
Voting and Stacking in Data-Driven Dependency Parsing

Mark Fishel
University of Tartu

Tartu, Estonia
fishel@ut.ee

Joakim Nivre
Uppsala University
Uppsala, Sweden

joakim.nivre@lingfil.uu.se

Abstract

We compare the techniques of voting and
stacking for system combination in data-
driven dependency parsing, using a set
of eight different transition-based parsers
as component systems. Experimental re-
sults show that both methods lead to sig-
nificant improvements over the best com-
ponent system, and that voting gives the
highest overall accuracy. We also investi-
gate different weighting schemes for vot-
ing.

1 Introduction

System combination is a general technique that
can be used to boost accuracy in natural language
processing tasks. By combining several models
for performing the same task, we can exploit the
unique advantage of each model and reduce some
of the random errors. In this paper, we study two
techniques for combining data-driven dependency
parsers: voting and stacking.

In parser combination by voting, the outputs of
(at least three) independent parsers are combined
to produce an analysis supported by a majority
of component systems. This technique was first
proposed by Zeman and Žabokrtský (2005) and
further refined by Sagae and Lavie (2006), who
showed that it could be construed as a special form
of spanning tree parsing. In parser combination
by stacking, the outputs of one or more parsers are
used as features for a data-driven parser that can
learn from the predictions of other models. Parser
stacking was recently used by Nivre and McDon-
ald (2008) to advance the state of the art on the
multilingual test sets from the CoNLL-X shared
task (Buchholz and Marsi, 2006).

We describe a series of experiments, where we
first try to optimize the voting strategy, by investi-
gating different schemes for assigning weights to

the votes of different systems. We then compare
voting to the alternative method of stacking. The
paper is organized as follows. Section 2 describes
the tools, resources and methods, common to all
experiments, as well as the component parsers,
used for voting and stacking. Optimizations of
voting are introduced and evaluated in Section 3,
and stacking is treated in Section 4. The paper is
concluded with Section 5.

2 Common Resources and Methodology

We used the corpora from the closed part of the
CoNLL 2008 shared task (Surdeanu et al., 2008),
including a training corpus (39,279 sentences),
a development corpus (1,334 sentences), an in-
domain test corpus (labeled WSJ, 2,399 sentences)
and an out-of-domain test corpus (labeled Brown,
425 sentences). The available features included
word forms, lemmas, and part-of-speech. A more
detailed description of the corpora can be found in
Surdeanu et al. (2008).

In all voting experiments the training corpus
was used to train the component systems and the
development corpus was used to learn weights. In
the case of stacking, the development corpus was
too small to train the joint parsing system. Thus 4-
fold cross-validation on the training set was used
with the common systems, and the joint system
was trained on the resulting training set.

All results are evaluated using the labeled at-
tachment score, which is the percentage of tokens
with correctly determined heads and dependency
relations in the test corpus. Intermediate models
are evaluated on the WSJ testing corpus, whereas
the final scores are presented for both WSJ and
Brown.

All component parsers (as well as the stacking
parser) were trained using MaltParser (Nivre et al.,
2006), a data-driven dependency parser genera-
tor that implements two parsing algorithms: the
shift-reduce algorithm proposed by Nivre (2003),

Kristiina Jokinen and Eckhard Bick (Eds.)
NODALIDA 2009 Conference Proceedings, pp. 219–222



in an arc-eager and an arc-standard variant (Nivre-
Eager and Nivre-Std), and the incremental parsing
algorithm first described in Covington (2001), in a
projective and a non-projective variant (Cov-Proj
and Cov-NonProj).

We used eight component parsers, defined by
the four algorithm variants times two directions
(forward and reverse), which is the same setup
as in Samuelsson et al. (2008). Feature models
and parameter settings were taken from Hall et al.
(2007). The scores of the eight parsers on the two
test corpora are presented in Table 1. The highest
score is obtained with Nivre-Eager forward, which
may be partly due to the fact that this is the setup
used for feature selection and parameter tuning by
Hall et al. (2007).

WSJ Brown
Nivre-Eager forward 86.47% 78.76%
Nivre-Eager reverse 82.94% 76.29%
Nivre-Std forward 84.87% 76.34%
Nivre-Std reverse 84.52% 76.88%
Cov-Proj forward 85.14% 77.61%
Cov-Proj reverse 83.41% 76.59%
Cov-NonProj forward 85.75% 78.09%
Cov-NonProj reverse 83.61% 77.23%

Table 1: Labeled attachment score of the compo-
nent parsers on WSJ and Brown.

