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Abstract 

Models for predicting judgments about 
the quality of Spoken Dialog Systems 
have been used as overall evaluation 
metric or as optimization functions in 
adaptive systems. We describe a new 
approach to such models, using Hidden 
Markov Models (HMMs). The user’s 
opinion is regarded as a continuous 
process evolving over time. We present 
the data collection method and results 
achieved with the HMM model. 

1 Introduction 

Spoken Dialog Systems (SDSs) are now widely 
used, and are becoming more complex as a result 
of the increased solidity of advanced techniques, 
mainly in the realm of natural language 
understanding (Steimel et al. 2008). At the same 
time, the evaluation of such systems increasingly 
demands for testing the entire system, as 
components for speech recognition, language 
understanding and dialog management are 
interacting more deeply. For example, the system 
might search for web content on the basis of 
meaning extracted from an n-best list, and 
generate the reply and speech recognition 
grammars depending on the content found 
(Wootton et al. 2007). The performance of single 
components strongly depends on each other 
component in this case. 

While performance parameters become less 
meaningful in such a system, the system’s 
overall quality, which can only be measured by 
asking the user (Jekosch 2005), gains interest for 
the evaluation. Typically, users fill out 

questionnaires after the interaction, which cover 
various perceptional dimensions such as 
efficiency, dialog smoothness, or the overall 
evaluation of the system (Hone and Graham, 
2001; ITU-T Rec. P.851, 2003; Möller 2005a). 
Judgments of the system’s overall quality can be 
used to compare systems with respect to a single 
measure, which however comprises all relevant 
aspects of the interaction. Thus, the complexity 
of the evaluation task is reduced. 

In addition, user simulation is increasingly 
used to address the difficulty of foreseeing all 
possible problems a user might encounter with 
the system (e.g. Ai and Weng, 2008; Engelbrecht 
et al., 2008a; Chung, 2004; López-Cózar et al., 
2003). In order to evaluate results from such 
simulations, some approaches utilize prediction 
models of user judgments (e.g. Ai and Weng, 
2008; Engelbrecht et al., 2008a). 

Currently, prediction models for user 
judgments are based on the PARADISE 
framework introduced by Walker et al. (1997). 
PARADISE assumes that user satisfaction 
judgments describe the overall quality of the 
system, and are causally related to task success 
and dialog costs, i.e. efficiency and quality of the 
dialog. Therefore, a linear regression function 
can be trained with interaction parameters 
describing dialog costs and task success as 
predictors, and satisfaction ratings as the target. 
The resulting equation can then be used to 
predict user satisfaction with unseen dialogs. 

In follow-up studies, it could be shown that 
such models are to some degree generalizable 
(Walker et al., 2000). However, also limitations 
of the models in predicting judgments for other 
user groups, or for systems with different levels 
of ASR performance, were reported (Walker et 
al., 1998). In the same study, prediction 
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functions for user satisfaction were proposed to 
serve as optimization function in a system 
adapting its dialog strategy during the interaction. 
This idea is taken up by Rieser and Lemon 
(2008).  

The prediction accuracy of PARADISE 
functions typically lies around an R2 of 0.5, 
meaning that 50% of the variance in the 
judgments is explained by the model. While this 
number is not absolutely satisfying, it could be 
shown that mean values for groups of dialogs 
(e.g. with a specific system configuration) can be 
predicted more accurately than single dialogs 
with the same models (Engelbrecht and Möller, 
2007). Low R2 for the predictions of ratings of 
individual dialogs seems to be due to inter-rater 
differences at least to some degree. Such 
differences have been described, and may 
concern the actual perception of the judged issue 
(Guski, 1999), or the way the perception is 
described by the participant (Okun and Weir, 
1990; Engelbrecht et al., 2008b) 

We have tested the PARADISE framework 
extensively, using different classifier models and 
interaction parameters. Precise and general 
models are hard to achieve, even if the set of 
parameters describing the interaction is widely 
extended (Möller et al., 2008). In an effort to 
improve such prediction models, we developed 
two ideas: 

• Predict the distribution of ratings which 
can be expected for a representative group 
of users given the same stimulus. This 
takes into account that in most cases the 
relevant user characteristics determining 
the judgment cannot be tracked, or even 
are unknown. 

