilateral naming decisions that may
not reported elsewhere. The design of an exhaus-
tive nomenclature require the aggregation of multi-
ple sources.

Databases Our sources for the Bacillus subtilis
nomenclature are six publicly available databases
plus an in-house database. The public databases
are generalist (1 to 3) or devoted to Bacillus subtilis
genome (4 to 6) (see Table 3):

GenBank The genetic sequence database managed
by the National Center for Biotechnology In-
formation (NCBI) (Benson et al., 2008). It con-
tains the three official versions of the annotated
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genome of B. subtilis with all gene canonical
names;

UniProt the protein sequence database managed by
the Swiss Institute of Bioinformatics (SIB),
the European Bioinformatics Institute (EBI)
and the Protein Information Resource (PIR)
(Bairoch et al., 2005). It contains man-
ual annotated protein sequences (Swiss-Prot)
and automatically annotated protein sequences
(TrEMBL (Bairoch and Apweiler, 1996)). Its
policy is to conserve a history of all informa-
tion relative to these sequences and in particu-
lar all names of the genes that code for these
sequences.

Genome Reviews The genome database managed
by the European Bioinformatics Institute (EBI)
(Sterk et al., 2006). It contains the re-annotated
versions of the two first official versions of the
annotated genome of B. subtilis;

BSORF The Japanese Bacillus subtilis genome
database (Ogiwara et al., 1996);

Genetic map the original genetic map of Bacillus
subtilis;

GenoList A multi-genome database managed by
the Institut Pasteur (Lechat et al., 2008). It con-
tains an updated version of the last official ver-
sion of the annotated genome of B. subtilis;

SubtiWiki A wiki managed by the Institute for Mi-
crobiology and Genetics in Göttingen (Flórez
et al., 2009) for Bacillus subtilis reannotation.
It is a free collaborative resource for the Bacil-
lus community;

EA List a local lexicon manually designed from
papers curation by Anne Goelzer and Élodie
Marchadier (MIG/INRA) for Systems Biology
modeling (Goelzer et al., 2008).

Nomenclature merging We developed a tool for
periodically dumping the content of the seven source
databases through Web access. With respect to gene
naming the entries of all the databases contain the
same type of data per gene:

• a unique identifier (required);

• a canonical name, which is the currently rec-
ommended name (required);

• a list of synonyms considered as deprecated
names (optional).

The seven databases are handled one after the
other. The merging process follows the rules:

• the dump of the first database (SubtiWiki, see
Table 3 for order) in the list is considered the
most up-to-date and is used as the reference
for the integration of the dumps of the other
databases;

• for all next dumps, if the unique gene identifier
is new, the whole entry is considered as new
and the naming data of the entry is added to the
current merge;

• else, if the unique identifier is already present
into the merge, the associated gene names are
compared to the names of the merge. If the
name does not exist in the merge, it is added to
the merge as a new name for this identifier and
synonym of the current names. The synonym
class is not ordered.

Order Databases AE AN
1 SubtiWiki 4 261 5920
2 GenoList 0 264
3 EA List 33 378
4 BSORF 0 42
5 UniProt 0 74
6 Genome 0 0

Reviews
7 GenBank 0 7
8 Genetic Map 0 978

Total 4 294 7 663

Table 3: Database figures. AE: number of added entries,
AN: number of added names.

Synonym pair dictionary: The aggregated
nomenclature is used to produce a dictionary of all
combinations of pairs in the synonym classes.
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Sentence filtering by gene cooccurrence: For
each sentence in the corpus, if a pair of gene syn-
onyms according to the lexicon is found inside then
the sentence is kept for the next stage. Other-
wise, it is definitively discarded. The comparison
is a case-insensitive exact match preserving non al-
phanumeric symbols. The recall at this step is re-
spectively 90.9% and 90.2% on the train and devel-
opment sets. The recall loss is due to typographic
errors in gene names in the nomenclature. The pre-
cision at this stage is respectively 38.9% and 38.1%
on the train and development sets. There are still
many false positives due to gene homologies or re-
naming acts concerning other species than Bacillus
subtilis for instance.