3 Voting

System combination by voting was first proposed
for dependency parsing by Zeman and Žabokrtský
(2005). Since the task of a dependency parser is to
select one head and one dependency relation for
each input word, letting component systems vote
is a straightforward strategy for combining their
predictions. One problem is that using the major-
ity vote for each word may not result in a valid
dependency tree – it may result in a graph with
cycles, for example – but Sagae and Lavie (2006)
showed that this problem can be solved using the
maximum spanning tree algorithm previously pro-
posed for dependency parsing by McDonald et al.
(2005). If all dependency arcs proposed by some
parser are stored in a graph and weighted by their
number of votes, then extracting the maximum
spanning tree (MST) from this graph yields the op-
timal dependency tree.

Sagae and Lavie (2006) also showed that accu-
racy can be further improved if votes are weighted
by the accuracy of the component parser on all
arcs where the dependent token has the same part
of speech. This weighting scheme, which we will
refer to as the default model, was later used by
Hall et al. (2007) to achieve the best overall score
in the CoNLL 2007 shared task by combining six
different parsers. Samuelsson et al. (2008) used a
variation on the default model, where weights are
first set according to accuracy but are then itera-
tively updated using the following simple princi-
ple: at each iteration the MST is compared to the
reference parse, after which all weights of correct
arcs are given a small increase and all incorrect
ones a small decrease. This technique resulted in
minor score improvements over the default model.

In order to obtain a baseline, the default model
was applied to the eight component systems, re-
sulting in a score of 88.14%, which is a consid-
erable improvement over the best component sys-
tem (1.67% absolute score improvement, 12.35%
error reduction). In addition to the baseline an
upper-bound was computed by using the reference
parse as an ideal oracle parse, giving correct arcs a
weight of 1 and incorrect ones a weight of 0. The
resulting upper-bound score is 93.84%.

The first optimization attempt consisted of us-
ing other categories or category combinations than
the part of speech of the dependent token (POS) to
group the individual weights. As a result, three
features that improved scores were found: the de-
pendency relation of the dependent token (DE-
PREL) (88.28%), the part of speech of its head
(H-POS) (88.27%), and the dependency relation
of its head (H-DEPREL) (88.30%). However, all
improvements are rather marginal.

In the next step we tested composite categories,
consisting of subsets of the three successful fea-
tures and the original part of speech, getting im-
provements for the following combinations: POS,
DEPREL (88.48%), POS, H-POS (88.40%), and
POS, H-DEPREL (88.45%). We also tried replac-
ing the original part-of-speech tags with more gen-
eral categories, obtained by taking the first two
characters of the original tags (which are two or
three characters long). This resulted in 32 tags
(instead of 47) and generally improved scores, but
again only marginally.

All results from our weight grouping experi-
ments can be found in Table 2. In general, it can

Mark Fishel and Joakim Nivre

220



POS WSJ PO WSJ PO Brown
POS (default) 88.14% 88.15% 80.64%
DEPREL 88.28% - 80.88%
H-POS 88.27% 88.29% 80.84%
H-DEPREL 88.30% - 80.77%
POS, DEPREL 88.48% 88.49% 80.96%
POS, H-POS 88.40% 88.50% 81.14%
POS, H-DEPREL 88.45% 88.50% 81.05%
DEPREL, H-POS 88.24% 88.28% 80.92%
DEPREL, H-DEPREL 88.26% - 80.82%
H-DEPREL, H-POS 88.26% 88.27% 80.81%
All but H-DEPREL 88.18% 88.42% 81.05%
All but H-POS 88.21% 88.30% 80.91%
All but DEPREL 88.14% 88.38% 81.12%
All but POS 87.99% 88.11% 80.67%
All four 87.74% 88.15% 80.67%
Upper bound 93.84% - 88.66%

Table 2: Labeled attachment score for voting systems with weights grouped by different combinations of
the token part of speech (POS), the first two letters of the part-of-speech tag (PO), the token dependency
relation (DEPREL), the head part of speech (H-POS), and the head dependency relation (H-DEPREL).

be concluded that the part-of-speech of the depen-
dent token, used in the default model, is an impor-
tant feature for grouping weights, but the system
can benefit from combining it with other features
of dependency arcs.

The second optimization attempt was to apply
gradient descent learning to the problem of finding
optimal weights. We defined the error function as
follows:

E =
∑

i

(wref
i − whyp

i )2

where whyp
i are the current weights and wref

i are
the golden reference weights, which equal 1 if the
arc is present in the reference parse and 0 other-
wise. Thus, minimizing the error function causes
the weights to get closer to the golden reference,
and the weight of the corresponding category and
system is “rewarded” for each correct guess.

Gradient descent learning gave results on a par
with the default model but never exceeded them
by more than 0.05% despite tweaking the learn-
ing rate, replacing categories or switching between
initializing the weights to the default model or to
random values. In our opinion, this strongly in-
dicates that the default model is either optimal or
very close to optimal.

