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Introduction

Welcome to the ACL Workshop on Parsing German, the first of what we hope will be a long and fruitful
series of workshops on this topic.

German possesses an interesting set of configurational properties on the syntactic level which make
it far less flexible with respect to word order than other free word order languages. Analyses of
these properties, which have formed a part of the traditional syntax of German since the early 19th
century, only re-entered the mainstream of generative linguistics research within the last twenty years
or so. In computational linguistics, however, their realization has varied quite widely: “topological
fields” in HPSG-style analyses, multiple parse trees, special constraints on liberation in constraint-
based dependency-style analyses, various hybrid “deep/shallow” approaches, and agnostic parameter
estimation over graphs. This variation can also acutely be felt in the annotation of German treebanks.
Many corpora have historically elected to annotate only a few of the different senses of the term
“constituent” inherent to German syntax, resulting in standards that make German appear either more
like English or more like Czech.

The aim of this workshop was to provide a forum for theoretical discussion as well as a shared
task, based on the TIGER and TueBa-D/Z German treebanks, for these various approaches to make
their case on empirical grounds. This combination we believe to be essential to balancing the
considerations of what structure merits learning versus the ease with which it can be learned. Both
treebanks are annotated collections of German newspaper text on similar topics. They are annotated
with POS, morphology, phrase structure, and grammatical functions. TueBa-D/Z additionally uses
topological fields to describe fundamental word order restrictions in German clauses. The treebanks
differ significantly in their annotation schemes, however: while TIGER relies on crossing branches to
describe long distance relationships, TueBa-D/Z uses pure tree structures with designated labels for
long distance relationships. Additionally, the annotation is TIGER is flat on the phrasal level while
TueBa-D/Z annotates phrasal structure more hierarchically.

A report on the results of this year’s shared task can be found in the final paper of these proceedings.
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Lexcalised Parsing of German V2

Yo Sato
Department of Computer Science

Queen Mary, University of London
Mile End Road, London E1 4NS, U.K.

Abstract

This paper presents a method and implemen-
tation of parsing German V2 word order by
means of constraints that reside in lexical
heads. It first describes the design of the
underlying parsing engine: the head-corner
chart parsing that incorporates a procedure
that dynamically enforces word order con-
straints. While the parser could potentially
generate all the permutations of terminal sym-
bols, constraint checking is conductedlocally
in an efficient manner. The paper then shows
how this parser can adequately cover a variety
of V2 word order patterns with sets of lexi-
cally encoded constraints, including non-local
preposing of an embedded argument or an ad-
verbial.

1 Introduction

This paper presents a method of parsing V2 word
order manifested in a variety of German matrix sen-
tences in a lexicalised and locality-respecting man-
ner: lexicalised, as the V2 pattern is licensed ulti-
mately encoded inverbs, in the form of constraints
that hold amongst its arguments and itself; locality-
respecting, because (a) no constraint that operates on
constituents from different subcategorisation frames
is invoked and (b) the matrix verb and the prever-
bal constituent, however ‘distant’ its origin is, are
ordered in the same projection via the slash-based
mechanism.

The underlying grammar is loosely linearisation-
based, in the sense that word order is dissoci-
ated from the syntactic structure in a discontinuity-
allowing manner, as presented in Sato (2008). The

main benefit of a linearisation approach is that syn-
tactic constituency becomes independent (to a de-
gree) of its surface realisation and hence discour-
ages constituency manipulation for the sake of word
order. In line of this spirit I will largely adopt the
simple constituency construal that faithfully corre-
spond to its semantics. However, I distance myself
from the more or less standard version of linearisa-
tion grammar where potentially non-local LP con-
ditions are permitted (Reape, 1993) or word order
patterns are imposed at the clause level (as in ‘topo-
logical field’ model of Kathol (2000)).

The crux of the proposal consists in employing
a head-corner parsing in which the set of word or-
der constraints are incorporated into a VP’s lexical
head (i.e. common or auxiliary verb). For a V2 pro-
jection, its head verb contains the constraints to the
effect that only one of its arguments can be fronted
immediately before the verb itself. To enable this,
potential discontinuity and obligatory adjacency in
part of a phrase is included in the repertoire of word
order constraints in addition to the standard LP (lin-
ear precedence) constraints.

2 The data

The V2 constructions to be dealt with in this paper
are as follows (I will use as an example the tertiary
verb gebengive or its past participle gegebengiven
throughout):

1. The ‘basic’ case where dependency between
the preverbal constituent and the matrix verb is
strictly local, e.g:
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Ein Buch geben die Eltern dem Sohn.
a book give the parents the son
‘A book the parents give the son’

2. The case where an argument of the lower verb
is fronted across the higher auxiliary verb:

Ein Buch haben die Eltern dem Sohn gegeben.
a book have the parents the son given
‘A book the parents have given the son’

3. The long-distance dependency case:

Ein Buch, sagt ein Freund, dass er glaubt, dass die
Eltern dem Sohn geben.

‘A book, a friend says that he thinks that the parents
give the son’

4. Adjunct fronting

Heimlich haben die Eltern dem Sohn ein Buch gegeben.
secretly have the parents the son a book given
‘Secretly the parents have given the son a book.’

5. Partial VP fronting

Ein Buch dem Sohn gegeben haben die Eltern.
Ein Buch gegeben haben die Eltern dem Sohn.

As stated, our approach adopts a linearisation ap-
proach in which constituency does not determine the
surface realisation, which is handled instead by word
order conditions encoded in lexical heads. My con-
tention here is not so much plausibility as a grammar
as neutrality to particular phrase structures, which
linearisation promotes. Therefore I take a rather
simplified position to use an entirely uniform phrase
structure for the verb-argument structure for com-
mon verbs, namely the flat construal where all the
arguments as well as the head project onto a clause
(‘VP’) as mutual sisters, although I hasten to add
our constraint enforcement could equally apply to
configurational analyses. In fact we take an auxil-
iary verb to subcategorise for a clause rather than
the complex verb analysis, and adopt the traditional
binary iteration analysis for adjunct-head phrases, to
see how our parser fares with configurational analy-
ses.

I sum up the assumed constituency of the above
examples graphically as trees (though this has little
impact on word order):
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3 The parser

3.1 Core design

The design of the parser employed here can be
called constrained free word order parsing. First,
it allows for completely free word order at default.
The core algorithm for the parse engine is what
Reape (1991) presents as a generalised permutation-
complete parser, which in turn is based on the pre-
ceding proposal of Johnson (1985). Details apart,
while using context-free production rules (no multi-
ple left-hand side non-terminal symbols), this algo-
rithm only checks for thepresence of all the right-
hand side constituents, wherever in the string they
occur, potentially discontinuously,1 effectively li-
censing all the permutations of the given terminal
symbols (e.g. 3! = 6 permutations for the string
consisting ofring, up and John including up John
ring etc.). This ‘directionless’ parsing is rendered
possible by Johnson’s ‘bitvector’ representation of
partial string coverage. In the aboveup John ring
string, the coverage of thering and up combina-

1More precisely, it searches fornon-overlapping combina-
tions, excluding the same word being counted more than once
or more than one word counting towards the same rule in the
same search path.
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tion, which materially constitutes a complex verb,
is represented as [1,0,1]. This is then then merged
with the bitvector ofJohn, [0,1,0] into [1,1,1]. Sec-
ond, however, this rather promiscuous (and expen-
sive) parsing is dynamically restricted by word or-
der constraints that obtain in individual languages.
With sufficient constraints applied during the parse,
the above combinations withring, up andJohn are
restricted toring up John andring John up.

I do not claim for originality in this basic design.
Daniels (2005) for example describes an implemen-
tation of an algorithm that falls precisely in such
style of parsing.2 The main points of the proposal
lie in lexicalisation and localisation, which contrast
with the general trend to introduce phrasal and non-
local constraint processing for German processing,
of which Daniels’ work is an example. All the word
order constraints are stored in lexicon, more specifi-
cally in lexical heads.

To adapt this design to a practical lexically driven
parsing, the author implemented a rendering of
head-corner chart parsing. It is head-corner in the
sense described e.g. in van Noord (1991), where
the parsing of a production rule always starts from
its head. This is necessary for our design because
the parser first retrieves the word order information
from the head. Furthermore, it requires the words
to be processed first by preterminal rules since with-
out processing lexical heads the whole recognition
process does not come off the ground. Therefore, a
chart parsing algorithm that invokes lexical initiali-
sation is utilised (as described in Gazdar & Mellish
(1989) rather than the classical top-down parsing of
Earley (1970)).

3.2 Constraint checking and propagation

Since no non-local word order constraints are intro-
duced in our parsing, they can be fully enforced at
each application of a production rule. More specif-
ically, the checking of constraint compliance is car-
ried out at thecompleter operation of chart pars-
ing.3 The data structure of an edge is suitably mod-
ified. In addition to the dotted production rule, it
needs to carry the constraint set relevant to the corre-

2A foregoing implementation by M̈uller (2004) also em-
ploys bitvector-based linearisation approach.

3The equivalent operation is called the ‘fundamental rule’ in
Gazdar & Mellish (1989).

sponding production rule, retrievable from the head,
which is always processed first in our head-corner
algorithm.4 Also, as we are adopting the bitvector
representation of coverage, an edge contains its cor-
responding bitvector. The completer operation in-
volves merger of two bitvectors, so the check can be
conducted at this stage:

Completer in constrained parsing
Let A andB be symbols,α, β andγ be arbi-
trary strings,V1 andV2 be bitvectors andV m

be their merge, then:

If the chart contains an active edge〈V1, A→ α
• B β〉 and a passive edge〈V2, B→ γ • 〉, run
the CHECK-ORDER procedure. If it succeeds,
add edge〈V m, A→ αB • β〉 to the chart ifV1

andV2 are mergeable. If it fails, do nothing.

The CHECK-ORDER procedure consists in a bit-
wise comparison of bitvectors. It picks out the
bitvectors of the categories in question and checks
the compliance of the newly found category with re-
spect to the relevant constraints. If for exampleA, B
andC had been found at [0,1,0,0,0], [0,0,1,0,1] and
[1,0,0,1,0] respectively, this would validateA ≺ B
but notA ≺ C. Thus the edges for string combina-
tions that violate the word order constraints would
not be created, eliminating wasteful search paths.

As we will shortly see, the constraint type that
checks continuity of a phrase is also introduced.
Therefore the phrase (dis)continuity can also be as-
certainedlocally, which is a major advantage over a
parsing that relies largely on concatenation. Thus,
the cost of constraint checking remains very small
despite the capability of processing discontinuity.5

Note however that by locality is meant subcat-
egorisation locality (or ‘selection’ locality as de-
scribed in Sag (2007)): whatever is in the same
subcategorisation frame of a lexical head is consid-
ered local. Depending on the adopted analysis, con-
stituents ‘local’ in this sense may of course occur
in different trees. Constraints on such ‘non-local’
—in the tree sense but not in the subcategorisation
sense— constituents are still enforceable in the im-
plemented parser. The unused constraints at a node,

4This retrieval of word order information is carried out at the
predictor stage of chart parsing.