• Consider the time relations between 
events by modeling user opinion as a 
variable evolving over the course of the 
dialog. This way, time relations like co-
occurrence of events, which affect quality 
perception, attention, or memory can be 
modeled most effectively. 

In this paper, we present a new modeling 
approach considering these ideas. In Section 2, 
we introduce the topology of the model. 
Following this, we report how training data for 
the model were obtained from user tests in 
Section 3. Evaluation results are presented in 
Section 4 and discussed in Section 5, before we 
conclude with some remarks on follow-up 
research. 

2 Modeling Judgments with HMMs 

Hidden Markov Models (HMMs) are often used 
for classifying sequential stochastic processes, 
e.g. in computational linguistics or bio-
informatics. An HMM models a sequence of 
events as a sequence of states, in which each 
state emits certain symbols with some probability. 
In addition, the transitions between states are 
probabilistic. The model is defined by a set of 
state symbols, a set of emission symbols, the 
probabilities for the initial state, the state 
transition matrix, and the emission matrix. The 
transition matrix contains the probabilities for 
transitions from each state to each other state or 
itself. The emission matrix contains the 
probabilities for each emission symbol to occur 
at each state.  

While the sequence of emissions can be 
observed, the state sequence is hidden. However, 
given an emission sequence, standard algorithms 
defined for the HMM allow to calculate the 
probability of each state at each point in the 
sequence. The probability for the model to be in 
a state is dependent on the previous state and the 
emissions observed at the current state. 

As illustrated by Figure 1, the development of 
the users’ opinions can be modelled as an HMM. 
The user judgment about the dialog is modelled 
as states, each state representing a specific 
judgment (think of it as “emotional states”). A 
prediction is made at each dialog turn. In the 
model depicted, the user judgment can either be 
“bad” or “good”. Each judgment has a 
probabilistic relation to the current events in the 
dialog. In the picture, the events are described in 
the form of understanding errors and 
confirmation types, i.e. there are two features 
which can take a number of different values, 
each with a certain probability.  

Although the judgments do not “emit” the 
events at each turn (the causal relation is 
opposite), the probabilistic relation between them 
can be captured and evaluated with the HMM 
and the associated algorithms. 

Apart from the dialog events, the current 
judgment is also determined by the previous 
judgment. For example, we expect that the 
judgments are varying smoothly, i.e. the 
probability for a transition becomes lower with 
increasing (semantic) distance between the state 
labels. 

Although events in previous turns cannot 
impact the current judgment given this model 
topology, it is possible to incorporate dialog 
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history by creating features with a time lag. E.g., 
a feature could represent the understanding error 
in the previous turn. Also, simultaneity of 
different events affecting the quality perception 
can be evaluated by calculating probabilities for 
each judgment given the observed combination 
of features. If the features are interacting (i.e. the 
probability of one feature changes in dependence 
of another feature), this is modelled by directly 
specifying the emission probabilities for each 
combination of features. We call this a layer of 
emissions. Additional layers with other features 
can be created. In this case, the likelihood of 
each judgment given probabilities from each 
layer can be calculated by multiplication of the 
probabilities from each layer. 

For the calculation of state probabilities, we 
can use forward recursion (Rabiner, 1989). The 
algorithm proceeds through the observed 
sequence, and at each step calculates the 
probability for each state given the probabilities 
of the observation, the probabilities of each state 
at the previous step, and the transition 
probabilities. 

 
Figure 1. Topology of an HMM to model user 
judgments (“good” or “bad”) in their 
probabilistic relation to dialog events (error and 
confirmation strategy) and the previous rating. 