4 Stacking

A completely different way of using the results of
several different systems is to include their out-
puts as input features to a joint system. This is
known as stacking and has the potential advan-
tage that it allows the joint system to learn from
the predictions of the component parsers, as op-
posed to merely combining the predictions. Stack-
ing for dependency parsing was used by Nivre and
McDonald (2008) to combine MaltParser (Nivre
et al., 2006) and MSTParser (McDonald et al.,
2005). The results showed significant improve-
ments in accuracy when using either of the parsers
to generate features for the other, with the largest
improvement when MSTParser could learn from
features generated by MaltParser.

In our experiments, this approach was tested
with the eight component parsers described in Sec-
tion 2 as input systems. The joint system was es-
sentially the same as the best performing compo-
nent parser (Nivre-Eager) but trained on features
that include both the original feature set from Hall
et al. (2007) and the new features from the input
system outputs. The latter included the hypothe-
sized incoming arcs and dependency relations of
the token on top of the stack and the next input
token. The joint system achieved a labeled attach-

Voting and Stacking in Data-Driven Dependency Parsing

221



ment score of 87.67% (1.20% absolute score im-
provement, 8.87% error reduction).

We then tried removing some of the new fea-
ture groups, for example, only using the arc fea-
tures, or only the dependency relation features.
The best combination was achieved by excluding
the dependency relation features of the token on
the top of the stack (87.76%). The final results
for the best models are presented in Table 3. Al-
though some models achieved improvements over
the best component system, all of them remained
below the best voting system, described above in
Section 3.

WSJ Brown
Baseline 86.47% 78.76%
Stacking, all features 87.67% 80.05%
Stacking, all but input
DEPREL

87.15% 79.77%

Stacking, all but stack
DEPREL

87.76% 79.83%

Stacking, all but arcs 87.73% 80.07%
Stacking, only input DE-
PREL

87.71% 79.92%

Table 3: Labeled attachment score of the stacking
parsers.

5 Conclusions

This paper focused on the voting technique, which
uses the output of many dependency parsers to
combine their individual advantages and compute
a joint parse. We conducted several experiments,
empirically evaluating some adjustments to the
technique, and also compared it to the alternative
technique of stacking.

The experimental results first of all confirmed
that voting may result in considerable quality im-
provements over their component parser systems.
Our attempts to find better ways of grouping
arcs when assigning weights showed marginal im-
provements, in particular when introducing more
general part-of-speech categories, while the exper-
iments on replacing the default weighting scheme
with gradient descent learning mainly showed that
the default model is close to optimal in itself.

The experiments on stacking also showed im-
provements over its baseline but generally resulted
in lower scores than all voting systems. We believe
that better results can be achieved by thoroughly

selecting the features of the joint parser, but it is
also possible that stacking works better when the
differences between the input parsers and the joint
parser are greater. For example, whereas all our
parsers were instantiations of the transition-based
approach implemented in MaltParser, Nivre and
McDonald (2008) combined one transition-based
parser and one graph-based parser, models that
have different characteristic error distributions.

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

shared task on multilingual dependency parsing. In
Proc. of CoNLL, pages 149–164.

Michael A. Covington. 2001. A fundamental algo-
rithm for dependency parsing. In Proc. of the An-
nual ACM Southeast Conference, pages 95–102.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen
Eryigit, Beáta Megyesi, Mattias Nilsson, and
Markus Saers. 2007. Single malt or blended? a
study in multilingual parser optimization. In Proc.
of CoNLL Shared Task, pages 933–939.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proc. of
HLT/EMNLP, pages 523–530.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proc. of ACL, pages 950–958.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proc. of LREC, pages 2216–
2219.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. of IWPT, pages
149–160.

Kenji Sagae and Alon Lavie. 2006. Parser combina-
tion by reparsing. In Proc. of NAACL, pages 129–
132.

Yvonne Samuelsson, Oscar Täckström, Sumithra
Velupillai, Johan Eklund, Mark Fishel, and Markus
Saers. 2008. Mixing and blending syntactic and
semantic dependencies. In Proc. of CoNLL, pages
248–252.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The conll
2008 shared task on joint parsing of syntactic and
semantic dependencies. In Proc. of CoNLL, pages
159–177.

Daniel Zeman and Zdeněk Žabokrtský. 2005. Improv-
ing parsing accuracy by combining diverse depen-
dency parsers. In Proc. of IWPT, pages 171–178.

Mark Fishel and Joakim Nivre

222 ISSN 1736-6305 Vol. 4
http://hdl.handle.net/10062/9206


