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Abstract

The paper describes a set of experiments
involving the application of three state-of-
the-art part-of-speech taggers to Ethiopian
Amharic, using three different tagsets.
The taggers showed worse performance
than previously reported results for Eng-
lish, in particular having problems with
unknown words. The best results were
obtained using a Maximum Entropy ap-
proach, while HMM-based and SVM-
based taggers got comparable results.

1 Introduction

Many languages, especially on the African con-
tinent, are under-resourced in that they have
very few computational linguistic tools or corpora
(such as lexica, taggers, parsers or tree-banks)
available. Here, we will concentrate on the task
of developing part-of-speech taggers for Amharic,
the official working language of the government
of the Federal Democratic Republic of Ethiopia:
Ethiopia is divided into nine regions, each with
its own nationality language; however, Amharic is
the language for country-wide communication.

Amharic is spoken by about 30 million people
as a first or second language, making it the second
most spoken Semitic language in the world (after
Arabic), probably the second largest language in
Ethiopia (after Oromo), and possibly one of the
five largest languages on the African continent.
The actual size of the Amharic speaking popula-
tion must be based on estimates: Hudson (1999)
analysed the Ethiopian census from 1994 and in-
dicated that more than 40% of the population then
understood Amharic, while the current size of the
Ethiopian population is about 80 million.1

182.5 million according to CIA (2009); 76.9 according to
Ethiopian parliament projections in December 2008 based on
the preliminary reports from the census of May 2007.

In spite of the relatively large number of speak-
ers, Amharic is still a language for which very few
computational linguistic resources have been de-
veloped, and previous efforts to create language
processing tools for Amharic—e.g., Alemayehu
and Willett (2002) and Fissaha (2005)—have been
severely hampered by the lack of large-scale lin-
guistic resources for the language. In contrast, the
work detailed in the present paper has been able
to utilize the first publicly available medium-sized
tagged Amharic corpus, described in Section 5.

However, first the Amharic language as such is
introduced (in Section 2), and then the task of part-
of-speech tagging and some previous work in the
field is described (Section 3). Section 4 details the
tagging strategies used in the experiments, the re-
sults of which can be found in Section 6 together
with a short discussion. Finally, Section 7 sums up
the paper and points to ways in which we believe
that the results can be improved in the future.

2 Amharic

Written Amharic (and Tigrinya) uses a unique
script originating from the Ge’ez alphabet (the
liturgical language of the Ethiopian Orthodox
Church). Written Ge’ez can be traced back to at
least the 4th century A.D., with the first versions
including consonants only, while the characters
in later versions represent consonant-vowel (CV)
pairs. In modern Ethiopic script each syllograph
(syllable pattern) comes in seven different forms
(called orders), reflecting the seven vowel sounds.
The first order is the basic form; the others are de-
rived from it by modifications indicating vowels.
There are 33 basic forms, giving 7*33 syllographs,
or fidels(‘fidel’, lit. ‘alphabet’ in Amharic, refers
both to the characters and the entire script). Unlike
Arabic and Hebrew, Amharic is written from left
to right. There is no agreed upon spelling standard
for compound words and the writing system uses
several ways to denote compounds
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form pattern

root sbr CCC
perfect säbb̈ar CVCCVC
imperfect säbr CVCC
gerund säbr CVCC
imperative sb̈ar CCVC
causative ass̈abb̈ar as-CVCCVC
passive täs̈abb̈ar täs-CVCCVC

Table 1: Some forms of the verbsbr (‘break’)

2.1 Amharic morphology

A significantly large part of the vocabulary con-
sists of verbs, and like many other Semitic lan-
guages, Amharic has a rich verbal morphology
based on triconsonantal roots with vowel variants
describing modifications to, or supplementary de-
tail and variants of the root form. For example,
the rootsbr, meaning ‘to break’ can have (among
others!) the forms shown in Table 1. Subject, gen-
der, number, etc., are also indicated as bound mor-
phemes on the verb, as well as objects and posses-
sion markers, mood and tense, beneficative, mal-
factive, transitive, dative, negative, etc.