3 Data Collection 

In order to train the model, data is needed in 
which the association between dialog events and 
judgments at each turn is represented. Therefore, 
we conducted an experiment in which users 
interacted with an SDS and judged the 
interaction after each dialog turn. In addition, all 
users followed the same five dialogs, which was 
possible by using the Wizard-of-Oz technique 
(Fraser and Gilbert 1991) and relatively strict 
scenario descriptions. 

As the interactions were predefined, care was 
taken that a representative sample of relevant 

usability problems were passed in the 
interactions. Such problems were collected in a 
brainstorming session, and comprise 
understanding errors, task failure, prompt 
wording issues (such as incomplete information), 
missing control options, or not being able to 
input one of the criteria specified in the scenario 
description. As further features of the dialog, 
which might impact the quality judgment, the 
number of concepts which can be specified, as 
well as the confirmation strategy, should vary 
along the interactions. 

We then designed a dialog system with a 
consistent strategy, which however allowed for 
the quality-relevant issues mentioned above to 
occur in the dialogs. The system was derived 
from the BoRIS restaurant information system 
(Möller 2005b), which enables the search of 
restaurants in the German city Bochum 
according to the criteria day, time, location, type 
of cuisine and pricing. For our system, we 
simplified the dialog strategy to system initiative, 
however, at the first turn, the users could say 
both day and time. If both were recognized, 
explicit confirmation was requested. If just one 
constraint was understood, confirmation was im-
plicit. The last constraint specified (pricing) was 
not confirmed, and instead the restaurant 
information was output directly. If no restaurant 
was found according to the specified criteria, the 
user could change one of the constraints. Table 1 
shows an example of a dialog with the system. 

We also reformulated some prompts to fit the 
changed dialog strategy, and partly to 
incorporate potential wording problems. Prompts 
were recorded with a non-professional speaker, 

S: Welcome to the telephone-based restaurant 
information system for Bochum. When would you 
like to eat? 
U: Tomorrow night. 
S: So you want to eat tonight? 
U: No. 
S: On which day would you like to eat? 
…. 
U: Medium pricing 
S: Unfortunately, I could not find a restaurant 
matching your query. Would you like to change 
time, location, cuisine or pricing? 
U: Yes, cuisine. 
S: Which type of cuisine are you searching for? 
U: Italian. 
S: The possible restaurants are: {name, address}  

Table 1. Example dialog with the BoRIS 
restaurant information system, version as used 
in the experiment. 
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using high-quality audio equipment. During the 
interactions, the wizard simply replayed the 
prompt foreseen at the current state of the 
predefined dialog script. In addition to the 
foreseen prompts, the wizard had at hand no-
input and help prompts in case the user would 
behave unexpectedly. 

25 users (13 females, 12 males), recruited 
from the campus, but not all students, 
participated in the experiment. Participants were 
aged between 20 and 46 years (M=26.5; 
STD=6.6). Ratings were given on a 5-point scale, 
where the points were labeled “bad”, “poor”, 
“fair”, “good”, and “excellent”. Ratings were 
input through a number pad attached to the scale. 
Each participant rehearsed the procedure with a 
test dialog. Before the experiment, all users filled 
out a questionnaire measuring their technical 
affinity. 

As the data collected in the described experi-
ment are all needed to train the prediction model 
for as many combinations of feature values as 
possible, we conducted a second experiment to 
generate test data. For this test, we asked 17 per-
sons from our lab to conduct two dialogs with 
the system mock-up. The test setup was the same 
as in the previous experiment, except that new 
dialogs were created without particular 
requirements or restrictions. 

In both experiments, not all users behaved as 
we hoped. Therefore, not all of the predefined 
dialog scripts were judged by all participants 
(N=15…23 for training corpus, N=9…13 for test 

corpus; N: number of valid dialogs). For one 
dialog script in the training corpus, the deviating 
interactions were all equal (N=9), so 
distributions of ratings per turn could be 
calculated for comparison with the predicted 
distributions for this dialog. For the training and 
calculation of initial state probabilities, all dia-
logs in the training corpus were used. 

