
Proceedings of the Fourth Workshop on Statistical Machine Translation , pages 135–139,
Athens, Greece, 30 March – 31 March 2009. c©2009 Association for Computational Linguistics

Joshua: An Open Source Toolkit for Parsing-based Machine Translation

Zhifei Li, Chris Callison-Burch, Chris Dyer,† Juri Ganitkevitch,+ Sanjeev Khudanpur,
Lane Schwartz,? Wren N. G. Thornton, Jonathan Weese and Omar F. Zaidan

Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD
† Computational Linguistics and Information Processing Lab, University of Maryland, College Park, MD
+ Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany

? Natural Language Processing Lab, University of Minnesota, Minneapolis, MN

Abstract
We describe Joshua, an open source
toolkit for statistical machine transla-
tion. Joshua implements all of the algo-
rithms required for synchronous context
free grammars (SCFGs): chart-parsing, n-
gram language model integration, beam-
and cube-pruning, and k-best extraction.
The toolkit also implements suffix-array
grammar extraction and minimum error
rate training. It uses parallel and dis-
tributed computing techniques for scala-
bility. We demonstrate that the toolkit
achieves state of the art translation per-
formance on the WMT09 French-English
translation task.

1 Introduction

Large scale parsing-based statistical machine
translation (e.g., Chiang (2007), Quirk et al.
(2005), Galley et al. (2006), and Liu et al. (2006))
has made remarkable progress in the last few
years. However, most of the systems mentioned
above employ tailor-made, dedicated software that
is not open source. This results in a high bar-
rier to entry for other researchers, and makes ex-
periments difficult to duplicate and compare. In
this paper, we describe Joshua, a general-purpose
open source toolkit for parsing-based machine
translation, serving the same role as Moses (Koehn
et al., 2007) does for regular phrase-based ma-
chine translation.

Our toolkit is written in Java and implements
all the essential algorithms described in Chiang
(2007): chart-parsing, n-gram language model in-
tegration, beam- and cube-pruning, and k-best ex-
traction. The toolkit also implements suffix-array
grammar extraction (Lopez, 2007) and minimum
error rate training (Och, 2003). Additionally, par-
allel and distributed computing techniques are ex-
ploited to make it scalable (Li and Khudanpur,

2008b). We have also made great effort to ensure
that our toolkit is easy to use and to extend.

The toolkit has been used to translate roughly
a million sentences in a parallel corpus for large-
scale discriminative training experiments (Li and
Khudanpur, 2008a). We hope the release of the
toolkit will greatly contribute the progress of the
syntax-based machine translation research.1

2 Joshua Toolkit

When designing our toolkit, we applied general
principles of software engineering to achieve three
major goals: Extensibility, end-to-end coherence,
and scalability.

Extensibility: The Joshua code is organized
into separate packages for each major aspect of
functionality. In this way it is clear which files
contribute to a given functionality and researchers
can focus on a single package without worrying
about the rest of the system. Moreover, to mini-
mize the problems of unintended interactions and
unseen dependencies, which is common hinder-
ance to extensibility in large projects, all exten-
sible components are defined by Java interfaces.
Where there is a clear point of departure for re-
search, a basic implementation of each interface is
provided as an abstract class to minimize the work
necessary for new extensions.

End-to-end Cohesion: There are many compo-
nents to a machine translation pipeline. One of the
great difficulties with current MT pipelines is that
these diverse components are often designed by
separate groups and have different file format and
interaction requirements. This leads to a large in-
vestment in scripts to convert formats and connect
the different components, and often leads to unten-
able and non-portable projects as well as hinder-

1The toolkit can be downloaded at http://www.
sourceforge.net/projects/joshua, and the in-
structions in using the toolkit are at http://cs.jhu.
edu/˜ccb/joshua.

135



ing repeatability of experiments. To combat these
issues, the Joshua toolkit integrates most critical
components of the machine translation pipeline.
Moreover, each component can be treated as a
stand-alone tool and does not rely on the rest of
the toolkit we provide.

Scalability: Our third design goal was to en-
sure that the decoder is scalable to large models
and data sets. The parsing and pruning algorithms
are carefully implemented with dynamic program-
ming strategies, and efficient data structures are
used to minimize overhead. Other techniques con-
tributing to scalability includes suffix-array gram-
mar extraction, parallel and distributed decoding,
and bloom filter language models.

Below we give a short description about the
main functions implemented in our Joshua toolkit.

