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Abstract

Computing the semantic similarity between
terms relies on existence and usage of seman-
tic resources. However, these resources, often
composed of equivalent units, or synonyms,
must be first analyzed and weighted in or-
der to define within them the reliability zones
where the semantic cohesiveness is stronger.
We propose an original method for acquisition
of elementary synonyms based on exploitation
of structured terminologies, analysis of syn-
tactic structure of complex (multi-unit) terms
and their compositionality. The acquired syn-
onyms are then profiled thanks to endogenous
lexical and linguistic indicators (other types
of relations, lexical inclusions, productivity),
which are automatically inferred within the
same terminologies. Additionally, synonymy
relations are observed within graph, and its
structure is analyzed. Particularly, we ex-
plore the usefulness of the graph theory no-
tions such as connected component, clique,
density, bridge, articulation vertex, and cen-
trality of vertices.

1 Introduction

In various tasks and applications of natural language
processing and of biomedical informatics (i.e., query
expansions, information retrieval, text mining, infor-
mation extraction or terminology matching), it is im-
portant to be able to decide whether two terms (i.e.,
acetone anabolism and acetone biosynthesis, repli-
cation of mitochondrial DNA and mtDNA replica-
tion) convey the same or different meaning. This is
particularly important for deciphering and comput-
ing semantic similarity between words and terms.

Lexicon of specific resources (synonym, morpho-
logical or orthographic variants) can be used for de-
tection of semantic similarity. However, depend-
ing on languages and domains, such resources are
not equally well described. Morphological descrip-
tion is the most complete for both general (Bur-
nage, 1990; Hathout et al., 2001) and biomedical
(NLM, 2007; Schulz et al., 1999; Zweigenbaum
et al., 2003) languages. But the situation is not as
successful at the semantic level: little synonym re-
sources can be found. If WordNet (Fellbaum, 1998)
proposes general language synonym relations for
English, the corresponding resources for other lan-
guages are not freely available. Moreover, the ini-
tiative for fitting WordNet to the biomedical area
(Smith and Fellbaum, 2004) seems to have been
abandoned, although there is a huge need for this
kind of resources.

In our previous work, we proposed to use the ex-
isting biomedical terminologies (i.e., Gene Ontology
(Gene Ontology Consortium, 2001), Snomed (Côté
et al., 1997), UMLS (NLM, 2007)), wich provide
complex terms, and to acquire from them lexical re-
sources of synonyms. Indeed, the use of complex
biomedical terms seems to be less suitable and gen-
eralizable as compared to lexical resources (Poprat
et al., 2008). Within the biological area, we pro-
posed to exploit the Gene Ontology (GO), and more
specifically to exploit compositional structure of its
terms (Hamon and Grabar, 2008). However, with
the acquisition of synonymy we faced two prob-
lems: (1) contextual character of these relations
(Cruse, 1986), i.e., two terms or words are con-
sidered as synonyms if they can occur within the
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same context, which makes this relation more or
less broad depending on the usage; (2) ability of
automatic tools to detect and characterize these re-
lations, i.e., two terms or words taken out of their
context can convey different relations than the one
expected. Because we aim at acquiring synonymy
resources which could be used by various applica-
tions and on various corpora, we need to profile them
and possibly to detect the reliability zones. We pro-
posed to do this profiling through lexical and lin-
guistic indicators generated within the same termi-
nology (Grabar et al., 2008), such as productivity,
cooccurence with other types of relations (is-a,
part-of) and with lexical inclusion. These indi-
cators on reliability zones will be used for defining
the synonymity degree of terms and for preparing
the validation of the acquired synonym resources. In
the current work, we continue profiling the acquired
synonyms, but rely on the form of the graph built
from pairs of synonyms. We exploit for this some
notions of the graph theory (Diestel, 2005). In the
following of this paper, we first present our mate-
rial (sec. 2) and methods (sec. 3), we then present
and discuss results (sec. 4) and conclude with some
perspectives (sec. 5).