5It is worth mentioning that the bitvector checking is con-
ducted over the whole string, the effect of applied constraints
will be never lost.
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for example some constraint applicable to the verb
and its subject at the VP node in the configurational
(subjectless-VP) analysis, is made to propagate up
to the upper node. Thus it is no problem to enforce
a constraint over ‘different trees’, as long as it is ap-
plied to ‘local’ constituents in our sense.6

4 Possible constraints and subtyping

It is crucial, if the computational properties of the
parser is to be transparent in constrained free word
order parsing, to identify the kind of word order con-
straints admitted into lexical heads. We will remain
relatively conservative, in introducing only two op-
erators for constraint encoding. We first invoke the
binary LP operator (≺) in a conventional sense: the
whole (or, equivalently, right-periphery) of a string
for categoryA needs to precede the whole (or left-
periphery) of a string for categoryB to satisfyA ≺
B (I will use the shorthandA ≺ (B, C) to express
(A ≺ B) ∧ (A ≺ C). Crucially, the contiguity op-
erator () is added. It takes aset of constituents as its
operand and requires the constituents in it to be con-
tiguous, regardless of their order. Thus,{A, B, C}
encodes the requirement forA, B andC as a whole
forming a contiguous string. For example, the string
I ring John up does not satisfy{ring, up} but does
satisfy{ring, John, up}.

Also important is how to succinctly generalise
on the word order patterns now encoded in lexical
items, as one would certainly want to avoid a te-
dious task of writing them all individually, if they
allow for broader classification. For example the En-
glish transitive verb generally follows its subject ar-
gument and precedes its object argument, and one
would naturally want to lump these verbs under one
umbrella. For such a cluster of lexical heads, we will
introduce aword order (sub)type. More pertinently,
the German verbs may be classified intov1-verb, v2-
verb andvf-verb according to the positions of their
arguments in their projection. We will also allow
multiple inheritance that becomes standard in the
typed feature system (cf. Pollard and Sag (1987)).

6See Sato (2006) for details.

5 Constraints for V2

5.1 General setup

To enforce the V2 word order pattern lexically, I pro-
pose to use a combination of two word order sub-
types: dislocating-verb (disl-v) andmatrix-v2-verb
(mtrx-v2-v). The former type represents a verb one
of whose arguments is to be ‘dislocated’. A verb of
this type can thus be characterised as ‘contributing’
the dislocated (preverbal) element. The latter, on the
other hand, is the type that is projected onto a ma-
trix sentence. This type should be constrained such
that one dislocated constituent must —and only one
may— precede and be adjacent to the verb itself. It
may be characterised as a verb that provides a locus
—immediately before itself— of, or ‘receives’ the
dislocated element.

Dislocation is handled by a constraint percola-
tion mechanism. I assume the dislocated constituent
is pushed into a storage that then participates in a
slash style percolation, although the storage content
would still need to be ordered by lexicalised con-
straints rather than by the percolation mechanism it-
self, as they are the sole resource for word order.7

Thus the checking as regards the dislocated con-
stituent is conducted at each projection in the per-
colation path, hence locally, while the percolation
mechanism gives some ‘global’ control over disloca-
tion. Not just the positioning of the dislocated con-
stituent at the left-periphery of the whole sentence,
but the assurance of aglobal singularity restriction
of dislocation —not just one constituent per clause
in multiple embeddings— becomes thus possible.

Let args be the set of the arguments of adisl-v,
disl be that of the dislocated one andsitu be that of
the remaining arguments, i.e.disl ⊂ args where
|disl| = 1 and situ = {x|x ∈ args ∧ x /∈ disl}.
Then the typedisl-v can be characterised as having
the following constraint:

disl-v: disl ≺ situ (disl → dislst)

Simply put, this says that the arguments are divided
into two parts, the dislocated and in-situ parts, the
former of which precedes the latter. We assume, as

7The adopted mechanism is close to Penn (1999), though
he invokes potentially non-local topology-based constraints and
removes the filler and gapped head entirely.
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in the standard treatment, there is only one dislo-
cated constituent, until we consider the VP fronting.
The notation with an arrow on the right indicates this
singleton set is pushed into the storage that is prop-
agated upwards.

The mtrx-v2-v type is then characterised as fol-
lows:

mtrx-v2-v: dislst ≺ verb, {dislst, verb}

This simply says the dislocated constituent (stored
in a lower node and percolated) immediately pre-
cedes the matrix verb. (For the following presen-
tation, the storage-related notations will be omitted
and implicitly assumed unless necessary. Also, the
set variablesdisl andargs will be used with the same
meaning.)

Thus the combination of the two types gives, for
example whereargs = {A, B, C}, disl = {A} and
the matrix verb isV , the following constraint set:

{A ≺ (B, C), A ≺ V, {A, V }}

which essentially says that the dislocatedA immedi-
ately precedes the matrix verbV and precedes (not
necessarily immediately) the in-situB andC.

5.2 Local case

To begin with, let us see a case where dependency
between the preverbal constituent and the matrix
verb is strictly local, taking (1) as an example. Note
first that there are six possible variants:

(1)

a. Die Eltern geben dem Sohn ein Buch.
b. Die Eltern geben ein Buch dem Sohn.
c. Dem Sohn geben die Eltern ein Buch.
d. Dem Sohn geben ein Buch die Eltern.
e. Ein Buch geben die Eltern dem Sohn.
f. Ein Buch geben dem Sohn die Eltern.

In this case,geben is both a matrix (argument-
receiving) and dislocating (argument-contributing)
verb. This means that the two subtypes should be
overloaded. Let us call this overloaded sub-species
disl-mtrx-v2-v: which is given the following specifi-
cation:

disl-mtrx-v2-v:
disl ≺ situ, disl ≺ verb, {disl, verb}

To adapt this type to our verb,geben, where we rep-
resent its arguments assNP (subject NP),ioNP (in-
direct object NP) anddoNP (direct object NP), we
obtain, for the case wheresNP is preposed:

{sNP ≺ (ioNP, doNP),
sNP ≺ geben, (sNP, geben)}

where the constraints on the first line is inher-
ited from disloc-v while those on the second from
matrix-v2-v. This corresponds to the sentences (a)
and (b) above. The followings are the cases where
ioNP anddoNP are preposed, corresponding to (c,d)
and (e,f), respectively.

{ioNP ≺ (sNP, doNP), ioNP ≺ geben, (ioNP, geben)}
{doNP ≺ (sNP, ioNP), doNP ≺ geben, (doNP, geben)}

These possible sets are enforced in the manner of
exclusive disjunction, that is, only one of the above
three sets actually obtains. This does not mean, how-
ever, each set must be explicitly stated in the verb
and processed blindly. Only the abstract form of
the constraint, as described under the type specifi-
cation above, is written in the lexicon. During pars-
ing, then, one of the sets, as dynamically found to
match the input string, is computed and applied. In
the subsequent discussion, therefore, only the direct-
object fronting case is considered as a representative
example for each construction.

5.3 Argument fronting across auxiliary

We now consider the cases where the dependency is
not local, starting with an auxiliary-involving case.
The dependency between an auxiliary and an ar-
gument of its lower verb is, according to the Aux-
Clause construal adopted here, is not local. We can
however succinctly specify such non-local V2 ren-
derings as a case where the above two types are in-
stantiated separately in two verbs. The example is
reproduced below:

(2) Ein Buch haben die Eltern dem Sohn gegeben.

The argument-contributing gegebengiven is, as
before, assigned thedisl-v type, but is further sub-
typed and inherits the constraints also fromvf-v (v-
final verb), reflecting the fact that it occurs head-
finally.

gegeben (typedisl-vf-v):
{doNP ≺ (sNP, ioNP),

5



(sNP, doNP, ioNP) ≺ gegeben}

The dislocateddoNP climbs up the tree ((2) in
Section 2) in the storage, which is then subject to
the constraints of matrixhaben at the top node. This
argument-receiving auxiliaryhaben is, as before,
given themtrx-v2-v status.8.

haben (typemtrx-v2-v):
{doNPst ≺ haben, (doNPst, haben)}

Thus the dislocatedein Buch is duly placed at the
left-periphery in a manner that forbids intervention
between itself and the matrix verb.

5.4 Long-Distance Dependency

Having dealt with an argument fronting of the auxil-
iary construction as a non-local case, we could now
extend the same treatment to long-distance depen-
dency. Our example is:

(3) Ein Buch, sagt ein Freund, dass er glaubt, dass
die Eltern dem Sohn geben.

(‘A book, a friend says that he thinks that the
parents give the son’)

In fact, it suffices to endow exactly the same type
asgegeben, i.e. disl-vf-v, to the occurrence ofgeben
in a subordinate clause.9

geben (in subord. clause, typedisl-vf-v):
{doNP ≺ (sNP, ioNP),

(sNP, doNP, ioNP) ≺ geben}

This ensures that the dislocated argument goes
progressively up towards the top node. To prevent
this argument from being ‘dropped’ the half way
through, however, the non-matrix CP-taking verbs
‘in the middle’ that should be bypassed, in our case
glaubt, needs to possess the constraint that pushes
the dislocated element to the left of itself:

glaubt (in subord. clause, type ‘middle-v’):10

{doNPst ≺ glaubt}

8More precisely this also involveshaben≺ VP(gapped)
9This means that, given the identical morphological form,

gegeben is type-ambiguous between the matrix and subordinate
occurrences. This does not add too much to parsing complexity,
however, as this ‘ambiguity’ is quickly resolved when one of its
argument is encountered.

10The constraints applicable to the usual finite verb is omit-
ted, i.e.sNP ≺ glaubt andglaubt ≺ CP(gapped).

Finally, amtrx-v2-v, in our casesagt, takes care of
placing the dislocated constituent immediately be-
fore itself.

sagt (typemtrx-v2-v):11

{doNPst ≺ sagt, (doNPst, sagt)}

5.5 Adjunct fronting

I declared at the beginning to use the traditional bi-
nary adjunction analysis for adjunct-head phrases.12

In order to achieve this, I first propose a fundamental
conceptual shift, given the iterability and optionality
of adjuncts. In the traditional concept of adjunct-
head phrases, it is the adjunct that selects for the
head it modifies rather than the other way round.
Also semantically, the adjunct is considered the ‘se-
mantic head’ that works as a functor. In light of
this background, it is not implausible to take the
adjunct as the ‘parsing head’ equipped with word
order constraints. In fact, the opposite option —
equipping the syntactic head with its relative word
order with adjuncts— is not as feasible in our lexi-
cal head-corner parsing. The iterability of adjuncts
means that the head would have to be equipped with
an infinite number of adjuncts as its ‘arguments’,
which would lead to various uninstantiation prob-
lems. Therefore, I swap the statuses and treat, in
terms of parsing, the adjunct as a functor with word
order constraints incorporated relative to its modi-
fiee.

Thus, the word order constraints are now given
to the lexical adjuncts also. I will take as an ex-
ample adverbs.13 Adverbs are now the potential lo-
cus of word order patterns relative to its modifiee
(clause/VP), but are not given any specific constraint
in German generally, because one can appear either
after or inside a clause. Our focus is solely on the
possibility of putting onebefore the clause it modi-
fies, when it is subject to the V2 constraint. This is
handled simply by saying, for such a type, which we
call disl-adverb, it dislocates itself, in the manner of

11Likewise: sagt ≺ CP(gapped) omitted.
12That is against the temptation for a constituency change

that renders adjuncts sisters on par with arguments (cf. Bouma
et al (2001)), in which case V2 would simply fall out from the
foregoing word order types.