2.2.2 Sentence filtering by SVM

Feature selection The second filtering step aims
at improving the precision by machine learning clas-
sification of the remaining sentences after the first
filtering step. Feature selection is applied to enhance
the performances of the SVM as it is shown to suffer
from high dimensionality (Weston et al., 2001). Fea-
ture selection is applied to a bag-of-word representa-
tion using the Information Gain metrics of the Weka
library (Hall et al., 2009). Words are lemmatized by
TreeTagger (Schmid, 1994). A manual inspection
of the resulting sorting highly ranks words such as
formerly or rename and parentheses while ranking
other words such as cold or encode surprisingly cer-
tainly due to over-fitting. Although the feature se-
lection is indeed not particularly efficient compared
to the manual selection of relevant features but does
help filtering out unhelpful words and then drasti-
cally reducing the space dimension from 1919 to
141 for the best run.

Sentence classification and grid search: A SVM
algorithm (LibSVM) with a RBF kernel is applied
to the sentences encoded as bag of words. The two
classes are: ”contains a renaming act” (True) or not
(False). There are 4 parameters to tune: 1) the num-
ber of features to use (N ∈ 1, 5, 10, ..., 150) mean-
ing the N first words according to the feature selec-
tion, 2) the weight of the classes: True is fixed to 1
and False is tuned (W ∈ 0.2, 0.4, ..., 5.0), 3) the er-
rors weight (C ∈ 2−5,−7,...,9), 4) the variance of the
Gaussian kernel (G ∈ 2−11,−9,...,1). Thus, to find

the best combination of parameters for this problem,
#N ∗#W ∗#C ∗#G = 31 ∗ 25 ∗ 8 ∗ 7 = 43, 400
models are trained using 10-fold cross-validation on
the training and development sets together (given
the relatively small size of the training set) and
ranked by F-measure. This step is mandatory be-
cause the tuning of C and G alone yield variations
of F-measure from 0 to the maximum. The grid
search is run on a cluster of 165 processors and takes
around 30 minutes. The best model is the model
with the highest F-measure found by the grid search.

Test sentence filtering: Finally the test set is sub-
mitted to word and sentence segmentation, feature
filtering and tagged by the best SVM model (Anno-
tationClassifierTag in Fig. 1). The sentences that are
assumed to contain a renaming act are kept and the
others are discarded (see Fig. 2).

2.3 Gene position searching

At this step, all remaining sentences are assumed to
be true positives. They all contain at least one pair
of genes that are synonymous according to our gene
nomenclature. The other gene names are not con-
sidered. The method for relating gene candidates by
a renaming relation, relies on the assumption that
all gene names are involved in at least one relation.
Most of the time, sentences contain only two genes.
We assume in this case that they are related by a re-
naming act. When there are more than two genes
in a sentence, the following algorithm is applied: 1)
compute all combinations of couples of genes; 2)
look-up the lexicon for those couples and discard
those that are not present; 3) if a given gene in a
couple has multiple occurrences, take the nearest in-
stance from the other gene involved in the renaming
act.

3 Discussion

The system ranks 3rd/3 among three participants
in the Rename task official evaluation with a F-
measure of 64.4% (see Fig. 4), five points behind the
second. The general approach we used for this task
is pragmatic: 1) simplify the problem by focusing on
sentences instead of whole documents for a minimal
loss, 2) then use a series of filters to improve the pre-
cision of the sentence classification while keeping
the recall to its maximum, 3) and finally relate gene
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names known to be synonymous inside sentences for
a minimal loss (around 2% of measure). As opposed
to what is observed in Gene Normalization tasks
(Hirschman et al., 2005), the Rename task is char-
acterised by the lack of morphological resemblance
of gene synonyms. The gene synonyms are not ty-
pographic variants and the recognition of renaming
act requires gene context analysis. The clear bottle-
neck of our system is the sentence filtering part and
in particular the feature selection that brings a lot
of noise by ranking statistically spurious terms. On
the plus side, the whole system is fully automated
to the exception of the resources used for the word
segmentation that were designed manually for other
tasks. Moreover, our strategy does not assume that
the gene pairs from the nomenclature may be men-
tioned for other reasons than renaming, it then tends
to overgeneralize. However, many occurrences of
the predicted gene pairs are not involved in renaming
acts because the reasons for mentioning synonyms
may be different than renaming. In particular, equiv-
alent genes of other species (orthologues) with high
sequence similarities may have the same name as in
Bacillus subtilis. An obvious improvement of our
method would consists in first relating the genes to
their actual species before relating the only Bacillus
subtilis gene synonyms by the renaming relation.