2 Material

We use the Gene Ontology (GO) as the original re-
source from which synonym lexicon (or elementary
synonym relations) are induced. The goal of the GO
is to produce a structured, common, controlled vo-
cabulary for describing the roles of genes and their
products in any organism. GO terms convey three
types of biological meanings: biological processes,
molecular functions and cellular components. Terms
are structured through four types of relationships:
subsumption is-a, meronymy part-of, syn-
onymy and regulates. The version, we used
in the current work, was downloaded in February
20081. It provides 26,057 concepts and their 79,994
terms. When we create pairs of terms, which we ex-
ploit with our methods, we obtain 260,399 is-a,
29,573 part-of and 459,834 synonymy relations.
There are very few regulates relations, therefore
we don’t exploit them in our work.

1Our previous work has been performed with an anterior
version of the GO.

3 Methods

GO terms present compositional structure, like
within the concept GO:0009073, where composi-
tionality can be observed through the substitution of
one of the components (underlined):

aromatic amino acid family biosynthesis
aromatic amino acid family anabolism
aromatic amino acid family formation
aromatic amino acid family synthesis

Compositionality of the GO terms has been ex-
ploited previously, for instance (Verspoor et al.,
2003) propose to derive simple graphs from relations
between complex GO terms, (Mungall, 2004) ex-
ploits the compositionality as a mean for consistency
checking of the GO, (Ogren et al., 2005) use it for
enriching the GO with missing synonym terms. We
propose to exploit the compositionality for induction
of synonym lexical resources (i.e., biosynthesis, an-
abolism, formation, synthesis in the given example).
While the cited works are based on the string match-
ing within GO terms, our approach aims at exploit-
ing the syntactic analysis of terms, which makes it
independent from the graphical form of the analyzed
terms (like examples on fig. 1). Our method has sev-
eral steps: linguistic preprocessing of the GO terms
(sec. 3.1), induction of elementary semantic lexi-
con (sec. 3.2), and then the profiling the synonymy
lexicon through the lexical and linguistic indicators
(sec. 3.3), and through the analysis of connected
components built from the induced synonym pairs
(sec. 3.4). Steps 3.1 to 3.3 have been already de-
scribed in our previous work: we mention here the
main notions for the sake of clarity.

3.1 Preprocessing the GO terms: Ogmios NLP
platform

The aim of terminology preprocessing step is to
provide syntactic analysis of terms for computing
their syntactic dependency relations. We use the
Ogmios platform2 and perform: segmentation into
words and sentences; POS-tagging and lemmatiza-
tion (Schmid, 1994); and syntactic analysis3. Syn-
tactic dependencies between term components are

2http://search.cpan.org/∼thhamon/Alvis-NLPPlatform/
3http://search.cpan.org/∼thhamon/Lingua-YaTeA/
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Figure 1: Parsing tree of the terms replication of mitochondrial DNA and mtDNA replication.

computed according to assigned POS tags and shal-
low parsing rules. Each term is considered as a syn-
tactic binary tree composed of two elements: head
component and expansion component. For instance,
replication is the head component of the two terms
analyzed on figure 1.

3.2 Acquiring the elementary semantic
relations

The notion of compositionality assumes that the
meaning of a complex expression is fully deter-
mined by its syntactic structure, the meaning of its
parts and the composition function (Partee, 1984).
On the basis of syntactically analysed terms, we ap-
ply a set of compositional rules: if the meaning M
of two complex terms A rel B and A′ rel B, where
A is its head and B its expansion components, is
given as following:

M(A rel B) = f(M(A),M(B),M(rel))

M(A′ rel B) = f(M(A′),M(B),M(rel))

for a given composition function f , if A rel B and
A′ rel B are complex synonym terms and if B com-
ponents are identical (such as acetone within ace-
tone catabolism and acetone breakdown), then the
synonymy relation between components A and A′

{catabolism, breakdown} can be induced. The mod-
ification is also accepted on expansion component
B: from terms replication of mitochondrial DNA
and mtDNA replication (fig. 1), we can induce syn-
onymy between mitochondrial DNA and mtDNA.
Finally, the modification is also accepted for both
components A rel B and A′ rel B′, such as in
nicotinamide adenine dinucleotide catabolism and
NAD breakdown, where one pair, i.e. {catabolism,
breakdown}, can be known from previously pro-
cessed synonyms and allow to induce the new pair
{nicotinamide adenine dinucleotide, NAD}. The
method is recursive and each induced elementary

synonym relation can then be propagated in order
to induce new elementary relations, which allows to
generate a more exhaustive lexicon of synonyms.