13The same treatment can be extended to prepositional ad-
juncts (remember the unused constraints will percolate up to
the maximal projection).
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‘head movement’ which is widely used in German
syntax (Kiss and Wesche, 1991; Netter, 1992).

disl-adverb: adv (adv→ dislst)

This specification ensures the adverb itself goes
onto the extraction path, to be placed at the left-
periphery, triggered by themtrx-v2-v type. The sin-
gularity of the adverbials at the prerverbal position
is ensured by means of percolation storage control.

6 Verbal Fronting

Our last challenge concerns fronting of verb or ver-
bal projections. From the preceding discussion, an
option that suggests itself is to treat the verb fronting
as the case of verb dislocating itself. I will in-
deed propose a strategy along this line, but this av-
enue proves more difficult due to complications spe-
cific to verb-related fronting. Firstly, generally such
fronting is limited to the environment of a lower VP
governed by a higher verb such as an auxiliary, as
can be seen from the following contrast:

(4)

a. Gegeben haben die Eltern dem Sohn ein Buch.

b. *Geben, sagt ein Freund, dass die Eltern dem Sohn ein
Buch.

Second, the type we used forgegeben in Section
5.3, namelydisl-vf-v, clearly does not work, as the
verb does not occur phrase-finally (but in fact ini-
tially) relative to its sisters in (4a). Some relaxation
of LP constraints seem to be in order.

Thirdly, German displays a variety of ways to
front part of a VP:

(5)

Gegeben haben die Eltern dem Sohn ein Buch.
Dem Sohn gegeben haben die Eltern ein Buch.
Ein Buch gegeben haben die Eltern dem Sohn.
Dem Sohn ein Buch gegeben haben die Eltern.

This raises the question of whether this fits in the V2
pattern at all, coupled with the ongoing debate on the
status of the preverbal string. Quite apart from the
theoretical debate, however, how best to adequately
generate these patterns is an acute parsing issue. We
are assuming the flat clause=VP anaylsis, so relax-
ing the singularity condition seems unavoidable.

Fourthly, to make the matter worse, allowing mul-
tiple frontings and dropping LP requirements does
not solve the problem, as ordering of the preverbal
constituents is constrained, as shown in the follow-
ing data:

(6)
*Gegeben dem Sohn haben die Eltern ein Buch.

*Dem Sohn gegeben ein Buch haben die Eltern.

It is a great challenge for any syntactician to pro-
vide a unified account for such complex behaviour,
and I confine myself here to offering the ‘solution’
sets of constraints that adequately generate the de-
sired string. What I offer is this: allowing multiple
dislocations only for the verbal fronting cases via a
new word order subtype, while retaining the verb-
final LP conditions for these dislocated constituents.

For this new type we first relax the singularity
condition for dislocation. To allow multiple dislo-
cations, it would suffice to drop the|disl| = 1 condi-
tion, but an unrestricted application ofdisl ⊂ args

would lead to overgeneration, due to two further
constraints applicable: (1) notall arguments can and
(2) the subject argument cannot be fronted along
with the verb (as in (a) and (b) below, respectively):

(7)

a. *Die Eltern dem Sohn ein Buch gegeben haben.

b. *Die Eltern gegeben haben dem Sohn ein Buch.
*Die Eltern ein Buch gegeben haben dem Sohn.

Therefore we add the conditions to exlude the above,
along with the the verb-final constraint applicable
the dislocated constituents to exclude (6). Let us call
this typefrontable-v. The constraint specification is
as follows:

gegeben (frontable-v):
disl = {gegeben} ∪ ptargs, ptargs ≺ gegeben

whereptargs ⊂ args andsNP /∈ ptargs

The proposed constraint set might strike as rather
ad hoc. It would clearly be better to treat both the
fronted and non-fronted occurrences ofgegeben as
sharing some common word order type, and what is
meant by ‘applying the constraints amongst the dis-
located constituents’ needs to be fleshed out. Thus
this may not be an elegant solution, but nevertheless
is an generatively adequate solution. More impor-
tantly it serves as a good example for the flexibility
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and adaptability of constrained free word order pars-
ing, because it handles a rather complex word order
pattern in a way neutral to grammatical construal,
i.e. without invoking constituency manipulation.

7 Concluding Remarks

I conclude this paper by responding to a natural ob-
jection: why would one have to go through this con-
voluted route of lexical word order control, when
the ‘natural’ way to constrain V2 —or V1 and VF,
for that matter— would be to have some ‘global’
patterns pertinent to clause types? My responses
are primarily engineering-oriented. First, lexicalised
encoding gives the parser, through locality restric-
tion, a certain control over computational complex-
ity, as the search space for constraint enforcement is
restricted.14 However this not an entirely unique, if
more amenable, feature to lexicalised parsing, as one
could impose such a control in non-lexicalised pars-
ing. The advantage truly unique to lexicalising word
order lies in rendering the parser and grammar in-
dependent of surface realisation and hence re-usable
across languages. In short, it promotes modularity.
As we have seen, though the parser needs to con-
form to a certain strategy, the word order component
is fairly independent, as a separate procedure which
can be modified if for example more types of word
order operators are needed. The grammar could also
be kept more compact and cross-linguistically appli-
cable, because word order is abstracted away from
constituency. Therefore, paradoxically, an advan-
tage of lexicalising German parsing is to enable the
same parser/grammar to be used in other languages
too, even if it is not naturally suited to the language.
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Abstract

We report on some recent parse selection ex-
periments carried out with GG, a large-scale
HPSG grammar for German. Using a manu-
ally disambiguated treebank derived from the
Verbmobil corpus, we achieve over 81% exact
match accuracy compared to a 21.4% random
baseline, corresponding to an error reduction
rate of 3.8.

1 Introduction

The literature on HPSG parsing of German has al-
most exclusively been concerned with issues of the-
oretical adequacy and parsing efficiency. In contrast
to LFG parsing of German, or even to HPSG work
on English or Japanese, very little effort has been
spent on the question of how the intended, or, for
that matter a likely parse, can be extracted from the
HPSG parse forest of some German sentence. This
issue becomes all the more pressing, as the gram-
mars gain in coverage, inevitably increasing their
ambiguity. In this paper, I shall present preliminary
results on probabilistic parse selection for a large-
scale HPSG of German, building on technology de-
veloped in the Lingo Redwoods project (Oepen et
al., 2002).

∗The research reported here has been carried out at the Ger-
man Research Center for Artificial Intelligence (DFKI GmbH)
as part of the projects COLLATE, QALL-ME, and Checkpoint,
funded by the German Federal Ministery for education and Sci-
ence (BMBF), the European Union, and the State of Berlin, re-
spectively. I am also greatly indepted to my colleagues Bernd
Kiefer and G̈unter Neumann, as well as to Stephan Oepen and
Dan Flickinger for support and comments relating to the work
presented here.

The paper is organised as follows: in section 2, I
shall give a brief overview of the grammar. Section 3
discusses the treebanking effort we have undertaken
(3.1), followed by a presentation of the parse selec-
tion results we achieve using probabilistic models
trained on different feature sets (3.2).

2 The grammar

The grammar used in the experiments reported here
has originally been developed, at DFKI, in the con-
text of the Verbmobil project (M̈uller and Kasper,
2000). Developed initially for the PAGE devel-
opment and processing platform (Uszkoreit et al.,
1994), the grammar has subsequently been ported to
LKB (Copestake, 2001) and Pet (Callmeier, 2000)
by Stefan M̈uller. Since 2002, the grammar has
been extended and modified by Berthold Crysmann
(Crysmann, 2003; Crysmann, 2005; Crysmann,
2007).

The grammar, codename GG, is a large scale
HPSG grammar for German, freely available un-
der an open-source license: it consists of roughly
4000 types, out of which 290 are parametrised lexi-
cal types, used in the definition of about 35,000 lex-
ical entries. The lexicon is further extended by 44
lexical rules and about 300 inflectional rules. On
the syntactic side, the grammar has about 80 phrase
structure rules.

The grammar covers all major aspects of German
clausal and phrasal syntax, including free word or-
der in the clausal domain, long-distance dependen-
cies, complex predicates, passives, and extraposition
(Crysmann, 2005). Furthermore, the grammar cov-
ers different coordination constructions, including
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the so-called SGF coordination. Furthermore, the
grammar is fully reversible, i.e. it can be used for
parsing, as well as generation.

The phrase structure rules of the grammar are
either unary or binary branching phrase structure
schemata, permitting free interspersal of modifiers
between complements in the clausal domain. The
relatively free order of complements is captured by
means of lexical rules which permute the elements
on the COMPS valence list. As a result, the verb’s
complements can be saturated in any order.

The treatment of verb placement is somewhat spe-
cial: in sentences without a right sentence bracket, a
left branching structure is assumed, permitting effi-
cient processing. Whenever the right bracket is oc-
cupied by a non-finite verb cluster, the finite verb in
the left bracket is related to the clause finla cluster
by means of simulated head movement, following
the proposal by (Kiss and Wesche, 1991), inter alia.
As a consequence, the grammar provides both head-
initial and head-final versions of the Head-Adjunct,
Head-Complement and Head-Subject schemata.

As output, the grammar delivers detailed seman-
tic representations in the form of Minimal Recursion
Semantics (Copestake et al., 2005). These represen-
tations have been successfully used in the context
of automated email response or question answering
(Frank et al., 2006). Most recently, the grammar has
been used for automatic correction of grammar and
style errors, combining robust parsing with genera-
tion.

3 Parse Selection

3.1 Treebank construction

The treebank used in the experiments reported here
has been derived from the German subset of the
Verbmobil (Wahlster, 2000) corpus. In essence, we
removed any duplicates on the string level from the
corpus, in order to reduce the amount of subsequent
manual annotation. Many of the duplicates thus re-
moved were short interjection, such asja “yes”, nein
“no”, or hm “euhm”, which do not give rise to any
interesting structural ambiguities. As a side effect,
removal of these duplicates also enhanced the qual-
ity of the resulting treebank.

The construction of the disambiguated treebank
for German followed the procedure suggested for

English by (Oepen et al., 2002): the corpus was first
analysed with the German HPSG GG, storing the
derivation trees of all successful parses. In a sub-
sequent annotation step, we manually selected the
best parse, if any, from the parse forest, using the
Redwoods annotation tool cited above.

After removal of duplicates, syntactic coverage
of the corpus figured at 69.3 percent, giving a to-
tal of 11894 out of 16905 sentences. The vast ma-
jority of sentences in the corpus are between 1 and
15 words in length (14757): as a result, average
sentence length of parsed utterances figures at 7.64,
compared to 8.72 for the entire corpus. Although av-
erage sentence length is comparatively low, the tree-
bank still contains items up to sentence length 47.

The 11894 successfully parsed sentences have
subsequently been disambiguated with the Red-
woods treebanking tool, which is built on top of
LKB (Copestake, 2001) and [incr tsdb()] (Oepen,
2002). Figure 2 shows the annotation of an exam-
ple sentence from the treebank.