Amharic nouns (and adjectives) can be inflected
for gender, number, definiteness, and case, al-
though gender is usually neutral. The definite ar-
ticle attaches to the end of a noun, as do conjunc-
tions, while prepositions are mostly prefixed.

2.2 Processing Amharic morphology

The first effort on Amharic morphological pro-
cessing was a rule-based system for verbs (and
nouns derived from verbs) which used root pat-
terns and affixes to determine lexical and in-
flectional categories (Bayou, 2000), while Bayu
(2002) used an unsupervised learning approach
based on probabilistic models to extract stems,
prefixes, and suffixes for building a morphological
dictionary. The system was able to successfully
analyse 87% of a small testdata set of 500 words.

The first larger-scale morphological analyser
for Amharic verbs used XFST, the Xerox Finite
State Tools (Fissaha and Haller, 2003). This was
later extended to include all word categories (Am-
salu and Gibbon, 2005). Testing with 1620 words
text from an Amharic bible, 88–94% recall and
54–94% precision (depending on the word-class)
were reported. The lowest precision (54%) was
obtained for verbs; Amsalu and Demeke (2006)
thus describe ways to extend the finite-state sys-
tem to handle 6400 simple verbal stems generated
from 1300 root forms.

Alemayehu and Willett (2002) report on a stem-
mer for Information Retrieval for Amharic, and
testing on a 1221 random word sample stated
“Manual assessment of the resulting stems showed
that 95.5 percent of them were linguistically
meaningful,” but gave no evaluation of the cor-
rectness of the segmentations. Argaw and Asker
(2007) created a rule-based stemmer for a similar
task, and using 65 rules and machine readable dic-
tionaries obtained 60.0% accuracy on fictional text
(testing on 300 unique words) and 76.9% on news
articles (on 1503 words, of which 1000 unique).2

3 Part-of-Speech Tagging

Part-of-speech (POS) tagging is normally treated
as a classification task with the goal to assign lex-
ical categories (word classes) to the words in a
text. Most work on tagging has concentrated on
English and on using supervised methods, in the
sense that the taggers have been trained on an
available, tagged corpus. Both rule-based and sta-
tistical / machine-learning based approaches have
been thoroughly investigated. The Brill Tagger
(Brill, 1995) was fundamental in using a com-
bined rule- and learning-based strategy to achieve
96.6% accuracy on tagging the Penn Treebank
version of the Wall Street Journal corpus. That
is, to a level which is just about what humans
normally achieve when hand-tagging a corpus, in
terms of interannotator agreement—even though
Voutilainen (1999) has shown that humans can get
close to the 100% agreement mark if the annota-
tors are allowed to discuss the problematic cases.

Later taggers have managed to improve Brill’s
figures a little bit, to just above 97% on the Wall
Street Journal corpus using Hidden Markov Mod-
els, HMM and Conditional Random Fields, CRF;
e.g., Collins (2002) and Toutanova et al. (2003).
However, most recent work has concentrated on
applying tagging strategies to other languages than
English, on combining taggers, and/or on using
unsupervised methods. In this section we will look
at these issues in more detail, in particular with the
relation to languages similar to Amharic.

3.1 Tagging Semitic languages

Diab et al. (2004) used a Support Vector Machine,
SVM-based tagger, trained on the Arabic Penn

2Other knowledge sources for processing Amharic in-
clude, e.g., Gasser’s verb stem finder (available from
nlp.amharic.org ) and wordlists as those collected by
Gebremichael (www.cs.ru.nl/ ∼biniam/geez ).
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Treebank 1 to tokenize, POS tag, and annotate
Arabic base phrases. With an accuracy of 95.5%
over a set of 24 tags, the data-driven tagger per-
formed on par with state-of-the-art results for En-
glish when trained on similar-sized data (168k to-
kens). Bar-Haim et al. (2008) developed a lexicon-
based HMM tagger for Hebrew. They report
89.6% accuracy using 21 tags and training on 36k
tokens of news text. Mansour (2008) ported this
tagger into Arabic by replacing the morphological
analyzer, achieving an accuracy of 96.3% over 26
tags on a 89k token corpus. His approach modifies
the analyses of sentences receiving a low proba-
bility by adding synthetically constructed analyses
proposed by a model using character information.