The model derived from the data includes five 
possible states (one for each rating). For a list of 
features annotated in the dialogs see Figure 2. 

4 Results 

In order to evaluate the modeling approach, we 
first searched for the best model given the 
training data from the first experiment. We then 
applied this model to the test data from the 
second experiment in order to evaluate the model 
accuracy given unseen data. Afterwards, we 
examined if another model trained on the 
training set can predict the test set better, i.e. we 
“optimized” the model on the test data. Finally, 
we cross-check how well the model optimized on 
the test data performs on the training data, which 
gives a glimpse at how much the model is biased 
towards the test data. 

As the criterion for the optimization, we deter-
mined the mean squared error (MSE), and 
averaged across all dialog script in the corpus on 
which the model was optimized. For each dialog 
script, all 5 probabilities (ratings “bad” to 
“excellent”) at each dialog turn were taken into 
account, i.e. the squared prediction errors were 
added. If rate is the rating, then 

 
As this measure, in the particular way we 

applied it here, is not easily comparable to other 
results, we add two pictures illustrating the 
accuracy represented either by a rather low or by 
a rather high MSE. In addition, we report the 
mean absolute error (MAEmax) of the models in 
predicting the most likely rating at each state 
(mean rating if two ratings with equal probability) 
and the baseline performance when the 
unconditional distribution of ratings is predicted. 

We first optimized a model on the training 
data, meaning that we selected parameters, 
trained the HMM with these parameters on the 
training data and then predicted results for all 6 
dialog scripts contained in the training set (top of 

Feature Values 

understanding 
errors 

PA:PA (partially correct) 
PA:FA (failed) 
PA:IC (incorrect) 

confirmation 
strategy 

explicit 
implicit 
none 

system speech 
act 

ask for 2 constraints 
ask for 1 constraint 
ask for selection of a constraint 
provide info 

user speech act 
 

provide info 
repeat info  
confirm 
meta communication 
no-input 

contextual 
appropriateness 
(Grice’s 
maxims) 

manner 
quality 
quantity 
relevance 

task success success 
failure 

Table 2. Annotated dialog features. 
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Table 3). The optimized model was chosen as the 
one returning the smallest MSE (mean of all 
tasks). The best model included understanding 
errors interacting with confirmation type at each 
turn, and interacting with task success. As we 
analyzed the prediction results, we found that 
whenever the system changed from asking two 
constraints at a time to just one (which is done in 
order to avoid multiple errors in a row), the 
predictions were too positive. We therefore 
introduced a new feature, which is annotated 
whenever the system asks for a single constraint 
which has been asked in a more complex 
question before (“dummy”). In the model 
optimized on training data, this parameter was 
included on a separate feature layer. That is, this 
feature impacts quality perception independent 
of the other features’ values. 

 We then used this model to predict the test 
data collected in the second experiment (top of 
Table 4). As expected, the MSE clearly increases; 
however, this was partly due to the difference in 

the sample of participants. As in the second 
experiment participants were recruited from our 
lab, their technical affinity was relatively high. 
Therefore, we retrained the HMM with only 
those 50% of the users from the training set who 
got the highest score on the technical affinity 
questionnaire. With this model, the prediction of 
test data improved.  

In a next step, we optimized the model on the 
test set meaning that we searched for the 
parameter combination achieving the best result 
on the two test dialogs. However, the model was 
still trained on the training data from the first 
experiment. As expected, the MSE could be 
improved. However, only minor changes in the 
feature configuration are necessary: Still, errors 
and confirmation type are interacting on the 
same layer. However, task success is included as 
independent variable on a second layer, and 
instead, the error in the previous turn determines 
the impact of errors and confirmation on the 
ratings. Again, we tested if the prediction can be 

 

Predicted: training dialogs 

 

Dial 1 

 

Dial 2 

 

Dial 3 

 

Dial 4 

 

Dial 5 

 

Dial 6 

 

Mean (basel.) 