During annotation, 10356 sentences were suc-
cessfully disambiguated to a single reading (87.1%).
Another 276 sentences were also disambiguated, yet
contain some unresolved ambiguity (2.3%), while
95 sentences were left unannotated (0.8%). The re-
maining 1167 items (=9.8%) were rejected, since
the parse forest did not contain the desired reading.
Since not all test items in the tree bank were am-
biguous, we were left, after manual disambiguation,
with 8230 suitable test items, i.e. test items where
the number of readings assigned by the parser ex-
ceeds the number of readings judged as acceptable.

Average ambiguity of fully disambiguated sen-
tences in the tree bank is around 12.7 trees per sen-
tence. This corresponds to a baseline of 21.4% for
random parse selection, owing to the unequal distri-
bution of low and high ambiguity sentences.

3.2 Parse selection

3.2.1 Feature selection

The parse selection experiments reported on here
have been performed using the LOGON branch of
the LKB and [incr tsdb()] systems. In particular, we
used Rob Malouf’s tadm maximum entropy toolkit
for training and evaluation of our log-linear parse
selection models.
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Figure 1: The GG Verbmobil treebank

Figure 2: An example from the German treebank, featuring the Redwoods annotation tool
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All experiments were carried out as a ten-fold
cross-evaluation with 10 iterations, using 10 differ-
ent sets of 7407 annotated sentences for training and
10 disjoint sets of 823 test items for testing.

The discriminative models we evaluate here were
trained on different subsets of features, all of which
were extracted from the rule backbone of the deriva-
tions stored in the treebank. As node labels, we used
the names of the HPSG rules licensing a phrasal
node, as well as the types of lexical entries (preter-
minals). On the basis of these derivation trees,
we selected several features for training our disam-
biguation models: local trees of depth 1, several lev-
els of grandparenting, i.e. inclusion of grandpar-
ent node (GP 2), great-grandparent node (GP 3) and
great-great-grandparent node (GP 4), partial trees of
depth 1 (+AE). Grandparenting features involve lo-
cal trees of depth 1 plus a sequence of grandparent
nodes, i.e. the local tree is contextualised in relation
to the dominating tree. Information about a grand-
parent’s other daughters, however, is not taken into
consideration. Partial trees, by contrast, are included
as a kind of back-off model.

In addition to tree-configurational features, we ex-
perimented with n-gram models, using n-gram sizes
between 2 and 4. These models were further varied,
according to whether or not a back-off model was
included.

Apart from these linguistic features, we also var-
ied two parameters of the maximum entropy learner,
viz. variance and relative tolerance. The relative tol-
erance parameter restricts convergence of the model,
whereas variance defines a prior in order to reduce
over-fitting. In the results reported here, we used
optimal setting for each individual set of linguistic
parameters, although, in most cases, these optimal
values figured at 10−4 for variance and 10−6 for rel-
ative tolerance.

3.2.2 Results

The results of our parse selection experiments for
German are summarised in tables 1 and 2, as well as
figures 3 and 4.

As our major result, we can report an exact match
accuracy for parse selection of 81.72%, using great-
grandparenting (GP 3) and 4-grams. This result cor-
responds to an error reduction by a factor of 3.8, as
compared to the 21.4% random baseline.

−AE +AE
GP 0 77.96 78.14
GP 2 81.27 80.87
GP 3 81.34 80.4
GP 4 81.49 80.78

Table 1: PCFG model with Grandparenting

Figure 3: PCFG model with Grandparenting

Apart from the overall result in terms of achiev-
able parse selection accuracy, a comparison of the
individual results is also highly informative.

As illustrated by figure 3, models including any
level of grandparenting clearly outperform the basic
model without grandparenting (GP0). Furthermore,
relative gains with increasing levels of grandparent-
ing are quite low, compared to the more than 3% in-
crease in accuracy between the GP0 and GP2 mod-
els.

Another interesting observation regarding the data
in table 1 and figure 3 is that the inclusion of par-
tial constituents into the model (+AE) only benefits
the most basic model. Once the more sophisticated
grandparenting models are used, partial constituent
worsen rather than improve the overall performance.

Another observation we made regarding the rela-
tive usefulness of the features we have employed re-
lates to n-gram models: again, we find that n-gram
models clearly improve on the basic model without
grandparenting (by about 1 percentage point), al-
beit to a lesser degree than grandparenting itself (see
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N0 N2 N3 N4
GP 0 77.96 78.79 78.92 78.74
GP 2 81.27 81.5 81.65 81.55
GP 3 81.34 81.44 81.51 81.72
GP 4 81.49 81.62 81.69 81.67

Table 2: PCFG model with Grandparenting & N-grams

Figure 4: PCFG model with Grandparenting & N-Grams
(-AE)

above). With grandparenting added, however, the
relative gains of the n-gram models greatly dimin-
ishes. A possible explanation for this finding is that
reference to grandparenting indirectly makes avail-
able information about the preceding and linear con-
text, obviating the need for direct encoding in terms
of n-grams. Again, the best combined model (hier-
archy + n-grams) outperforms the best purely hierar-
chical model by a mere 0.23 percentage points. The
results obtained here for German thus replicate the
results established earlier for English, namely that
the inclusion of n-gram information only improves
overall parse selection to a less significant extent.

A probably slightly unsurprising result relates
to the use of back-off models: we found that n-
gram models with backing-off yielded better results
throughout our test field than the correspoding n-
gram models that did not use this feature. Differ-
ences, however, were not dramatic, ranging roughly
between 0.07 and 0.3 percentage points.

The results obtained here for German compare

quite well to the results previously achieved for the
ERG, a broad coverage HPSG for English: using
a similar treebank1 (Toutanova et al., 2002) report
81.80 exact match accuracy for a log-linear model
with local trees plus ancestor information, the model
which is closest to the models we have evaluated
here. The baseline in their experiments is 25.81. The
best model they obtain includes semantic dependen-
cies, as well, yielding 82.65 exact match accuracy.

Probably the most advanced approach to parse se-
lection for German is (Forst, 2007): using a broad
coverage LFG grammar, he reports an f-score of
83% of correctly assigned dependency triples for a
reference corpus of manually annotated newspaper
text. However, it is unclear how these figures relate
to the exact match accuracy used here.

Relevant, in principle, to our discussion here, are
also the results obtained with treebank grammars for
German: (Dubey and Keller, 2003) have trained a
PCFG on the Negra corpus (Skut et al., 1998), re-
porting labelled precision and recall between 70 and
75%. (Kübler et al., 2006) essentially confirm these
results for the Negra treebank, but argue instead that
probabilistic parsing for German can reach far bet-
ter results (around 89%), once a different treebank
is chosen, e.g. T̈uba-D/Z. However, it is quite dif-
ficult to interpret the significance of these two tree-
bank parsers for our purposes here: not only is the
evaluation metric an entirely different one, but so are
the parsing task and the corpus.

In an less recent paper, however, (Ruland, 2000)
reports on probabilistic parsing of Verbmobil data
using a probabilistic LR-parser. The parser has been
trained on a set of 19,750 manually annotated sen-
tences. Evaluation of the parser was then performed
on a hold-out set of 1000 sentences. In addition to
labelled precision and recall, (Ruland, 2000) also
report exact match, which figures at 46.3%. Us-
ing symbolic postprocessing, exact match improves
to as much as 53.8%. Table 3.2.2 summarizes Ru-
land’s results, permitting a comparison between ex-
act match and PARSEVAL measures. Although the
test sets are certainly not fully comparable,2 these

1In fact, the Redwoods treebank used by (Toutanova et al.,
2002) was also derived from Verbmobil data. The size of the
treebank, however, is somewhat smaller, containing a total of
5312 sentences.

2The overall size of the treebank suggests that we are ac-
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German
Not parsed 4.3%
Exact match 53.8%
LP 90.8%
LR (all) 84.9%
LR (in coverage) 91.6%

Table 3: Performance of Ruland’s probabilistic parser
(with postprocessing) on Verbmobil data

figures at least gives us an indication about how to
judge the the performance of the HPSG parse selec-
tion models presented here: multiplying our 69.3%
coverage with 81.72% exact match accuracy still
gives us an overall exact match accuracy of 56.6%
for the entire corpus.

However, comparing our German treebank to
a structurally similar English treebank, we have
shown that highly comparable parse selection fig-
ures can be obtained for the two languages with es-
sentially the same type of probabilistic model.

4 Conclusion

We have presented a treebanking effort for a large-
scale German HPSG grammar, built with the Red-
woods treebank technology (Oepen et al., 2002), and
discussed some preliminary parse selection results
that are comparable in performance to the results
previously achieved for the English Resource Gram-
mar (lingoredwoods:2002tlt). Using a treebank of
8230 disambiguated sentences, we trained discrim-
inative log-linear models that achieved a maximal
exact match accuracy of 81.69%, against a random
baseline of 21.4%. We further investigated the im-
pact of different levels of grandparenting and n-
grams, and found that inclusion of the grandpar-
ent node into the model improved the quality sig-
nificantly, reference, however, to any higher nodes
only lead to very mild improvements. For n-grams
we could only observe significant gains for models
without any grandparenting. We therefore hope to
test these findings against treebanks with a higher
syntactic complexity, in the near future, in order to

tually dealing with the same set of primary data. However, in
our HPSG treebank string-identical test items had been removed
prior to annotation and training. As a result, our treebank con-
tains less redundancy than the original Verbmobil test suites.

establish whether these observations are indeed ro-
bust.
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rich Scḧafer. 2006. Querying structured knowledge
sources.Journal of Applied Logic.

Tibor Kiss and Birgit Wesche. 1991. Verb order
and head movement. In Otthein Herzog and Claus-
Rolf Rollinger, editors,Text Understanding in LILOG,
number 546 in Lecture Notes in Artificial Intelligence,
pages 216–240. Springer-Verlag, Berlin.

Sandra K̈ubler, Erhard W. Hinrichs, and Wolfgang Maier.
2006. Is it really that difficult to parse german? In
Proceedings of EMNLP 2006, Sydney, Australia.

Stefan M̈uller and Walter Kasper. 2000. HPSG analy-
sis of German. In Wolfgang Wahlster, editor,Verb-
mobil: Foundations of Speech-to-Speech Translation,
pages 238–253. Springer, Berlin.

14



Stephan Oepen, E. Callahan, Daniel Flickinger, Christo-
pher Manning, and Kristina Toutanova. 2002. LinGO
Redwoods: A rich and dynamic treebank for HPSG.
In Beyond PARSEVAL. Workshop at the Third Interna-
tional Conference on Language Resources and Evalu-
ation, LREC 2002, Las Palmas, Spain.

Stephan Oepen. 2002.Competence and Performance
Profiling for Constraint-based Grammars: A New
Methodology, Toolkit, and Applications. Ph.D. thesis,
Saarland University.

Tobias Ruland. 2000. Probabilistic LR-parsing with
symbolic postprocessing. In Wolfgang Wahlster, ed-
itor, Verbmobil: Foundations of Speech-to-Speech
Translation, pages 147–162. Springer, Berlin.

Wojciech Skut, Thorsten Brants, and Hans Uszkoreit.
1998. A linguistically interpreted corpus of Ger-
man newspaper text. InProceedings of the ESSLLI
Workshop on Recent Advances in Corpus Annotation,
Saarbr̈ucken, Germany.

Kristina Toutanova, Christopher D. Manning, Stuart M.
Shieber, Dan Flickinger, and Stephan Oepen. 2002.
Parse disambiguation for a rich HPSG grammar. In
Proceedings of the First Workshop on Treebanks and
Linguistic Theories (TLT2002), pages 253–263, So-
zopol, Bulgaria.