A first prototype POS tagger for Amharic used
a stochastic HMM to model contextual dependen-
cies (Getachew, 2001), but was trained and tested
on only one page of text. Getachew suggested a
tagset for Amharic consisting of 25 tags. More
recently, CRFs have been applied to segment and
tag Amharic words (Fissaha, 2005), giving an ac-
curacy of 84% for word segmentation, using char-
acter, morphological and lexical features. The best
result for POS-tagging was 74.8%, when adding a
dictionary and bigrams to lexical and morphologi-
cal features, and 70.0% without dictionary and bi-
grams. The data used in the experiments was also
quite small and consisted of 5 annotated news ar-
ticles (1000 words). The tagset was a reduced ver-
sion (10 tags) of the one used by Getachew (2001),
and will be further discussed in Section 5.2.

3.2 Unsupervised tagging

The desire to use unsupervised machine learning
approaches to tagging essentially originates from
the wish to exploit the vast amounts of unlabelled
data available when constructing taggers. The area
is particularly vivid when it comes to the treatment
of languages for which there exist few, if any, com-
putational resources, and for the case of adapting
an existing tagger to a new language domain.

Banko and Moore (2004) compared unsuper-
vised HMM and transformation-based taggers
trained on the same portions of the Penn Treebank,
and showed that the quality of the lexicon used for
training had a high impact on the tagging results.
Duh and Kirchhoff (2005) presented a minimally-
supervised approach to tagging for dialectal Ara-
bic (Colloquial Egyptian), based on a morpholog-
ical analyzer for Modern Standard Arabic and un-

labeled texts in a number of dialects. Using a tri-
gram HMM tagger, they first produced a baseline
system and then gradually improved on that in an
unsupervised manner by adding features so as to
facilitate the analysis of unknown words, and by
constraining and refining the lexicon.

Unsupervised learning is often casted as the
problem of finding (hidden) structure in unla-
beled data. Goldwater and Griffiths (2007) noted
that most recent approaches to this problem aim
to identify the set of attributes that maximizes
some target function (Maximum Likelihood Esti-
mation), and then to select the values of these at-
tributes based on the representation of the model.
They proposed a different approach, based on
Bayesian principles, which tries to directly max-
imize the probability of the attributes based on
observation in the data. This Bayesian approach
outperformed Maximum Likelihood Estimation
when training a trigram HMM tagger for English.
Toutanova and Johnson (2007) report state-of-the-
art results by extending the work on Bayesian
modelling for unsupervised learning of taggers
both in the way that prior knowledge can be incor-
porated into the model, and in the way that possi-
ble tags for a given word is explicitly modeled.

3.3 Combining taggers

A possible way to improve on POS tagging results
is to combine the output of several different tag-
gers into a committee, forming joint decisions re-
garding the labeling of the input. Roughly, there
are three obvious ways of combining multiple pre-
dicted tags for a word: random decision, voting,
and stacking (Dietterich, 1997), with the first way
suited only for forming a baseline.Voting can
be divided into two subclasses: unweighted votes,
and weighted votes. The weights of the votes, if
any, are usually calculated based on the classifiers’
performance on some initial dataset.Stacking, fi-
nally, is a way of combining the decisions made
by individual taggers in which the predicted tags
for a given word are used as input to a subsequent
tagger which outputs a final label for the word.

Committee-based approaches to POS tagging
have been in focus the last decade: Brill and Wu
(1998) combined four different taggers for English
using unweighted voting and by exploring contex-
tual cues (essentially a variant of stacking). Aires
et al. (2000) experimented with 12 different ways
of combining the output from taggers for Brazilian
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Portuguese, and concluded that some, but not all,
combinations yielded better accuracy than the best
individual tagger. Shacham and Wintner (2007)
contrasted what they refer to as being a naı̈ve way
of combining taggers with a more elaborate, hi-
erarchical one for Hebrew. In the end, the elabo-
rated method yielded results inferior to the naı̈ve
approach. De Pauw et al. (2006) came to simi-
lar conclusions when using five different ways of
combining four data-driven taggers for Swahili.
The taggers were based on HMM, Memory-based
learning, SVM, and Maximum Entropy, with the
latter proving most accurate. Only in three of
five cases did a combination of classifiers perform
better than the Maximum Entropy-based tagger,
and simpler combination methods mostly outper-
formed more elaborate ones.