This method is not specific to the synonymy. As
it works at the syntactic level of terms, it there-
fore can be applied to other relationships: relation-
ship between elementary terms is inherited from
the relationship between complex terms. If we ex-
ploit complex terms related with part-of rela-
tions and if the compositionality rules can be ap-
plied, then we can induce elementary part-of re-
lations. For instance, complex terms cerebral cor-
tex development GO:0021987 and cerebral cortex
regionalization GO:0021796 have a part-of re-
lation between them, and we can induce the elemen-
tary part-of relation between their components
development and regionalization. Similarly, on the
basis of two GO terms that have is-a relation be-
tween them, cell activation GO:0001775 and astro-
cyte activation GO:0048143, we can induce the ele-
mentary is-a relation between cell and astrocyte.

3.3 Exploiting lexical and linguistic indicators

Several endogenously generated indicators are used
for profiling the induced lexicon of synonyms:

• Elementary is-a relations;

• Elementary part-of relations;

• Lexical inclusion: terms within each induced
synonymy pair are controlled for the lexical in-
clusion. If the test is positive, like in {DNA
binding, binding}, this would suggest that the
analyzed terms may convey a hierarchical rela-
tion: indeed, lexical subsumption marks often a
hierarchical subsumption (Kleiber and Tamba,
1990), which can be either is-a or part-of
relations;

• Productivity: number of original GO pairs from
which this elementary relation is inferred. For
instance, synonymy relations {binding, DNA
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(a) Connected component of synonyms (b) Clique of synonyms

Figure 2: Connected components formed with pairs of elementary synonym relations.

binding} and {cell, lymphocyte} are inferred
from only one original pair of GO synonyms,
while the pair {T-cell, T-lymphocyte} is sup-
ported by eight original GO synonym pairs.

Factors that would weaken synonymy relations and
make them less reliable are their co-occurrence with
lexical inclusions, is-a or part-of relations, and
their low productivity.

3.4 Exploiting the graph theory notions

Pairs of induced synonyms are observed through the
connected components they form: lexical entries are
nodes or vertices and relations between them are
edges or paths. For instance, connected component
2(a) contains four pairs of synonyms: {membrane
lumen, envelope lumen}, {membrane lumen, in-
termembrane space}, {envelope lumen, intermem-
brane space} and {intermembrane space, IMS}. On
each edge, we projected information associated with
the relation corresponding to this edge. For instance,
{membrane lumen, intermembrane space} relation
is labelled as synonymy SY N and shows 2 as pro-
ductivity value (it has been acquired from two origi-
nal pairs of synonyms within GO). If other relation-
ships (INCL, PAR, HIER) are associated to a
given synonymy relation, they are also indicated to-
gether with their productivity.

As a matter of fact, figure 2 presents two typical
examples of connected components we can obtain
(in these examples, both of them have four nodes):

• Connected component (fig. 2(a)) is a graph in
which any two vertices are connected to each
other by edges. Connected components have
not orphan vertices, which would remain not
connected to any other vertex.

• Clique, also called block (fig. 2(b)) is a par-
ticular case of connected components: clique
is a maximally connected component. In such
graphs, all the vertices are interconnected be-
tween them.

We propose to exploit four more notions of the graph
theory, which we assume can be useful for further
profiling of the acquired synonymy relations:

• Density of a connected component is the ra-
tio between the number of its edges and the
number of edges of the corresponding clique.
For instance, the connected component on fig-
ure 2(a) has 4 edges while the corresponding
clique would have 6 edges. In that respect,
this connected component has the dentisty of
0.67. Besides, the clique on figure 2(b) shows
the maximum density (i.e., 1). (For all the fig-
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ures, we indicate their density, together with the
number of vertices and edges).

• Bridge is defined as an edge which re-
moval would increase the number of con-
nected components. For instance, within con-
nected component 2(a), removing the edge
{intermembrane space, IMS} would lead to the
creation of two new connected components:
(1) single-vertex component IMS, and (2) con-
nected component with three vertices inter-
membrane space, membrane lumen and enve-
lope lumen. Consequently articulation vertices
are defined as vertices which removal would in-
crease the number of connected components.
At figure 2(a), the articulation vertex is inter-
membrane space.