2.1 Training Corpus Sub-sampling

Rather than inducing a grammar from the full par-
allel training data, we made use of a method pro-
posed by Kishore Papineni (personal communica-
tion) to select the subset of the training data con-
sisting of sentences useful for inducing a gram-
mar to translate a particular test set. This method
works as follows: for the development and test
sets that will be translated, every n-gram (up to
length 10) is gathered into a map W and asso-
ciated with an initial count of zero. Proceeding
in order through the training data, for each sen-
tence pair whose source-to-target length ratio is
within one standard deviation of the average, if
any n-gram found in the source sentence is also
found in W with a count of less than k, the sen-
tence is selected. When a sentence is selected, the
count of every n-gram in W that is found in the
source sentence is incremented by the number of
its occurrences in the source sentence. For our
submission, we used k = 20, which resulted in
1.5 million (out of 23 million) sentence pairs be-
ing selected for use as training data. There were
30,037,600 English words and 30,083,927 French
words in the subsampled training corpus.

2.2 Suffix-array Grammar Extraction

Hierarchical phrase-based translation requires a
translation grammar extracted from a parallel cor-
pus, where grammar rules include associated fea-
ture values. In real translation tasks, the grammars
extracted from large training corpora are often far
too large to fit into available memory.

In such tasks, feature calculation is also very ex-
pensive in terms of time required; huge sets of
extracted rules must be sorted in two directions
for relative frequency calculation of such features
as the translation probability p(f |e) and reverse
translation probability p(e|f) (Koehn et al., 2003).
Since the extraction steps must be re-run if any
change is made to the input training data, the time
required can be a major hindrance to researchers,
especially those investigating the effects of tok-
enization or word segmentation.

To alleviate these issues, we extract only a sub-
set of all available rules. Specifically, we follow
Callison-Burch et al. (2005; Lopez (2007) and use
a source language suffix array to extract only those
rules which will actually be used in translating a
particular set of test sentences. This results in a
vastly smaller rule set than techniques which ex-
tract all rules from the training set.

The current code requires suffix array rule ex-
traction to be run as a pre-processing step to ex-
tract the rules needed to translate a particular test
set. However, we are currently extending the de-
coder to directly access the suffix array. This will
allow the decoder at runtime to efficiently extract
exactly those rules needed to translate a particu-
lar sentence, without the need for a rule extraction
pre-processing step.

2.3 Decoding Algorithms2

Grammar formalism: Our decoder assumes a
probabilistic synchronous context-free grammar
(SCFG). Currently, it only handles SCFGs of the
kind extracted by Heiro (Chiang, 2007), but is eas-
ily extensible to more general SCFGs (e.g., (Gal-
ley et al., 2006)) and closely related formalisms
like synchronous tree substitution grammars (Eis-
ner, 2003).

Chart parsing: Given a source sentence to de-
code, the decoder generates a one-best or k-best
translations using a CKY algorithm. Specifically,
the decoding algorithm maintains a chart, which
contains an array of cells. Each cell in turn main-
tains a list of proven items. The parsing process
starts with the axioms, and proceeds by applying
the inference rules repeatedly to prove new items
until proving a goal item. Whenever the parser
proves a new item, it adds the item to the appro-
priate chart cell. The item also maintains back-

2More details on the decoding algorithms are provided in
(Li et al., 2009a).

136



pointers to antecedent items, which are used for
k-best extraction.

Pruning: Severe pruning is needed in order to
make the decoding computationally feasible for
SCFGs with large target-language vocabularies.
In our decoder, we incorporate two pruning tech-
niques: beam and cube pruning (Chiang, 2007).

Hypergraphs and k-best extraction: For each
source-language sentence, the chart-parsing algo-
rithm produces a hypergraph, which represents
an exponential set of likely derivation hypotheses.
Using the k-best extraction algorithm (Huang and
Chiang, 2005), we extract the k most likely deriva-
tions from the hypergraph.

Parallel and distributed decoding: We also
implement parallel decoding and a distributed
language model by exploiting multi-core and
multi-processor architectures and distributed com-
puting techniques. More details on these two fea-
tures are provided by Li and Khudanpur (2008b).

2.4 Language Models

In addition to the distributed LM mentioned
above, we implement three local n-gram language
models. Specifically, we first provide a straightfor-
ward implementation of the n-gram scoring func-
tion in Java. This Java implementation is able to
read the standard ARPA backoff n-gram models,
and thus the decoder can be used independently
from the SRILM toolkit.3 We also provide a na-
tive code bridge that allows the decoder to use the
SRILM toolkit to read and score n-grams. This
native implementation is more scalable than the
basic Java LM implementation. We have also im-
plemented a Bloom Filter LM in Joshua, following
Talbot and Osborne (2007).