Spoustov́a et al. (2007) report on work on com-
bining a hand-written rule-based tagger with three
statistically induced taggers for Czech. As an ef-
fect of Czech being highly inflectional, the tagsets
are large: 1000–2000 unique tags. Thus the ap-
proach to combining taggers first aims at reducing
the number of plausible tags for a word by using
the rule-based tagger to discard impossible tags.
Precision is then increased by invoking one or all
of the data-driven taggers. Three different ways of
combining the taggers were explored: serial com-
bination, involving one of the statistical taggers;
so called SUBPOS pre-processing, involving two
instances of statistical taggers (possibly the same
tagger); and, parallel combination, in which an ar-
bitrary number of statistical taggers is used. The
combined tagger yielded the best results for Czech
POS tagging reported to date, and as a side-effect
also the best accuracy for English: 97.43%.3

4 The Taggers

This section describes the three taggers used in the
experiments (which are reported on in Section 6).

4.1 Hidden Markov Models: TnT

TnT, “Trigrams’n’Tags” (Brants, 2000) is a very
fast and easy-to-use HMM-based tagger which
painlessly can be trained on different languages
and tagsets, given a tagged corpus.4 A Markov-
based tagger aims to find a tag sequence which
maximizesP (wordn|tagn) ∗ P (tagn|tag1...n−1),
where the first factor is the emit (or lexical) prob-

3As reported onufal.mff.cuni.cz/compost/en
4www.coli.uni-saarland.de/ ∼thorsten/tnt

ability, the likelihood of a word given certain tag,
and the second factor is the state transition (or con-
textual) probability, the likelihood of a tag given a
sequence of preceding tags. TnT uses the Viterbi
algorithm for finding the optimal tag sequence.
Smoothing is implemented by linear interpolation,
the respective weights are determined by deleted
interpolation. Unknown words are handled by a
suffix trie and successive abstraction.

Applying TnT to the Wall Street Journal cor-
pus, Brants (2000) reports 96.7% overall accuracy,
with 97.0% on known and 85.5% on unknown
words (with 2.9% of the words being unknown).

4.2 Support Vector Machines: SVMTool

Support Vector Machines (SVM) is a linear learn-
ing system which builds two class classifiers. It
is a supervised learning method whereby the in-
put data are represented as vectors in a high-
dimensional space and SVM finds a hyperplane (a
decision boundary) separating the input space into
two by maximizing the margin between positive
and negative data points.

SVMTool is an open source tagger based on
SVMs.5 Comparing the accuracy of SVMTool
with TnT on the Wall Street Journal corpus,
Giménez and M̀arquez (2004) report a better per-
formance by SVMTool: 96.9%, with 97.2% on
known words and 83.5% on unknown.

4.3 Maximum Entropy: MALLET

Maximum Entropy is a linear classification
method. In its basic incarnation, linear classifi-
cation combines, by addition, the pre-determined
weights used for representing the importance of
each feature to a given class. Training a Maxi-
mum Entropy classifier involves fitting the weights
of each feature value for a particular class to the
available training data. A good fit of the weights
to the data is obtained by selecting weights to max-
imize the log-likelihood of the learned classifica-
tion model. Using an Maximum Entropy approach
to POS tagging, Ratnaparkhi (1996) reports a tag-
ging accuracy of 96.6% on the Wall Street Journal.

The software of choice for the experiments re-
ported here is MALLET (McCallum, 2002), a
freely available Java implementation of a range of
machine learning methods, such as Naı̈ve Bayes,
decision trees, CRF, and Maximum Entropy.6

5www.lsi.upc.edu/ ∼nlp/SVMTool
6mallet.cs.umass.edu
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5 The Dataset

The experiments of this paper utilize the first
medium-sized corpus for Amharic (available at
http://nlp.amharic.org ). The corpus consists
of all 1065 news texts (210,000 words) from the
Ethiopian year 1994 (parts of the Gregorian years
2001–2002) from the Walta Information Center, a
private news service based in Addis Ababa. It has
been morphologically analysed and manually part-
of-speech tagged by staff at ELRC, the Ethiopian
Languages Research Center at Addis Ababa Uni-
versity (Demeke and Getachew, 2006).