Optimized on training 
dialogs 

Layer 1: Error, Confirm, Task Success 

Layer 2: Dummy 
MSE: 0.0185 0.0307 0.0166 0.0216 0.0333 0.0477 0.0281 (0.1201) 

MAEmax: 0.7000 0.5714 0.2857 0.0556 0.3636 0.3333 0.3849 (0.6167) 
Optimized on test dialogs 
 

Layer 1: Errors, Errors_lag, Confirmation 

Layer 2: TaskSuccess 
MSE: 0.0272 0.0358 0.0247 0.0374 0.0400 0.0574 0.0371 (0.1201) 

MAEmax: 0.5000 0.4286 0.4286 0.3889 0.4545 0.3333 0.4223 (0.6167) 
Number of valid dialogs (N): 22 15 23 17 17 9  

Table 3. Evaluation of predictions of training dialogs (mean squared error and mean absolute error 
in predicting the most probable state at each turn). Baseline results are given in brackets. The feature 
combinations with which results were obtained are also reported. 

 

Predicted: test dialogs Dial 1 Dial 2 Mean (baseline) 

Optimized on training dialogs Layer 1: Error, Confirm, Task Success 
Layer 2: Dummy 

MSE: 0.1039 0.0429 0.0734 (0.1583) 
MAEmax: 0.4444 0.6250 0.5347 (0.6944) 

Optimized on training dialogs (tah) Layer 1: Error, Confirm, Task Success 

Layer 2: Dummy 
MSE: 0.0957 0.0387 0.0672 (0.1636) 

MAEmax: 0.3333 0 0.1667 (0.6944) 
Optimized on test dialogs (rf) Layer 1: Errors, Errors_lag, Confirm 

Layer 2: TaskSuccess 
MSE: 0.0789 0.0349 0.0569 (0.1583) 

MAEmax: 0.4444 0.6250 0.5347 (0.6944) 
Optimized on test dialogs (tah; rf) Layer 1: Errors, Confirm 

MSE: 0.0860 0.0374 0.0617 (0.1636) 
MAEmax: 0.3333 0 0.1667 (0.6944) 

Number of valid dialogs (N): 9 13  

Table 4. Evaluation of predictions of training dialogs (tah=model trained on users with high 
technical affinity; rf=user speech act feature exclude from analysis) 
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improved by considering differences between the 
users’ technical affinity. However, repeating the 
procedure for only those users with high 
technical affinity did not improve the result this 
time. Concerning the parameters, error and 
confirmation type were confirmed to be 
significant predictors of quality judgments. The 
dummy parameter created to improve the 
accuracy on training data was not proven useful 
for the prediction of the test set ratings.  

In order to cross-check the validity of the 
model optimized on test data, we finally 
predicted the ratings of the 6 dialogs from the 
training set with the same model (bottom of 
Table 3). As can be seen, the prediction is worse 
than that from the model optimized on the 
training set. However, the quality of the 
prediction is still reasonable, showing that the 
two datasets do not demand for completely 
different models. All predictions are above the 
baseline. 

5 Discussion 

In the previous section, we presented results 
achieved with our models in terms of MSE. In 
order to gain meaning to the values of MSE, we 
added the mean absolute error of predicting the 
most probable judgment at each state. A closer 
look at the relation between MSE and MAEmax 
reveals that both measures are not strictly 
correlated (see e.g. the first two models in Table 
4). While the MSE measures the distance at each 
measurement point in the distribution, the 
MAEmax is a rough indicator of the similarity of 
the shape of the predicted and observed 
probability curves. The results for MAEmax are 
promising, as predictions of test data are in the 
range of predictions of training data and better 
than the baseline. Also, predictions made from 
participants with high technical affinity achieve 
better results on the test data in all cases, which 
was expected, but not found for the MSE results. 