2.5 Minimum Error Rate Training

Johsua’s MERT module optimizes parameter
weights so as to maximize performance on a de-
velopment set as measuered by an automatic eval-
uation metric, such as Bleu. The optimization
consists of a series of line-optimizations along
the dimensions corresponding to the parameters.
The search across a dimension uses the efficient
method of Och (2003). Each iteration of our
MERT implementation consists of multiple weight

3This feature allows users to easily try the Joshua toolkit
without installing the SRILM toolkit and compiling the native
bridge code. However, users should note that the basic Java
LM implementation is not as scalable as the native bridge
code.

updates, each reflecting a greedy selection of the
dimension giving the most gain. Each iteration
also optimizes several random “intermediate ini-
tial” points in addition to the one surviving from
the previous iteration, as an approximation to per-
forming multiple random restarts. More details on
the MERT method and the implementation can be
found in Zaidan (2009).4

3 WMT-09 Translation Task Results

3.1 Training and Development Data

We assembled a very large French-English train-
ing corpus (Callison-Burch, 2009) by conducting
a web crawl that targted bilingual web sites from
the Canadian government, the European Union,
and various international organizations like the
Amnesty International and the Olympic Commit-
tee. The crawl gathered approximately 40 million
files, consisting of over 1TB of data. We converted
pdf, doc, html, asp, php, etc. files into text, and
preserved the directory structure of the web crawl.
We wrote set of simple heuristics to transform
French URLs onto English URLs, and considered
matching documents to be translations of each
other. This yielded 2 million French documents
paired with their English equivalents. We split the
sentences and paragraphs in these documents, per-
formed sentence-aligned them using software that
IBM Model 1 probabilities into account (Moore,
2002). We filtered and de-duplcated the result-
ing parallel corpus. After discarding 630 thousand
sentence pairs which had more than 100 words,
our final corpus had 21.9 million sentence pairs
with 587,867,024 English words and 714,137,609
French words.

We distributed the corpus to the other WMT09
participants to use in addition to the Europarl
v4 French-English parallel corpus (Koehn, 2005),
which consists of approximately 1.4 million sen-
tence pairs with 39 million English words and 44
million French words. Our translation model was
trained on these corpora using the subsampling de-
scried in Section 2.1.

For language model training, we used the
monolingual news and blog data that was as-
sembled by the University of Edinburgh and dis-
tributed as part of WMT09. This data consisted

4The module is also available as a standalone applica-
tion, Z-MERT, that can be used with other MT systems.
(Software and documentation at: http://cs.jhu.edu/
˜ozaidan/zmert.)

137



of 21.2 million English sentences with half a bil-
lion words. We used SRILM to train a 5-gram
language model using a vocabulary containing the
500,000 most frequent words in this corpus. Note
that we did not use the English side of the parallel
corpus as language model training data.

To tune the system parameters we used News
Test Set from WMT08 (Callison-Burch et al.,
2008), which consists of 2,051 sentence pairs
with 43 thousand English words and 46 thou-
sand French words. This is in-domain data that
was gathered from the same news sources as the
WMT09 test set.

3.2 Translation Scores

The translation scores for four different systems
are reported in Table 1.5

Baseline: In this system, we use the GIZA++
toolkit (Och and Ney, 2003), a suffix-array archi-
tecture (Lopez, 2007), the SRILM toolkit (Stol-
cke, 2002), and minimum error rate training (Och,
2003) to obtain word-alignments, a translation
model, language models, and the optimal weights
for combining these models, respectively.

Minimum Bayes Risk Rescoring: In this sys-
tem, we re-ranked the n-best output of our base-
line system using Minimum Bayes Risk (Kumar
and Byrne, 2004). We re-score the top 300 trans-
lations to minimize expected loss under the Bleu
metric.

Deterministic Annealing: In this system, in-
stead of using the regular MERT (Och, 2003)
whose training objective is to minimize the one-
best error, we use the deterministic annealing
training procedure described in Smith and Eisner
(2006), whose objective is to minimize the ex-
pected error (together with the entropy regulariza-
tion technique).

Variational Decoding: Statistical models in
machine translation exhibit spurious ambiguity.
That is, the probability of an output string is split
among many distinct derivations (e.g., trees or
segmentations). In principle, the goodness of a
string is measured by the total probability of its
many derivations. However, finding the best string
(e.g., during decoding) is then computationally in-
tractable. Therefore, most systems use a simple
Viterbi approximation that measures the goodness

5Note that the implementation of the novel techniques
used to produce the non-baseline results is not part of the cur-
rent Joshua release, though we plan to incorporate it in the
next release.