The corpus is available both infidel and tran-
scribed into a romanized version known as SERA,
System for Ethiopic Representation in ASCII (Ya-
cob, 1997). We worked with the transliterated
form (202,671 words), to be compatible with the
machine learning tools used in the experiments.

5.1 “Cleaning” the corpus

Unfortunately, the corpus available on the net con-
tains quite a few errors and tagging inconsisten-
cies: nine persons participated in the manual tag-
ging, writing the tags with pen on hard copies,
which were given to typists for insertion into the
electronic version of the corpus—a procedure ob-
viously introducing several possible error sources.

Before running the experiments the corpus had
to be “cleaned”: many non-tagged items have been
tagged (the human taggers have, e.g., often tagged
the headlines of the news texts as one item, end-
of-sentence punctuation), while some double tags
have been removed. Reflecting the segmentation
of the original Amharic text, all whitespaces were
removed, merging multiword units with a single
tag into one-word units. Items like ‘" ’ and ‘/ ’
have been treated consistently as punctuation, and
consistent tagging has been added to word-initial
and word-final hyphens. Also, some direct tagging
errors and misspellings have been corrected.

Time expressions and numbers have not been
consistently tagged at all, but those had to be left
as they were. Finally, many words have been tran-
scribed into SERA in several versions, with only
the cases differing. However, this is also difficult
to account for (and in the experiments below we
used the case sensitive version of SERA), since
the SERA notation in general lets upper and lower
cases of the English alphabet represent different
symbols infidel (the Amharic script).

5.2 Tagsets

For the experiments, three different tagsets were
used. Firstly, the full, original 30-tag set devel-
oped at the Ethiopian Languages Research Center
and described by Demeke and Getachew (2006).
This version of the corpus will be referred to as
‘ELRC’. It contains 200, 863 words and differs
from the published corpus in way of the correc-
tions described in the previous section.

Secondly, the corpus was mapped to 11 basic
tags. This set consists of ten word classes: Noun,
Pronoun, Verb, Adjective, Preposition, Conjunc-
tion, Adverb, Numeral, Interjection, and Punctua-
tion, plus one tag for problematic words (unclear:
<UNC>). The main differences between the two
tagsets pertain to the treatment of prepositions and
conjunctions: in ‘ELRC’ there are specific classes
for, e.g., pronouns attached with preposition, con-
junction, and both preposition and conjunction
(similar classes occur for nouns, verbs, adjectives,
and numerals). In addition, numerals are divided
into cardinals and ordinals, verbal nouns are sepa-
rated from other nouns, while auxiliaries and rela-
tive verbs are distinguished from other verbs. The
full tagset is made up of thirty subclasses of the
basic classes, based on type of word only: the tags
contain no information on grammatical categories
(such as number, gender, tense, and aspect).

Thirdly, for comparison reasons, the full tagset
was mapped to the 10 tags used by Fissaha (2005).
These classes include one for Residual (R) which
was assumed to be equivalent to<UNC>. In addi-
tion, <CONJ>and<PREP>were mapped to Ad-
position (AP), and both<N> and <PRON>to N.
The other mappings were straight-forward, except
that the ‘BASIC’ tagset groups all verbs together,
while Fissaha kept Auxiliary (AUX) as its own
class. This tagset will be referred to as ‘SISAY ’.