• The centrality of a vertex is defined as the num-
ber of shortest paths passing through it. For in-
stance, on figure 2(a), intermembrane space’s
centrality is 4, while the centrality of other ver-
tices is null.

4 Results and Discussion

4.1 Acquiring the elementary synonymy
relations and their lexical and linguistic
profiling

79 994 GO terms have been fully analyzed through
the Ogmios platform. Compositional rules (sec. 3.2)
have been applied and allowed to induce 9,085 se-
mantic relations among which: 3,019 synonyms,
3,243 is-a and 1,205 part-of. 876 lexical in-
clusions have discovered within all these elementary
pairs. 2,533 synonymy pairs are free of the lexical
profiling indicators. However, 486 synonymy rela-
tions (16%) cooccur with other relations, and the de-
tails of this cooccurrence is showed in table 1. We
can observe for instance that 142 synonym pairs are
also labelled as is-a relations, and 34 as part-of
relations. Productivity of the induced synonyms is
between 1 and 422 original complex GO terms.

Connected component on figure 3 illustrates
coocurrence of synonymy relations with other types
of relations: the pair {import, ion import} shows
synonym and inclusion relations; the pair {import,
uptake} shows synonym and hierarchical relations,
both acquired on seven original pairs of GO terms.

Figure 3: Connected component where synonymy rela-
tions cooccur with other relations.

Synonymy and other relations Number
syno ∩ is-a 142
syno ∩ par 34
syno ∩ incl 309
syno ∩ par ∩ is-a 14
syno ∩ incl ∩ is-a \ par 40
syno ∩ incl ∩ par \ is-a 2
syno ∩ incl ∩ is-a ∩ par 1

Table 1: Number of synonymy relations which cooccur
with other relations (is-a, part-of and lexical inclu-
sions incl).

4.2 Analysing the induced synonym pairs
through the graph theory

3,019 induced synonym pairs have been grouped
into 1,018 connected components. These compo-
nents contain 2 to 69 nodes, related among them
by 1 to 132 edges. Analyses of the connected
components have been performed with Perl pack-
age Graph and additionnal Perl scripts. Among
the studied connected components, we have 914
cliques composed of 2 (n=708), 3 (n=66), 4 (n=88),
5 (n=44) or 6 (n=8) nodes. The remaining 104
connected components are less dense with edges.
The density of the connected components is between
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Figure 4: Connected component with three bridges: {ion homeostasis, homeostasis}, {homeostasis, regulation} and
{cell cycle control, regulation}.

0.0467 and 1 (in case of cliques). Among the 104
connected components, which are not cliques, we
detected 249 bridges: 0 to 35 depending on con-
nected components. In order to propose a general
approach exploiting graph theory notions for syn-
onym profiling we analyse the structure of three rep-
resentative connected components.

Density of the connected component 2(a) is 0.67.
It contains one bridge: {intermembrane space,
IMS}. This edge corresponds to the acronym and its
expanded form, which can cause its contextual char-
acter. Moreover, intermembrane space is the central
node of this connected component.

Connected component 3 (density=0.38) contains
two bridges {uptake, recycling} and {salvage, cy-
cling}, and three articulation vertices uptake, re-
cicling and salvage with the measures of central-
ity 16, 18 and 10 respectively. Indeed, the major-

ity of shortest paths pass by uptake and recicling
nodes. Otherwise, edges around the salvage ver-
tex are weakened because of the cooccurrence of
synonymy and hierarchical relations. As we have
already noticed, the edge {import, uptake} shows
the cooccurrence of synonymy and hierarchical re-
lations, but its productivity is rather high (seven for
each relation), which stregthens this edge.

Finally, connected component 4 (density=0.33)
contains three bridges {ion homeostasis, homeosta-
sis}, {homeostasis, regulation} and {cell cycle con-
trol, regulation} and three articulation vertices: reg-
ulation, cell cycle control and homeostasis with the
measures of centrality 52, 37 and 16 respectively.
The bridge {ion homeostasis, homeostasis} is weak-
ened by the cooccurrence of synonymy, hierarchi-
cal and lexical inclusion relations. Otherwise, other
edges seem to convey non ambiguous synonymy.

94



From the analyzed examples, we can see that the
graph theory may have several implications on pro-
filing of synonyms. However, these implications
must still be formalized and, possibly, expressed as
a single reliability indicator, alone or combined with
the lexical and linguistic clues.