Hans Uszkoreit, Rolf Backofen, Stephan Busemann,
Abdel Kader Diagne, Elizabeth Hinkelman, Wal-
ter Kasper, Bernd Kiefer, Hans-Ulrich Krieger,
Klaus Netter, G̈unter Neumann, Stephan Oepen, and
Stephen P. Spackman. 1994. Disco - an hpsg-
based nlp system and its application for appoint-
ment scheduling. InProceedings of the 15th In-
ternational Conference on Computational Linguistics
(COLING’94), August 5-9, volume 1, pages 436–440,
Kyoto, Japan.

Wolfgang Wahlster, editor. 2000.Verbmobil: Foun-
dations of Speech-to-Speech Translation. Springer,
Berlin.

15



Proceedings of the ACL-08: HLT Workshop on Parsing German (PaGe-08), pages 16–23,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Part-of-Speech Tagging with a Symbolic Full Parser:
Using the TIGER Treebank to Evaluate Fips

Yves Scherrer
Language Technology Laboratory (LATL)

University of Geneva
1211 Geneva 4, Switzerland

yves.scherrer@lettres.unige.ch

Abstract

In this paper, we introduce the German ver-
sion of the multilingual Fips parsing system.
We focus on the evaluation of its part-of-
speech tagging component with the help of the
TIGER treebank. We explain how Fips can be
adapted to the tagset used by TIGER and re-
port first results of this study: currently, 87%
of words are tagged correctly. We also discuss
some common errors and explore a possible
extension of this study to parsing.

1 Introduction

Fips is a parsing framework based on the main as-
sumptions of Chomsky’s generative linguistics. It
has been designed as a multilingual framework,
making it easy to add new languages. Currently, it
is available for six languages (English, French, Ger-
man, Italian, Spanish and Greek). While the French
version (providing the best coverage) has taken part
in evaluation campaigns (Adda et al., 1998; Gold-
man et al., 2005), the other language modules have
only been subject to internal qualitative evaluation.
However, the availability of gold standard treebanks
allows for quantitative evaluation of rule-based pars-
ing systems. In particular, we propose to use the
TIGER treebank for the evaluation of the German
version of Fips.

This paper reports on research in progress. As a
preliminary step towards a quantitative assessment
of parser performance, we focus on the task of Part-
of-Speech (POS) tag comparison here. This task is
intended to yield a first appreciation of the quality of
the German Fips component without having to deal
with the full parser output and its possible incom-
patibilities due to underlying theoretical differences.

Tag comparison operates on a word-by-word basis
and provides binary measures of accuracy (tag iden-
tity or difference).

We extend our work to the tasks of lemma identi-
fication and morphological analysis: Fips as well as
the TIGER treebank provide this information.

Fips has been developed independently of the
TIGER treebank. Therefore, a large part of this pa-
per deals with problems arising from mismatches
between the design decisions made for Fips and the
annotation guidelines of TIGER. In our view, a de-
tailed discussion of these mismatches is essential for
a fair assessment of the performances of Fips, but
may also be interesting for future research involving
evaluation.

This paper is organized as follows. In Section 2,
we present the Fips framework. In Section 3, we
recall the main characteristics of the TIGER tree-
bank, explain the adaptations we applied to the Fips
tagger and give some information about the evalu-
ation setup. We go on to report the results for the
three main tasks: Part-of-Speech tagging (Section
4), lemma identification (Section 5), and morpho-
logical analysis (Section 6). Section 7 compares our
work to statistical POS tagging and to parser eval-
uation. We conclude by giving an overview of the
benefits of quantitative evaluation.

2 The Fips framework

Fips (Wehrli, 2007) is a deep symbolic parser devel-
oped at the University of Geneva. It currently sup-
ports six languages, and others are under develop-
ment. The parser is based on an adaption of gener-
ative linguistics, borrowing concepts from the Min-
imalist model (Chomsky, 1995), from the Simpler
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Figure 1: Example output of the German Fips parser.

Syntax model (Culicover and Jackendoff, 2005), as
well as from Lexical Functional Grammar (Bresnan,
2001). Each syntactic constituent is represented as a
simplified X-bar structure without intermediate lev-
els, in the form [XPLXR]. X denotes a lexical cate-
gory, L and R stand for (possibly empty) lists of left
and right subconstituents, respectively.

The originality of Fips lies in its two-layer archi-
tecture. Fundamental properties and structures that
are common to all languages are defined in an ab-
stract, language-independent layer. On a theoreti-
cal level, this layer can be associated to the con-
cept of “universal grammar”. On top of this layer,
a particular, language-dependent layer extends the
abstract structures and adds language-specific gram-
mar rules. The Fips lexicon contains detailed mor-
phosyntactic and semantic information such as se-
lectional properties, subcategorization information
and syntactico-semantic features. The parser is thus
based on a strong lexicalist framework. In order to
guide ambiguity resolution, numeric penalty values
can be assigned to rules and lexemes.

The German component of Fips contains around
100 language-specific grammar rules. The lexicon
contains 39 000 lexemes and 410 000 word forms.
The word forms are generated by a rule-based mor-
phological generator. The lexicon also contains 500
multi-word expressions and 1500 high-frequency
compound nouns. Unknown compound nouns are
chunked at runtime.

Fips operates in two modes: parser (see Figure 1)

and tagger (see Figure 2) output.1 The tagger out-
put allows us to benefit from the rich information of
the Fips lexicon, being at the same time more robust
than the parser.

3 Experimental setup

3.1 The TIGER treebank

The TIGER treebank contains about 50 000 sen-
tences of newspaper text, covering all domains
(Brants et al., 2002). The annotation has been per-
formed with the help of interactive tools. This
methodology allows the human annotator to easily
accept or reject proposals made by the computer.
Part-of-speech tags are proposed by a statistical tag-
ger trained on a manually annotated corpus. It uses
the Stuttgart-Tübingen-Tagset (STTS) (Thielen et
al., 1999). The parse trees were constructed inter-
actively with the help of a statistical parser. Figure 3
shows an example of the TIGER export file.

3.2 Adaptations

In order to compare the Fips output with the TIGER
tags, some adaptations had to be made. First of all,
the tagset had to be changed to match the STTS
tagset. While this procedure was straightforward
for most of the categories, it showed that the Ger-
man tagging module of Fips had never been subject

1The parser output is shown here for illustration – we do not
use it in the present study.

Given the scope of this workshop, we forgo translating Ger-
man examples into English.
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der ART SIN-MAS-NOM 311000336 0 der SUBJ
minister NN SIN-MAS-NOM 311019783 3 Minister
deutete VVFIN IND-KON-PRA-3-SIN 311021998 12 andeuten
für APPR 311050006 20 für
Zuzahlungen NE INN-ING-NOM-ACC-DAT 0 24 Zuzahlungen
bei APPR 311050009 36 bei
kuren NN PLU-FEM-NOM-ACC-DAT-GEN 311004912 40 Kur
eine ART SIN-FEM-NOM-ACC 311000346 46 ein OBJ
ober¬ NN SIN-MAS-NOM-ACC-DAT 311019956 51 Ober COMP-CHUNK
grenze NN SIN-FEM-NOM-ACC 311001176 55 Grenze COMP-HEAD
an PTKVZ 311050018 62 an
. $. 0 65 .

Figure 2: Example output of the German Fips tagger. The columns show: the word as found in the text; the POS
tag in the STTS tagset; morphological information in a proprietary tagset; the lexeme number of the internal database
(0 stands for unknown words); the character position at which the word begins; the lemma. The rightmost column
contains additional information like grammatical function and compound noun syntax.
Note that the compound noun Obergrenze was automatically chunked and that the word Zuzahlungen was not found
in the lexicon; the particle an is attached to the lemma of the main verb deutete.

to a rigorous evaluation. For example, there were
no particular tags for pronominal prepositions (e.g.,
darüber, deswegen), for prepositions with articles
(e.g., beim, ins), and for the infinitival particle zu.

Small adaptions concerned the replacement of ß
by ss (Fips uses the Swiss Standard German orthog-
raphy, lacking the letter ß ) and the different lemma-
tization of the particle verbs: in TIGER and in con-
trast to Fips, the particles are not attached to the
lemma (see the verb andeuten in Figures 2 and 3).

Finally, the Fips tagger contains a compound
noun chunker which is automatically used for un-
known words and which outputs one line for each
chunk. These lines had to be reassembled to fit with
the unchunked TIGER output (cf. the compound
noun Obergrenze in Figures 2 and 3).

3.3 Evaluation

From the TIGER export file, we extracted the orig-
inal sentences and submitted them to the Fips tag-
ger. Then, we compared its results with the informa-
tion given in TIGER. Overall, 792 885 words were
compared. This number does not correspond to the
888 578 tokens of the TIGER corpus, because the
concept of word is much more flexible in Fips than
in TIGER. For example, the token 62jähriger is split
into two words 62 and jähriger. By contrast, vor
allem is regarded as a single lexical item (adverb) by
Fips, but as two words by TIGER. Moreover, for a

TIGER Tag Fips Tag Number Percentage
NN NE 12592 1.59
KON ADV 8000 1.01
ADJD ADV 6737 0.85
ADV PTKA 4976 0.63
NE NN 4782 0.60
VAFIN VVFIN 3529 0.45
ART PRELS 2935 0.37
VVFIN VVIMP 1937 0.24
VVINF VVFIN 1859 0.23
VVPP VVFIN 1624 0.20
Correct tags 692 386 87.32
Tested words 792 885 100.00

Table 1: Results of the part-of-speech tag comparison.
The table shows the number of tags correctly predicted
by Fips (second last line), as well as the ten most fre-
quent erroneous predictions. The first column shows the
correct tag as given by TIGER, the second column shows
the erroneous tag assigned by Fips.

currently unknown reason, some words do not show
up in the output of the Fips tagger.

4 Part-of-speech tagging results

The most important part of this evaluation concerns
the part-of-speech tags. As explained above, we
have adapted Fips to generate STTS tags. Table 1
shows the number of correctly predicted tags, and
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the ten most frequent tagging errors. In the follow-
ing sections, we discuss some of these errors.

4.1 Proper and common nouns
The most common error is related to the distinction
between proper (NE) and common nouns (NN). This
error affects 2.19% of words (see first and fifth line
in Table 1) and accounts for 17.29% of all tagging
errors. Currently, the distinction between proper and
common nouns is implemented in Fips as follows.

A noun is regarded as common noun if:

• it is present in the lexicon and not explic-
itly marked as proper noun: Chemie, Hirsch,
Konkurrenz, or

• it is a compound noun that can be analyzed into
chunks which are present in the lexicon: Bun-
des+bank, Finanz+markt, Sitz+platz.

A noun is regarded as proper noun if:

• it is explicitly marked as such in the lexicon:
Gregor, Berlin, Europa.

• it is not present in the lexicon and cannot
be fully analyzed as compound noun: Talk,
Gaullismus, Kibbuzarbeiter.