5.3 Folds

For evaluation of the taggers, the corpus was split
into 10 folds. These folds were created by chop-
ping the corpus into 100 pieces, each of about
2000 words in sequence, while making sure that
each piece contained full sentences (rather than
cutting off the text in the middle of a sentence),
and then merging sets of 10 pieces into a fold.
Thus the folds represent even splits over the cor-
pus, to avoid tagging inconsistencies, but the se-
quences are still large enough to potentially make
knowledge sources such as n-grams useful.
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Fold TOTAL KNOWN UNKNOWN

fold00 20,027 17,720 2,307
fold01 20,123 17,750 2,373
fold02 20,054 17,645 2,409
fold03 20,169 17,805 2,364
fold04 20,051 17,524 2,527
fold05 20,058 17,882 2,176
fold06 20,111 17,707 2,404
fold07 20,112 17,746 2,366
fold08 20,015 17,765 2,250
fold09 20,143 17,727 2,416

Average 20,086 17,727 2,359
Percent — 88.26 11.74

Table 2: Statistics for the 10 folds

Table 2 shows the data for each of the folds, in
terms of total number of tokens, as well as split
into known and unknown tokens, where the term
UNKNOWN refers to tokens that are not in any of
the othernine folds. The figures at the bottom
of the table show the average numbers of known
and unknown words, over all folds. Notably, the
average number of unknown words is about four
times higher than in the Wall Street Journal cor-
pus (which, however, is about six times larger).

6 Results

The results obtained by applying the three dif-
ferent tagging strategies to the three tagsets are
shown in Table 3, in terms of average accura-
cies after 10-fold cross validation, over all the
tokens (with standard deviation),7 as well as ac-
curacy divided between the known and unknown
words. Additionally, SVMTool and MALLET in-
clude support for automatically running 10-fold
cross validation on their own folds. Figures for
those runs are also given. The last line of the table
shows the baselines for the tagsets, given as the
number of tokens tagged as regular nouns divided
by the total number of words after correction.

6.1 TnT

As the bold face figures indicate, TnT achieves the
best scores of all three taggers, on all three tagsets,
on knownwords. However, it has problems with
the unknown words—and since these are so fre-
quent in the corpus, TnT overall performs worse
than the other taggers. The problems with the un-
known words increase as the number of possible
tags increase, and thus TnT does badly on the orig-
inal tagging scheme (‘ELRC’), where it only gets

7The standard deviation is given by
√

1
n

∑n

i=1
(xi − x)2

wherex is the arithmetic mean (1
n

∑n

i=1
xi).

ELRC BASIC SISAY

TnT 85.56 92.55 92.60
STD DEV 0.42 0.31 0.32
KNOWN 90.00 93.95 93.99
UNKNOWN 52.13 82.06 82.20

SVM 88.30 92.77 92.80
STD DEV 0.41 0.31 0.37
KNOWN 89.58 93.37 93.34
UNKNOWN 78.68 88.23 88.74
Own folds 88.69 92.97 92.99
STD DEV 0.33 0.17 0.26

MaxEnt 87.87 92.56 92.60
STD DEV 0.49 0.38 0.43
KNOWN 89.44 93.26 93.27
UNKNOWN 76.05 87.29 87.61
Own folds 90.83 94.64 94.52
STD DEV 1.37 1.11 0.69

BASELINE 35.50 58.26 59.61

Table 3: Tagging results

a bit over 50% on the unknown words (and 85.6%
overall). For the two reduced tagsets TnT does
better: overall performance goes up to a bit over
92%, with 82% on unknown words.

Table 3 shows the results on the default configu-
ration of TnT, i.e., using 3-grams and interpolated
smoothing. Changing these settings give no sub-
stantial improvement overall: what is gained at
one end (e.g., on unknown words or a particular
tagset) is lost at the other end (on known words or
other tagsets). However, per default TnT uses a
suffix trie of length 10 to handle unknown words.
Extending the suffix to 20 (the maximum value
in TnT) gave a slight performance increase on
‘ELCR’ (0.13% on unknown words, 0.01% over-
all), while having no effect on the smaller tagsets.

6.2 SVM

The SVM-tagger outperforms TnT on unknown
words, but is a bit worse on known words. Overall,
SVM is slightly better than TnT on the two smaller
tagsets and clearly better on the large tagset, and
somewhat better than MaxEnt on all three tagsets.

These results are based on SVMTool’s default
parameters: a one-pass, left-to-right, greedy tag-
ging scheme with a window size of 5. Previous
experiments with parameter tuning and multiple
pass tagging have indicated that there is room for
performance improvements by≈ 2%.