Team Pre. Rec. F-M.
U. of Turku 95.9 79.6 87.0
Concordia U. 74.4 65.9 69.9
INRA 57.0 73.9 64.4

Table 4: Official scores in percentage on the test set.

3.1 Method improvement by IE patterns

After the official submission and given the result of
our system compared to competitors, a simple mod-
ification of the feature selection was tested with sig-
nificant benefits: the addition of regular expressions
as additional features. Intuitively there are words or
patterns that strongly appeal to the reader as impor-
tant markers of renaming acts. For example, vari-
ations of rename or adverbs such originally or for-
merly would certainly be reasonable candidates. Fif-
teen such shallow patterns were designed (see Table
5) supplemented by six more complex ones, orig-

inally designed to single out gene names. In ap-
pendix A, one of them is presented, the precision
of which is 95.3% and recall 27.5%. That is, more
than a quarter of renaming acts in the training and
development sets together. Interestingly, in table
5 the word formerly (3rd in feature selection rank-
ing) alone recalls 10.7% of the renaming acts with
a precision of 96.9%. In contrast, the words origi-
nally and reannotated although having 100% preci-
sion are respectively ranked 33rd and 777th. In total,
21 patterns are represented as boolean features of
the classification step in addition to the ones selected
by feature selection. Unsurprisingly, the best classi-
fiers, according to the cross-validation F-measure af-
ter the grid search, only used the regular expressions
as features neglecting the terms chosen by feature
selection. A significant improvement is achieved:
+8.7% of F-measure on the test set (see Fig. 2).

Pattern Pre. Rec. F-M.
(reannotated) 100.0 0.4 0.7
(also called) 100.0 0.4 0.7
(formerly) 96.9 10.7 19.2
(originally) 100.0 1.4 2.8
((also)? known as) 100.0 1.8 3.4
(were termed) 100.0 0.4 0.7
(identity of) 100.0 0.7 1.4
(be referred (to|as)?) 100.0 0.4 0.7
(new designation) 100.0 0.4 0.7
( allel\w+) 80.0 2.8 5.4
(split into) 100.0 0.4 0.7
( rename ) 83.4 1.8 3.4
( renamed ) 88.5 8.0 14.6
( renaming ) 100.0 0.4 0.7
(E(\.|scherichia) coli) 11.3 4.5 6.4

Table 5: Handwritten patterns. Scores are in percentage
on the training and development sets together after the
gene nomenclature filtering step. A very low precision
means the pattern could be used to filter out rather than
in.

3.2 Error analysis
The false positive errors of the sentence filter-
ing step, using hand-written patterns can be clas-
sified as follows: 1) omission: Characteriza-
tion of abn2 (yxiA), encoding a Bacillus subtilis
GH43 arabinanase, Abn2, and its role in arabino-
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Figure 2: Evolution of F-measure at different measure
points for the Rename task. Dev: training on train set
and testing on dev set. Test: training on train + dev sets
and testing on test set (no intermediary measure). 64.4%
is the official submitted score. 73.1% is the best score
achieved by the system on the test set.