Tagging errors occur in two ways. Words that are
annotated as common nouns by TIGER are anno-
tated as proper nouns by Fips (see first line in Ta-
ble 1). This happens for all common nouns that are
not present in the lexicon (e.g., Primadonna, Port-
folio, Niedersachse, Gaullismus). There are also
compound nouns with a proper noun complement:
Vichy-Zeiten, Spreearm. While TIGER considers
these words as common nouns because the head is
a common noun, Fips still analyzes them as proper
nouns. For other words like Marseillaise, the TIGER
annotation as common noun may be questioned.

In the other way, some TIGER proper nouns have
been tagged by Fips as common nouns (cf. fifth line
in Table 1). One common category of erroneous tag-
ging is the case of homonymous proper and common
nouns. For example, Kohl and Teufel are common
nouns, but also the names of German politicians and
therefore proper nouns. These misinterpretations are
due to the fact that Fips does not contain any spe-
cific Named Entity Recognition module. While Fips

successfully relies on letter case to identify proper
nouns in other languages, this approach obviously
does not work in German.

Some proper nouns exhibit a more subtle phe-
nomenon: words like Mannheim, Wendland or
Kantstrasse are analyzed by Fips as common
compound nouns (Mann+Heim, wenden+Land,
Kante+Strasse). Again, a Named Entity Recogni-
tion system would prevent such unfortunate analy-
ses. Furthermore, we do not find it compelling to an-
alyze Buddha, Bundesbank and Bundeskriminalamt
as proper nouns.

To sum up, the source of noun mistagging is three-
fold. First, the Fips lexicon contains some gaps.
Second, the lack of a Named Entity Recognition
module in Fips causes an overgeneration of homo-
graph common nouns where a proper noun would be
appropriate. Third, the distinction between proper
and common nouns is not clear-cut, and some diver-
gences can be considered as normal.

4.2 Conjunctions and adverbs

Conjunctions are frequently mistagged as adverbs.
Above all, this error affects the words und, aber,
denn, which can have an adverbial (ADV) or a con-
junction (KON) reading. In (1), the first occurrence
of und is erroneously tagged as adverb. However, if
we parse the first part of the sentence only (2), Fips
obtains the correct conjunction reading. This sug-
gests that the conjunction reading is available also
for (1), but that the ranking mechanism is flawed and
prefers the adverb reading.

(1) Automaten sind dort nur in Geschäften und
Restaurants erlaubt und nicht wie in der
Bundesrepublik auch im Freien.

(2) Automaten sind dort nur in Geschäften und
Restaurants erlaubt.

In general, it seems that Fips gets the conjunctions
right in short sentences, while it easily gets confused
with longer sentences. However, the preference for
the adverbial reading can be easily explained. In or-
der to propose a conjunction, the parser must iden-
tify two conjuncts of the same category, whereas an
adverb does not have that requirement. Thus, if the
parser fails to find two suitable conjuncts, it will pro-
pose the less constrained adverbial reading.
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#BOS 47149 0 1088427994 0
Der der ART Nom.Sg.Masc NK 500
Minister Minister NN Nom.Sg.Masc NK 500
deutete deuten VVFIN 3.Sg.Past.Ind HD 504
für für APPR – AC 503
Zuzahlungen Zuzahlung NN Acc.Pl.Fem NK 503
bei bei APPR – AC 501
Kuren Kur NN Dat.Pl.Fem NK 501
eine ein ART Acc.Sg.Fem NK 502
Obergrenze Obergrenze NN Acc.Sg.Fem NK 502
an an PTKVZ – SVP 504
. – $. – – 0
#500 – NP – SB 504
#501 – PP – MNR 503
#502 – NP – OA 504
#503 – PP – MO 504
#504 – S – – 0
#EOS 47149

Figure 3: An example sentence of the TIGER corpus. The #BOS and #EOS lines mark the beginning and the end of
a sentence. The columns show: the word (or word component) as found in the text; the lemma; the POS tag in the
STTS tagset; the morphological features. The fifth and sixth column, as well as the lines beginning with #50x, contain
information for the construction of the parse tree and are not relevant for our study.

4.3 Adjectives and adverbs

In contrast to English or French, there is no for-
mal difference in German between adjectives used
as predicates (e.g., Er ist schnell ) or as adverbs (e.g.,
Er fährt schnell ). This formal identity may have mo-
tivated the developers of the STTS tagset to use the
same tag (ADJD) in both cases. In contrast, the Ger-
man Fips tagger is based on earlier work on French
and English, where distinct tags for adverbials and
predicatives are needed. Therefore, it also uses dif-
ferent tags for German.

We tried to come up with a simple solution to this
problem by assigning the ADJD tag to all adverbs
whose base forms are homograph with an adjective.
However, in this case, we also assigned the ADJD
tag to words like ganz, natürlich, wirklich, which
are tagged as proper adverbs (ADV) in TIGER. In
short, we had the choice of either overgenerating
ADV tags (keeping the Fips output as-is) or over-
generating ADJD tags (with the homograph modi-
fication). Preliminary tests showed similar amounts
of overgeneration in both cases. We have thus cho-
sen to stick to the original Fips analyses.

4.4 Particles followed by adjectives

STTS introduces a special tag (PTKA) for parti-
cles “followed by adjectives or adverbs”, for exam-
ple am [schönsten], zu [schnell]. In Fips, the class
of comparative adverbs also contains auch, so and
mehr. Of course, these words are not always fol-
lowed by adjectives, and should thus not always be
given the PTKA tag. While different readings are
indeed available in the Fips lexicon, the results sug-
gest that Fips overgeneralizes the comparative read-
ing and assigns the PTKA tag even in cases where
a normal ADV tag would be adequate. (3) shows a
sentence where Fips erroneously assigned the PTKA
tag to auch.

(3) Der Verkehrssenator, wie er künftig auch
heißen möge, . . .

4.5 Pronouns

The seventh line refers to the homography of the def-
inite determiner and the relative pronoun (PRELS)
whenever Fips cannot find an agreement between
the determiner and the head of the noun phrase.

(4) Neue Debatte über den Atomschild
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In (4), the Fips lexicon only contains the neuter
lexeme Schild (which serves as a head of the com-
pound noun Atomschild ), but not the rarer mas-
culine homograph lexeme. This lexical gap pre-
vents the masculine determiner den to be attached
to Atomschild as a determiner, and Fips resorts to
the relative pronoun analysis instead.

4.6 Verb problems
Verb tagging seems to be a serious problem to Fips:
four of the ten most frequent tagging errors involve
verbs.

The first type of error is related to the distinction
between auxiliary and full verbs. The three auxiliary
verbs haben, sein, werden can also have full verb
readings, depending on the context. We recently ob-
served that Fips preferred the auxiliary reading even
in cases where a full verb reading is required, and
subsequently modified the constraints on the lexeme
selection. It now turns out that these constraints are
too strong and lead to a massive overgeneration of
the full verb reading.

Then, Fips tends to overgenerate imperatives:
third person singular forms are erroneously analyzed
as imperative plurals (e.g., kommt, schreit). Again,
this is due to agreement constraints: the third person
singular requires an overt subject, while an imper-
ative does not. If Fips fails to find a subject that
agrees with the verb (for example because of an un-
detected long distance dependency), it will resort to
an imperative reading. In the future development of
Fips, further restrictions should be imposed on the
use of imperative forms as these are extremely rare
in newspaper text.

The last two lines in Table 1 reveal that finite verb
forms are preferred to infinite forms: infinitives are
mistagged as finite plural forms, and past partici-
ples without ge- prefix are mistagged as third person
singular forms (for regular verbs) or as past plural
form (for irregular verbs with -en participle). These
phenomena depend on long distance relations and
should typically benefit from a full parsing approach
like the one used by Fips. Two factors may explain
why this is not the case. First, many sentences in
which such errors occur could not be parsed com-
pletely by Fips; long distance relations are not fully
detected in these cases. Second, the implementation
of passive and modal sentences is incomplete and

TIGER Base Form Fips Base Form
dieser diese
anderer ander
welche welcher
Beamte Beamter
Angestellte Angestellter

Figure 4: For some pronouns and nouns, TIGER and Fips
use different base forms.

lacks some essential constraints on verb form selec-
tion.

5 Lemmatizer results

On the whole TIGER corpus (792 885 words),
94.32% of the words (747 855) were correctly
lemmatized. Most errors were due to diverg-
ing base form choices. This especially holds for
pronouns and nominalized adjectives (cf. Fig-
ure 4), but also for pronouns. In TIGER, femi-
nine and neuter pronouns always refer to the mas-
culine lemma, whereas Fips separates the gen-
ders more strictly: der (Dat.Sg.Fem) refers to the
lemma der (Nom.Sg.Masc) in TIGER, but to die
(Nom.Sg.Fem) in Fips. Moreover, participles used
as adjectives keep the infinitive as base form in Fips,
but not in TIGER.

Some lemma errors are due to wrong POS tag-
ging. For instance, we found that Fips overgenerates
imperatives. For example, einig is not analyzed as
adjective, but as the imperative singular (with elision
of final e) of sich einigen; the adjective nötige is an-
alyzed as the imperative singular of nötigen. How-
ever, such awkward analyses should be easy to iron
out.

Globally, we find that very few errors are directly
due to the lemmatizer; most of them are either due
to different base forms or to POS tagging errors.

6 Morphology results

After the discussion of the part-of-speech tagger and
lemmatizer functionalities of Fips, we now turn to
the last functionality, the morphological analyzer.
We restricted our evaluation to the words that ob-
tained correct POS tags: if the POS tag is already
wrong, it is very likely that the morphology will be
wrong as well. Table 2 reports the results of the mor-
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Type Number Percentage
Number mismatch 15617 2.26
Case mismatch 12420 1.79
Gender mismatch 8461 1.22
Degree mismatch 514 0.07
Person mismatch 108 0.02
Correct analysis
or no morphology 665 110 96.06
Tested words 692 386 100.00

Table 2: Results of the morphological analysis. The table
presents the numbers of words that have been correctly
analyzed by Fips, and the types of errors that occurred. A
word can present several mismatch types.

phology evaluation. Parts of speech without inflec-
tion were considered as correctly analyzed. We split
the errors into five categories, according to the in-
flection feature that Fips failed to predict correctly.
The different mismatch types do not sum up to 100%
because a word can show several mismatches (e.g., a
noun can show case and number mismatch), and be-
cause not all types of mismatch apply to all parts of
speech (for instance, degree mismatch only applies
to adjectives).

It is not easy to find recurrent patterns in the er-
rors. However, we found that most errors occurred
in noun phrases. Most inflected adjective and ar-
ticle forms admit several morphological analyses,
but the ambiguities can usually be reduced by the
syntactic context. If the ambiguities are reduced in
an incorrect way, this means that the syntactic con-
text has been analyzed badly. In other words, such
morphology errors often reflect bad parses. There-
fore, it might be useful to address these errors be-
fore evaluating the parsing performance of Fips. An-
other rather odd fact is that nouns with identical sin-
gular and plural forms (for example, Minister, Un-
ternehmen) prefer to be analyzed as plurals by Fips.
Here again, these cases hint at bad parses.

Degree mismatches result from a bug in Fips:
comparative forms in predicative positions as in (5)
are assigned the positive tag instead of the compara-
tive one.

(5) . . . um noch tiefer in den Kosmos blicken zu
können.