First, within a connected component, with a given
number of nodes, higher the number of edges, higher
will be its density and closer it will be to a clique
(fig. 2(b)). Consequently, within a clique, the se-
mantic cohesion is more strong. Indeed, in these
cases, terms are far more strongly related between
them. But when the density value decreases the se-
mantic cohesiveness of connected components de-
creases as well. In other words, density is an indi-
cation on the semantic cohesiveness between terms
within connected components. As for bridges, we
assume that they indicate breaking points within
connected components, such as {cell cycle control,
regulation} within figure 4. The weak character
of these points can increased when the synonymy
relation co-occurs with other relationships (is-a,
part-of, lexical inclusion). Consequently, re-
moval of bridges can create connected components
with higher density and therefore with stronger syn-
onymy relations. Finally, the centrality of vertices
measure may be useful for identification of poly-
semic words or terms.

The connected components analysis can also in-
dicate the missing relations. For instance, if a con-
nected component, which is not a clique, has no
bridges but its density is not maximal, this would
indicate that it misses some correct synonymy rela-
tions which can be easily induced.

5 Conclusion and Perspectives

In this paper, we propose an original method for
inducing synonym lexicon from structured termi-
nologies. This method exploits the compositional-
ity principle and three rules based on syntactic de-
pendency analysis of terms. More specifically, we
explore various indicators for profiling the acquired
synonym relations, which is motivated by the fact
that synonymy is a contextual relation and its va-
lidity and universality is not guaranteed. We as-
sume the semantic cohesiveness of synonymy rela-
tions should be qualified and quantified. Thus, we

propose several indicators for profiling the inferred
synonymy relations and for detecting possible weak
and strong points. First, lexical and linguistic clues
are generated endogenously within the same termi-
nology: other types of elementary semantic relations
(is-a and part-of), lexical inclusions and pro-
ductivity of the acquired semantic relations. Then,
more specifically, this work is dedicated to explor-
ing of the usefulness of notions of the graph the-
ory. We propose to study the form and specificities
of connected components formed by synonymy re-
lations. We exploited the following notions from the
graph theory: distinction between connected com-
ponents and cliques, their density, bridges and artic-
ulation vertices within connected components, and
the centrality of their vertices. We observed that the
lexical indicators as well as connected components
characteristics are helpful for profiling the acquired
synonymy relations. These clues are intended to be
used for preparing the validation of this lexicon by
experts and also for its weighting in order to con-
trol and guarantee the specificity of lexicon during
its use by automatic tools.

Currently, we study separately the endogeneous
lexical indicators, and the characteristics of the con-
nected components. However, in the future, these
two types of clues should be combined. For this,
these indicators should be modelized in order to pro-
vide a weight of each edge. This weight can be
used for profiling of connected component through
the detection of strong and weak points. Notice
that the current version of the Graph package can-
not take into account this additional information on
edges and should be modified. Another perspective
is the better exploitation of the Gene Ontology and
taking into account the nature of synonymy relations
as they are labelled by thier creators: exact, broad,
narrow or related. Additionnally, for a more precise
profiling, the four relationships of GO (synonymy,
is-a, part-of and regulates) can be cross-
validated, while currently, we perform the validation
of synonymy relations through is-a and part-of
(and other indicators). We plan also to use the in-
duced relations and propagate them through corpora
and discover some of the missing synonyms (Hole
and Srinivasan, 2000). In this way, applying the
same compositionality principle, we can enrich and
extend the Gene Ontology: new synonyms of GO
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terms and even other relations between GO terms
and terms from corpora can be detected. As noticed,
this method can be applied to other terminologies
and languages as far as structured terminological re-
sources and NLP tools exist. For instance, within
the context of search of clinical documents, we suc-
cessfully tested this method on the French part of the
UMLS (Grabar et al., 2009). From a more ontolog-
ical perspective, our method can be used for consis-
tency checking of a terminologies, like in (Mungall,
2004). Moreover, as this method performs syntactic
analysis of terms and their decomposition into se-
mantically independent components, it can be used
for the transformation of a pre-coordinated terminol-
ogy into a post-coordinated one.
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Stéfan Darmoni. 2003. Towards a Unified Medical
Lexicon for French. In Medical Informatics in Europe
(MIE).

96