polysaccharide degradation. (PMID 18408032). In
this case the sentence has been filtered out by the
SVM and then the couple abn2/yxia was not an-
notated as a renaming act, 2) incorrect informa-
tion in the nomenclature: These results substanti-
ate the view that sigE is the distal member of a
2-gene operon and demonstrate that the upstream
gene (spoIIGA) is necessary for sigma E forma-
tion. (PMID 2448286). Here, the integration of
the Genetic Map to the nomenclature has introduced
a wrong synonymy relation between spoIIGA and
sigE, 3) homology with another species: We report
the cloning of the wild-type allele of divIVB1 and
show that the mutation lies within a stretch of DNA
containing two open reading frames whose pre-
dicted products are in part homologous to the prod-
ucts of the Escherichia coli minicell genes minC and
minD. (PMID 1400224). The name pair actually
exists in the nomenclature but here, divIVB1 is a
gene of B. subtilis and minC is a gene of E. Coli,
4) another problem linked to the lexicon is the fact
the synonym classes are not disjoint. Some depre-
cated names of given genes are reused as canoni-
cal names of other genes. For example, purF and
purB referred to two different genes of B. subtilis

but purB was also formerly known as purF: The
following gene order has been established: pbuG-
purB-purF-purM-purH-purD-tre (PMID 3125411).
Hence, purF and purB are uncorrectly recognized
as synonyms while they refer to two different genes
in this context. Possible solutions for improving the
system could be: 1) the inclusion of species names
as SVM features, 2) the removal of some couples
from the nomenclature (PurF/purB for instance),
3) evaluate the benefits of each resource part of the
nomenclature.

4 Conclusion

Our system detects renaming acts of Bacillus sub-
tilis genes with a final F-measure of 64.4%. Af-
ter sentence segmentation, the emphasis is on sen-
tence filtering using an exhaustive nomenclature and
a SVM. An amelioration of this method using pat-
terns as features of the machine learning algorithm
was shown to improve significantly (+8.7%) the fi-
nal performance. It was also shown that the bag of
words representation is sub-optimal for text classi-
fication experiments (Fagan, 1987; Caropreso and
Matwin, 2006) With the use of such patterns, the fil-
tering step is now very efficient. The examination
of the remaining errors showed the limits of the cur-
rent shallow system. A deeper linguistic approach
using syntactic parsing seems indicated to improve
the filtering step further.
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A Gene or operon couple matching pattern

Pattern that uses bacteria gene naming rules (3 lower
case + 1 upper case letters), short genes (3 lower
case letters), long gene names, factorized operons
(3 lower case + several upper case letters), gene
names including special and/or numerical characters
in presence or not of signal words such as named,
renamed, formerly, formally, here, herein, here-
after, now, previously, as, designated, termed and/or
called, only if the pattern does not begin with and
or orf. Although this pattern could be used to di-
rectly filter in sentences containing a renaming act,
its recall is too low thus it is used as a feature of the
classifier instead.

and|orf\
GENE|OPERON-fact\
[|((now|as|previously|formerly|formally|here(in|after))\
((re)named|called|designated|termed) (now|as|previously|formerly|formally|here(in|after))\
GENE|OPERON-fact)|]

Table 6: Long pattern used for gene pair matching.

Terms matched Pattern PMID
short-GENE (short-GENE) cotA (formerly pig) 8759849
long-GENE (long-GENE) cotSA (ytxN) 10234840
fact-OPERON (fact-OPERON) ntdABC (formally yhjLKJ) 14612444
spe-GENE (spe-GENE) lpa-8 (sfp) 10471562
GENE (GENE) cwlB [lytC] 8759849
GENE (now designated GENE) yfiA (now designated glvR) 11489864
GENE (previously GENE) nhaC (previously yheL) 11274110
GENE (formerly called GENE) bkdR (formerly called yqiR) 10094682
GENE (now termed GENE) yqgR (now termed glcK) 9620975
GENE (GENE) other forms fosB(yndN) 11244082
GENE (hereafter renamed GENE) yhdQ (hereafter renamed cueR) 14663075
GENE (herein renamed GENE) yqhN (herein renamed mntR) 10760146
GENE (formally GENE) ntdR (formally yhjM) 14612444
GENE (formerly GENE) mtnK (formerly ykrT) 11545674
GENE (renamed GENE) yfjS (renamed pdaA) 12374835
GENE (named GENE) yvcE (named cwlO) 16233686
GENE (GENE) pdaA (yfjS) 14679227

Table 7: Examples matched with the long pattern.
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