7 Related work

It may be interesting to compare Fips to a statistical
part-of-speech tagger for German. The TnT tagger
(Brants, 2000) is based on Hidden Markov Models,
and has been trained and tested on the NEGRA cor-
pus (Skut et al., 1997); NEGRA is the predecessor of
TIGER and uses the same tagset. Brants (2000) re-
ports an overall accuracy of 96.7%. However, TnT is
not directly comparable to Fips for several reasons.

First, we showed that Fips originally used a differ-
ent tagset, based on different linguistic assumptions
than STTS. Those conceptional differences make up
a large part of the errors, as has been shown for
the distinction between the ADJD and ADV tags.
By contrast, TnT has been trained directly over the
STTS tagset and should thus not present such errors.

Second, the recurrence of certain error patterns
with Fips illustrates the classical problem of manual
rule ranking and weighting in rule-based systems.

Third, Fips has been conceived as a parser in the
first place, and its tagger functionality should rather
be viewed as a by-product. Hence, its algorithms are
not optimized for POS tagging. While there may be
simpler approaches to obtain high tagging accuracy,
the method chosen for Fips seems theoretically more
plausible to us.

As we pointed out at the beginning, this tagger
evaluation has been started as a first step towards the
evaluation of the Fips parser. While POS tagging has
the advantage of operating word-by-word and of be-
ing rather theory-independent, these two properties
do not hold for parsing.

The phrase trees in TIGER are rather flat, while
the ones generated by Fips are deeper and closer
to recent generative grammar frameworks. We will
thus need to define the type of constituents that can
be compared. An even bigger issue is the allowance
of discontinuous phrases and crossing branches in
TIGER, whereas Fips resolves these phenomena by
resorting to projections and traces. Further research
has to show if these structural differences can be
overcome in order to lead to a meaningful compar-
ison. The exact evaluation metric will also have to
be chosen. While PARSEVAL (Black et al., 1991)
is still one of the most important metrics, other mea-
sures may be more adapted to our problem (Carroll
et al., 2002; Rehbein and van Genabith, 2007).
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8 Conclusion

As we remarked above, this article reports on work
in progress. Until now, we have been able to show
that the general approach of evaluating Fips with the
help of the TIGER treebank is valid. With very little
adaptation work (see Section 3.2), we managed to
obtain 87.32% of POS-tagging accuracy. This is a
very promising beginning, and the discussion of the
errors has shown that there are many “low hanging
fruits” to improve the performance.

In any way, we find that the quantitative evalu-
ation of NLP systems can be quite rewarding: de-
veloping rule-based systems is a complex task, of-
ten guided by vague intuitions about parsing qual-
ity. Quantitative evaluation allows us to measure
the progress of the development and guarantees us
that improvements on one parameter do not yield un-
wanted side effects on another.

Finally, the quantitative evaluation of the POS
tagging performances yields important feedback on
the forces and weaknesses of Fips. The result of the
evaluation can be viewed as a sort of priority list for
the developer. By working on the most common er-
rors in a target-oriented way, (s)he is guaranteed to
invest his/her time in a maximally effective manner.
Such guiding principles are very valuable for the fur-
ther development of any rule-based parsing system,
independently of the precise accuracy figures of the
evaluation. Even if the adaptation of two different
tagsets and tagging philosophies is not straightfor-
ward, we plan to extend our evaluation to other lan-
guages of the Fips project for which suitable gold
standard corpora exist.
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Abstract
Recent parsing research has started addressing
the questions a) how parsers trained on differ-
ent syntactic resources differ in their perfor-
mance and b) how to conduct a meaningful
evaluation of the parsing results across such
a range of syntactic representations. Two Ger-
man treebanks, Negra and TüBa-D/Z, consti-
tute an interesting testing ground for such re-
search given that the two treebanks make very
different representational choices for this lan-
guage, which also is of general interest given
that German is situated between the extremes
of fixed and free word order. We show that
previous work comparing PCFG parsing with
these two treebanks employed PARSEVAL
and grammatical function comparisons which
were skewed by differences between the two
corpus annotation schemes. Focusing on the
grammatical dependency triples as an essen-
tial dimension of comparison, we show that
the two very distinct corpora result in compa-
rable parsing performance.

1 Introduction

Syntactically annotated corpora have been produced
for a range of languages and they differ significantly
regarding which language properties are encoded
and how they are represented. Between the two ex-
tremes of constituency treebanks for English and de-
pendency treebanks for free word order languages
such as Czech lie languages such as German, for
which two different treebanks have explored differ-
ent options for encoding topology and dependency,
Negra (Brants et al., 1999) and TüBa-D/Z (Telljo-
hann et al., 2005).

Recent research has started addressing the ques-
tion of how parsers trained on these different syntac-
tic resources differ in their performance. Such work
must also address the question of how to conduct a
meaningful evaluation of the parsing results across
such a range of syntactic representations. In this pa-
per, we show that previous work comparing PCFG
parsing for the two German treebanks used represen-
tations which cannot adequately be compared using
the given PARSEVAL measures and that a grammat-
ical dependency evaluation is more meaningful than
the grammatical function evaluation provided.

We present the first comparison of Negra and
TüBa-D/Z using a labeled dependency evaluation
based on the grammatical function labels provided
in the corpora. We show that, in contrast to previ-
ous literature, a labeled dependency evaluation es-
tablishes that PCFG parsers trained on the two cor-
pora give similar parsing performance. The focus on
labeled dependencies also provides a direct link to
recent work on dependency-based evaluation (e.g.,
Clark and Curran, 2007) and dependency parsing
(e.g., CoNLL shared tasks 2006, 2007).

1.1 Previous work

The question of how to evaluate parser output has
naturally already arisen in earlier work on parsing
English. As discussed by Lin (1995) and others, the
PARSEVAL evaluation typically used to analyze the
performance of statistical parsing models has many
drawbacks. Bracketing evaluation may count a sin-
gle error multiple times and does not differentiate
between errors that significantly affect the interpre-
tation of the sentence and those that are less crucial.

24



It also does not allow for evaluation of particular
syntactic structures or provide meaningful informa-
tion about where the parser is failing. In addition,
and most directly relevant for this paper, PARSE-
VAL scores are difficult to compare across syntactic
annotation schemes (Carroll et al., 2003).

At the same time, previous research on PCFG
parsing using treebank training data present PAR-
SEVAL measures in comparing the parsing per-
formance for different languages and annotation
schemes, reporting a number of striking differences.
For example, Levy and Manning (2003), Kübler
(2005), and Kübler et al. (2006) highlight the sig-
nificant effect of language properties and annotation
schemes for German and Chinese treebanks. In re-
lated work, parser enhancements that provide a sig-
nificant performance boost for English, such as head
lexicalization, are reported not to provide the same
kind of improvement, if any, for German (Dubey and
Keller, 2003; Dubey, 2004; Kübler et al., 2006).

Previous work has compared the similar Negra
and Tiger corpora of German to the very different
TüBa-D/Z corpus. Kübler et al. (2006) compares
the Negra and TüBa-D/Z corpora of German using
a PARSEVAL evaluation and an evaluation on core
grammatical function labels that is included to ad-
dress concerns about the PARSEVAL measure.1 Us-
ing the Stanford Parser (Klein and Manning, 2002),
which employs a factored PCFG and dependency
model, they claim that the model trained on TüBa-
D/Z consistently outperforms that trained on Ne-
gra in PARSEVAL and grammatical function evalu-
ations. Dubey (2004) also includes an evaluation on
grammatical function for statistical models trained
on Negra, but obtains very different results from
Kübler et al. (2006).2

In recent related work, Rehbein and van Genabith
(2007a) demonstrate using the Tiger and TüBa-D/Z

1The evaluation is based only on the grammatical function;
it does not identify the dependency pair that it labels.

2While the focus of Kübler et al. (2006) is on comparing
parsing results across corpora, Dubey (2004) focuses on im-
proving parsing for Negra, including corpus-specific enhance-
ments leading to better results. This difference in focus and
additional differences in experimental setup mean that a fine-
grained comparison of the results is inappropriate – the rele-
vant point here is that the gap between the results (23% for sub-
jects, 35% for accusative objects) warrants further attention in
the context of comparing parsing results across corpora.

corpora of German that PARSEVAL is inappropri-
ate for comparisons of the output of PCFG parsers
trained on different treebank annotation schemes be-
cause PARSEVAL scores are affected by the ratio
of terminal to non-terminal nodes. A dependency-
based evaluation on triples of the form word-POS-
head shows better results for the parser trained
on Tiger even though the much lower PARSEVAL
scores, if meaningful, would predict that the out-
put for Tiger is of lower quality. However, their
dependency-based evaluation does not make use
of the grammatical function labels, which are pro-
vided in the corpora and closely correspond to the
representations used in recent work on formalism-
independent evaluation of parsers (e.g., Clark and
Curran, 2007).3

Addressing these issues, we resolve the apparent
discrepancy between Kübler et al. (2006) and Dubey
(2004) and establish a firm grammatical function
comparison of Negra and TüBa-D/Z. We also ex-
tend the evaluation to a labeled dependency evalu-
ation based on grammatical relations for both cor-
pora. Such an evaluation, which abstracts away from
the specifics of the annotation schemes, shows that,
in contrast to the claims made in Kübler et al. (2006),
the parsing results for PCFG parsers trained on these
heterogeneous corpora are very similar.

2 The corpora used

As motivated in the introduction, the work discussed
in this paper is based on two German corpora, Ne-
gra and TüBa-D/Z, which differ significantly in the
syntactic representations used – thereby offering an
interesting test bed for investigating the influence of
an annotation scheme on the parsers trained.

2.1 Negra
The Negra corpus (Brants et al., 1999) consists of
newspaper text from the Frankfurter Rundschau, a
German newspaper. Version 2 of the corpus contains
20,602 sentences. It uses the STTS tag set (Schiller
et al., 1995) for part-of-speech annotation. There are
25 non-terminal node labels and 46 edge labels.

The syntactic annotation of Negra combines fea-
tures from phrase structure grammar and depen-

3Their evaluation also introduces an additional level of com-
plexity by finding heads heuristically rather than relying on the
head labels present on some elements in each corpus.
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dency grammar using a tree-like syntactic structure
with grammatical functions labeled on the edges of
the tree. Flat sentence structures are used in many
places to avoid attachment ambiguities and non-
branching phrases are not used.

The annotation scheme emphasizes the use of the
tree structure to encode grammatical dependencies,
representing a head and all its dependents within a
local tree regardless of whether a dependent is real-
ized near its head or not, e.g., because it has been
extraposed or fronted. Since traditional syntax trees
do not permit the crossing branches needed to li-
cense discontinuous constituents, Negra uses a “syn-
tax graph” data structure to represent the annotation.
An example of a syntax graph with a discontinuous
constituent (VP) due to a fronted dative object (NP)
is shown in Figure 1.

Dieser

PDAT

Meinung

NN

kann

VMFIN

ich

PPER

nur

ADV

voll

ADJD

zustimmen

VVINF

.

$.

NK NK

NP

DA MO HD

VP

OCHD SB MO

S

VROOT

this opinion can I only completely agree

Figure 1: Negra tree for ‘I can only agree with this opin-
ion completely.’

Negra uses flat NP and PP annotation with no
marked heads. For example, both Dieser and Mein-
ung in Figure 1 have the grammatical function label
“NK”. Since unary branching is not used in Negra, a
bare noun or pronoun argument is not dominated by
an NP node, as shown by the pronoun ich above.