System BLEU-4
Joshua Baseline 25.92

Minimum Bayes Risk Rescoring 26.16
Deterministic Annealing 25.98

Variational Decoding 26.52

Table 1: The uncased BLEU scores on WMT-09
French-English Task. The test set consists of 2525
segments, each with one reference translation.

of a string using only its most probable deriva-
tion. Instead, we develop a variational approxima-
tion, which considers all the derivations but still
allows tractable decoding. More details will be
provided in Li et al. (2009b). In this system, we
have used both deterministic annealing (for train-
ing) and variational decoding (for decoding).

4 Conclusions

We have described a scalable toolkit for parsing-
based machine translation. It is written in Java
and implements all the essential algorithms de-
scribed in Chiang (2007) and Li and Khudanpur
(2008b): chart-parsing, n-gram language model
integration, beam- and cube-pruning, and k-best
extraction. The toolkit also implements suffix-
array grammar extraction (Callison-Burch et al.,
2005; Lopez, 2007) and minimum error rate train-
ing (Och, 2003). Additionally, parallel and dis-
tributed computing techniques are exploited to
make it scalable. The decoder achieves state of
the art translation performance.

Acknowledgments

This research was supported in part by the Defense
Advanced Research Projects Agency’s GALE pro-
gram under Contract No. HR0011-06-2-0001 and
the National Science Foundation under grants
No. 0713448 and 0840112. The views and find-
ings are the authors’ alone.

References
Chris Callison-Burch, Colin Bannard, and Josh

Schroeder. 2005. Scaling phrase-based statisti-
cal machine translation to larger corpora and longer
phrases. In Proceedings of ACL.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2008.
Further meta-evaluation of machine translation. In
Proceedings of the Third Workshop on Statistical
Machine Translation (WMT08).

138



Chris Callison-Burch. 2009. A 109 word parallel cor-
pus. In preparation.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

Jason Eisner. 2003. Learning non-isomorphic tree
mappings for machine translation. In Proceedings
of ACL.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Pro-
ceedings of the ACL/Coling.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the International Work-
shop on Parsing Technologies.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of HLT/NAACL.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, , and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the ACL-2007 Demo and Poster Ses-
sions.

Philipp Koehn. 2005. A parallel corpus for statistical
machine translation. In Proceedings of MT-Summit,
Phuket, Thailand.

Shankar Kumar and William Byrne. 2004. Minimum
bayes-risk decoding for statistical machine transla-
tion. In Proceedings of HLT/NAACL.

Zhifei Li and Sanjeev Khudanpur. 2008a. Large-scale
discriminative n-gram language models for statisti-
cal machine translation. In Proceedings of AMTA.

Zhifei Li and Sanjeev Khudanpur. 2008b. A scalable
decoder for parsing-based machine translation with
equivalent language model state maintenance. In In
Proceedings Workshop on Syntax and Structure in
Statistical Translation.

Zhifei Li, Chris Callison-Burch, Sanjeev Khudanpur,
and Wren Thornton. 2009a. Decoding in joshua:
Open source, parsing-based machine translation.
The Prague Bulletin of Mathematical Linguistics,
91:47–56.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur.
2009b. Variational decoding for statistical machine
translation. In preparation.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment templates for statistical machine
translation. In Proceedings of the ACL/Coling.

Adam Lopez. 2007. Hierarchical phrase-based trans-
lation with suffix arrays. In Proceedings of EMNLP-
CoLing.

Robert C. Moore. 2002. Fast and accurate sentence
alignment of bilingual corpora. In Proceedings of
AMTA.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training
for statistical machine translation. In Proceedings
of ACL.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005.
Dependency treelet translation: Syntactically in-
formed phrasal smt. In Proceedings of ACL.

David A. Smith and Jason Eisner. 2006. Minimum risk
annealing for training log-linear models. In Pro-
ceedings of the ACL/Coling.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken Language Process-
ing, Denver, Colorado, September.

David Talbot and Miles Osborne. 2007. Randomised
language modelling for statistical machine transla-
tion. In Proceedings of ACL.

Omar F. Zaidan. 2009. Z-MERT: A fully configurable
open source tool for minimum error rate training of
machine translation systems. The Prague Bulletin of
Mathematical Linguistics, 91:79–88.

139