6.3 Maximum Entropy

The MaxEnt tagger gets results comparable to the
other taggers on the predefined folds. Its overall
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Wordn ; Tag ofWordn

Prefixes ofWordn, length 1-5 characters
Postfixes ofWordn, length 1-5 characters
Is Wordn capitalized?
Is Wordn all digits?
DoesWordn contain digits?
DoesWordn contain a hyphen?
Wordn−1 ; Tag ofWordn−1

Wordn−2 ; Tag ofWordn−2

Wordn+1

Wordn+2

Table 4: Features used in the MaxEnt tagger

performance is equivalent to TnT’s on the smaller
tagsets, but significantly better on ‘ELRC’.

As can be seen in Table 3, the MaxEnt tag-
ger clearly outperforms the other taggers on all
tagsets, when MALLET is allowed to create its
own folds: all tagsets achieved classification ac-
curacies higher than 90%, with the two smaller
tagsets over 94.5%. The dramatic increase in the
tagger’s performance on these folds is surprising,
but a clear indication of one of the problems with
n-fold cross validation: even though the results
represent averages aftern runs, the choice of the
original folds to suit a particular tagging strategy
is of utmost importance for the final result.

Table 4 shows the 22 features used to represent
an instance (Wordn) in the Maximum Entropy tag-
ger. The features are calculated per token within
sentences: the starting token of a sentence is not
affected by the characteristics of the tokens ending
the previous sentence, nor the other way around.
Thus not all features are calculated for all tokens.

6.4 Discussion

In terms of accuracy, the MaxEnt tagger is by
far the best of the three taggers, and on all three
tagsets, when allowed to select its own folds. Still,
as Table 3 shows, the variation of the results for
each individual fold was then substantially larger.

It should also be noted that TnT is by far the
fastest of the three taggers, in all respects: in terms
of time to set up and learn to use the tagger, in
terms of tagging speed, and in particular in terms
of training time. Training TnT is a matter of sec-
onds, but a matter of hours for MALLET/MaxEnt
and SVMTool. On the practical side, it is worth
adding that TnT is robust, well-documented, and
easy to use, while MALLET and SVMTool are
substantially more demanding in terms of user ef-
fort and also appear to be more sensitive to the
quality and format of the input data.

7 Conclusions and Future Work

The paper has described experiments with apply-
ing three state-of-the-art part-of-speech taggers to
Amharic, using three different tagsets. All tag-
gers showed worse performance than previously
reported results for English. The best accuracy
was obtained using a Maximum Entropy approach
when allowed to create its own folds: 90.1% on a
30 tag tagset, and 94.6 resp. 94.5% on two reduced
sets (11 resp. 10 tags), outperforming an HMM-
based (TnT) and an SVM-based (SVMTool) tag-
ger. On predefined folds all taggers got compa-
rable results (92.5-92.8% on the reduced sets and
4-7% lower on the full tagset). The SVM-tagger
performs slightly better than the others overall,
since it has the best performance on unknown
words, which are four times as frequent in the
200K words Amharic corpus used than in the (six
times larger) English Wall Street Journal corpus.
TnT gave the best results for known words, but
had the worst performance on unknown words.

In order to improve tagging accuracy, we will
investigate including explicit morphological pro-
cessing to treat unknown words, and combining
taggers. Judging from previous efforts on com-
bining taggers (Section 3.3), it is far from certain
that the combination of taggers actually ends up
producing better results than the best individual
tagger. A pre-requisite for successful combination
is that the taggers are sufficiently dissimilar; they
must draw on different characteristics of the train-
ing data and make different types of mistakes.

The taggers described in this paper use no other
knowledge source than a tagged training corpus.
In addition to incorporating (partial) morpholog-
ical processing, performance could be increased
by including knowledge sources such as machine
readable dictionaries or lists of Amharic stem
forms (Section 2.2). Conversely, semi-supervised
or unsupervised learning for tagging clearly are
interesting alternatives to manually annotate and
construct corpora for training taggers. Since
there are few computational resources available
for Amharic, approaches as those briefly outlined
in Section 3.2 deserve to be explored.
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