Figure 2 presents examples of prediction 
results graphically. We chose one example of an 
average, and one of a relatively bad prediction, to 
allow extrapolation to other results presented. 
The pictures show that even a relatively high 
MSE corresponds to a fair quality of the 
prediction. The probability curves are mostly 
similar, mainly smoother than the observed 
probability distributions. Sometimes the 
predictions are too optimistic, however, usually 
the change in judgments is predicted, just not the 
extent of this change. We can only hypothesize 

 
 
Figure 2. Examples of predictions on test 
data made with the model, illustrating the 
meaning of MSE values. Depicted are two 
dialogs (columns) with 9 (left) and 8 (right) 
turns (rows).  For each turn, the empirical 
(solid line) and predicted (dotted line) rating 
distributions are given. Left: MSE=0.0957; 
N(emp)=9. Right: MSE=0.0349; 
N(emp)=13. 
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about the reasons for the participants to judge the 
respective dialog worse than predicted by the 
model. A possible reason is that users more 
easily decrease their judgments when the dialog 
has a longer history of problematic situations. 
According to our data, the users were relatively 
forgiving and increased their judgments if the 
dialog went well, even if previously errors had 
occurred. However, the errors might not really be 
forgot, and be reflected in the judgment of later 
problems and errors. Unfortunately, for reasons 
of data scarcity, the wider dialog history cannot 
be considered in the models. 

Another source of prediction error might be 
the sample size available for the predicted 
dialogs. If sample size (N) and MSE values are 
compared among the dialogs, it can be observed 
that both values are correlated. This might be due 
to less smooth probability distribution curves if 
few ratings are available at each turn. While the 
curves depicted in Figure 2 are sometimes spiky, 
with increasing sample size normal distribution 
should be more likely. This might to some 
degree explain the clearly higher MSE for the test 
data predictions despite the relatively small error 
in predicting the most probable ratings.  

6 Conclusion 

In this paper, we presented a new approach to the 
prediction of user judgments about SDSs, using 
HMMs. The approach allows predicting the 
users’ judgments at each step of a dialog. In 
predicting the distribution of ratings of many 
users, the approach takes into account 
differences between the users’ judgment 
behaviors. This increases the usefulness of the 
model for a number of applications. E.g., in 
adaptive systems, the decision process can take 
into account differences between the users which 
cannot be attributed to user characteristics known 
to the system. If the model is applied to 
automatically generated dialogs, e.g. in the 
MeMo workbench (Engelbrecht et al., 2008a), a 
more detailed prediction of user satisfaction is 
enabled, allowing analysis on a turn-by-turn 
basis. 

In addition, the approach facilitates the 
analysis of models and features affecting the 
quality ratings, as results can be compared to the 
empirical ratings with more detail. We hope to 
gain further insight into the relations between 
interaction parameters and user judgments by 
running simulations under different assumptions 
of relations between these entities. 

A drawback of the approach is the generation 
of training data. The models presented in this 
paper cannot be assumed to be general, and in 
particular are lacking important parameters 
reflecting the timing in the dialogs. Therefore, as 
a next step the acquisition of judgments should 
be improved to be less disruptive for the 
interaction. In addition, it would be interesting to 
find a method for deriving the correct 
distributions of ratings at each dialog turn from a 
corpus of different dialogs, e.g. by grouping 
situations which are comparable. At the moment, 
we are also investigating if judgments can be 
acquired after the interactions without a loss in 
validity. 

After all, the results we achieved with the 
model suggest that HMMs are suitable for 
modeling the users’ quality perception of dialogs 
with SDSs. Further research on the topic will 
hopefully show if the dialog history has to be 
considered to a wider degree than in our present 
models.  

Concerning dialog features and their relation 
to the judgments, the role of understanding errors 
in combination with the confirmation type could 
be established so far. More rich data are needed 
to work towards a general model for judgment 
predictions, including all relevant parameters. If 
judgments can be acquired after the interactions, 
we will be able to easily get the data needed for a 
better (and maybe complete) model. In any case, 
we are confident that the approach taken will 
allow a deeper analysis of the quality judgment 
process, which will enable progress by more 
analytical methods, such as formulating and 
testing hypotheses about this process. 
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