A verbal head in Negra is always marked with the
edge label “HD” and its arguments are its sisters in
the local tree. The subject is always the sister of the
finite verb, which is a daughter of S. If the finite verb
is the main verb in the clause, the objects are also its
sisters, i.e., the finite verb, subject and objects are
all daughters of S. If the main verb is an auxiliary
governing a non-finite main verb, the non-finite verb
and its objects and modifiers form a VP where the
objects are sisters of the non-finite verb as in Fig-

ure 1. The VP is then a sister of the finite verb.
The finite verb in a German declarative clause ap-

pears in the so-called verb-second position, immedi-
ately following the fronted constituent. As a result,
the VP in Negra is discontinuous whenever one of
its children has been fronted, as in the common word
orders exemplified in (1a) and (1b).

(1) a. Die
the

Tür
door

hat
has

Anna
Anna

wieder
again

zugeschlagen.
slammed-shut

‘Anna slammed the door shut again.’

b. Wieder
again

hat
has

Anna
Anna

die
the

Tür
door

zugeschlagen.
slammed-shut

‘Anna slammed the door shut again.’

The sentence we saw in Figure 1 contains a dis-
continuous VP with a fronted dative object (Dieser
Meinung). The dative object and a modifier (voll)
form a VP with the non-finite verb (zustimmen).

2.2 TüBa-D/Z

The TüBa-D/Z corpus, version 2, (Telljohann et al.,
2005) consists of 22,091 sentences of newspaper
text from the German newspaper die tageszeitung.
Like Negra, it uses the STTS tag set (Schiller et al.,
1995) for part-of-speech annotation. Syntactically it
uses 27 non-terminal node labels and 47 edge labels.

The syntactic annotation incorporates a topologi-
cal field analysis of the German clause (Reis, 1980;
Höhle, 1986), which segments a sentence into topo-
logical units depending on the position of the finite
verb (verb-first, verb-second, verb-last). In a verb-
first and verb-second sentence, the finite verb is the
left bracket (LK), whereas in a verb-last subordinate
clause, the subordinating conjunction occupies that
field. In all clauses, the non-finite verb cluster forms
the right bracket (VC), and arguments and modifiers
can appear in the middle field (MF) between the two
brackets. Extraposed material is found to the right
of the right bracket, and in a verb-second sentence
one constituent appears in the fronted field (VF) pre-
ceding the finite verb. By specifying constraints on
the elements that can occur in the different fields,
the word order in any type of German clause can be
concisely characterized.

Each clause in the TüBa-D/Z corpus is divided
into topological fields at the top level, and each topo-
logical field contains phrase-level annotation. An
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example sentence from TüBa-D/Z is shown in Fig-
ure 2, where the topological fields VF, LK, MF, and
VC are visible under the SIMPX clause node.

Dafür

PROP

wird

VAFIN

Andrea

NE

Fischer

NE

wenig

PIAT

Zeit

NN

haben

VAINF

.

$.

HD

PX

HD

VXFIN

- -

NX

- HD

NX

HD

VXINF

OA-MOD

VF

HD

LK

-

EN-ADD

OV

VC

ON OA

MF

- - - -

SIMPX

VROOT

for it will Andrea Fischer little time have

Figure 2: TüBa-D/Z tree for ‘Andrea Fischer will have
little time for it.’

Edge labels are used to mark heads and gram-
matical functions, even though it can be nontrivial
to figure out which grammatical function belongs
to which head given that heads and their arguments
often are in separate topological fields. For exam-
ple, in Figure 2 the subject noun chunk (NX) has
the edge label ON (object - nominative) and the ob-
ject noun chunk has the edge label OA (object - ac-
cusative); both are realized within the middle field
(MF), while the finite verb (VXFIN) marked as HD
(head) is in the left sentence bracket (LK). This is-
sue becomes relevant in section 3.4.2, discussing an
evaluation based on labeled dependency triples.

Where Negra uses discontinuous constituents,
TüBa-D/Z uses special edge labels to annotate gram-
matical relations which are not locally realized. For
example, the fronted prepositional phrase (PX) in
Figure 2 has the edge label OA-MOD which needs
to be matched with the noun phrase (NX) with label
OA that is found in the MF field.

2.3 Comparing Negra and TüBa-D/Z
To give an impression of how the different anno-
tation schemes affect the appearance of a typical
tree in the two corpora, Table 1 provides statistics
on average sentence length and the number of non-
terminals per sentence.

Negra TüBa-D/Z
No. of Sentences 20,602 22,091
Terminals/Sentence 17.2 17.3
Non-terminals/Sentence 7.0 20.7

Table 1: General Characteristics of the Corpora

While the sentences in Negra and TüBa-D/Z on
average have the same number of words, the average
TüBa-D/Z sentence has nearly three times as many
non-terminal nodes as the average Negra sentence.
This difference is mainly due to the extra level of
topological fields annotation and the use of more
contoured structures in many places where Negra
uses flatter structures.

3 Experiments

The goal of the following experiments is a compar-
ison of parsing performance across different types
of evaluation metrics for parsers trained on Negra
(Ver. 2) and TüBa-D/Z (Ver. 2).

3.1 Data Preparation

Following Kübler et al. (2006), only sentences with
fewer than 35 words were used, which results in
20,002 sentences for Negra and 21,365 sentences
for TüBa-D/Z. Because punctuation is not attached
within the sentence in the corpus annotation, punc-
tuation was removed.

To be able to train PCFG parsing models, it is nec-
essary to convert the syntax graphs encoding trees
with discontinuities in Negra into traditional syntax
trees. Around 30% of sentences in Negra contain at
least one discontinuity. To remove discontinuities,
we used the conversion program included with the
Negra corpus annotation tools (Brants and Plaehn,
2000), the same tool used in Kübler et al. (2006),
which raises non-head elements to a higher tree un-
til there are no more discontinuities. For example,
for the discontinuous tree with a fronted object we
saw in Figure 1, the PP containing the fronted NP
Dieser Meinung is raised to become a daughter of
the top S node.4

Additionally, the edge labels used in both corpora
need to be folded into the node labels to become a

4An alternate method that avoids certain problems with this
raising method is discussed in Boyd (2007).
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part of context-free grammar rules used by a PCFG
parser. In the Penn Treebank-style versions of the
corpora appropriate for training a PCFG parser, each
edge label is joined with the phrase or POS label
on the phrase or word immediately below it. Both
corpora include edge labels above all phrases and
words. However the flatter structures in Negra result
in 39 different edge labels on words while TüBa-D/Z
has only 5.

Unlike Kübler et al. (2006), which ignored edge
labels on words, we incorporate all edge labels
present in both corpora. As a consequence of this,
providing a parser with perfect lexical tags would
also provide the edge label for that word. TüBa-D/Z
does not annotate grammatical functions other than
HD on words, but Negra includes many grammati-
cal functions on words. Including edge labels in the
perfect lexical tags would artificially boost the re-
sults of a grammatical function evaluation for Negra
since it amounts to providing the correct grammati-
cal function for the 38% of arguments in Negra that
are single words.

To avoid this problem, we introduced non-
branching phrasal nodes into Negra to prevent the
correct grammatical function label from being pro-
vided with the perfect lexical tag in the cases
of single-word arguments, which are mostly bare
nouns and pronouns. We added phrasal nodes above
all single-word subject, accusative object, dative ob-
ject, and genitive object5 arguments, with the cate-
gory of the inserted phrase depending on the POS
tag on the word. The introduced phrasal node is
given the word’s original grammatical function la-
bel; the grammatical function label of the word itself
becomes NK for NPs and HD for APs and VPs. In
total, 14,580 nodes were inserted into Negra in this
way. TüBa-D/Z has non-branching phrases above all
single-word arguments, so that no such modification
was needed.6

3.2 Experimental Setup

We trained unlexicalized PCFG parsing models us-
ing LoPar (Schmid, 2000). Unlexicalized models

5Genitive objects are modified for the sake of consistency
among arguments even though there are too few genitive objects
to provide reliable results in the evaluation.

6The addition of edge labels to terminal POS labels results
in 337 lexical tags for Negra and 91 for TüBa-D/Z.

were used to minimize the impact of other corpus
differences on parsing. A ten-fold cross validation
was performed for all experiments.7

3.3 PARSEVAL Evaluation

As a reference point for comparison with previous
work, the PARSEVAL results8 are given in Table 2.

Negra TüBa-D/Z
Unlabeled Precision 78.69 89.92
Unlabeled Recall 82.29 86.48
Labeled Precision 64.08 75.36
Labeled Recall 67.01 72.47
Coverage 97.00 99.90

Table 2: PARSEVAL Evaluation

The parser trained on TüBa-D/Z performs much
better than the one trained on Negra on all labeled
and unlabeled bracketing scores. As we saw in
section 2, Negra and TüBa-D/Z use very different
syntactic annotation schemes, resulting in over 2.5
times as many non-terminals per sentence in TüBa-
D/Z as in Negra with the additional unary nodes.
As mentioned previously, Rehbein and van Genabith
(2007a) showed that PARSEVAL is affected by the
ratio of terminal to non-terminal nodes, so these re-
sults are not expected to indicate the quality of the
parses. The comparison with grammatical function
and dependency evaluations we turn to next show-
cases that PARSEVAL does not provide a meaning-
ful evaluation metric across annotation schemes.

3.4 Dependency Evaluation

Complementing the issue of the ratio of terminals
to non-terminals raised in the last section, one can
question whether counting all brackets in the sen-
tence equally, as done by the PARSEVAL metric,
provides a good measure of how accurately the ba-
sic functor-argument structure of the sentence has
been captured in a parse. Thus, it is useful to per-

7Our experimental setup is designed to support a compari-
son between Negra and TüBa-D/Z for the three evaluation met-
rics and is intended to be comparable to the setup of Kübler
et al. (2006). For Negra, Dubey (2004) explores a range of pars-
ing models and the corpus preparation he uses differs from the
one discussed in this paper so that a discussion of his results is
beyond the scope of the corpus comparison in this paper.

8Scores were calculated using evalb.
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form an evaluation based on the grammatical func-
tion labels that are important for determining the
functor-argument structure of the sentence: subjects,
accusative objects, and dative objects.9 The first
step in an evaluation of functor-argument structure
is to identify whether an argument bears the correct
grammatical function label.

3.4.1 Grammatical Function Label Evaluation
Kübler et al. (2006) present the results shown in Ta-
ble 3 for the parsing performance of the unlexical-
ized model of the Stanford Parser (Klein and Man-
ning, 2002). In this grammatical function label eval-
uation, TüBa-D/Z outperforms Negra for subjects,
accusative objects, and dative objects based on an
evaluation of phrasal arguments.

Negra TüBa-D/Z
Prec Rec F Prec Rec F

Subj 52.50 58.02 55.26 66.82 75.93 72.38
Acc 35.14 36.30 35.72 43.84 47.31 45.58
Dat 8.38 3.58 5.98 24.46 9.96 17.21

Table 3: Grammatical Function Label Evaluation for
Phrasal Arguments from Kübler et al. (2006)

Note that this grammatical function label evalua-
tion is restricted to labels on phrases; grammatical
function labels on words are ignored in training and
testing. This results in an unbalanced comparison
between Negra and TüBa-D/Z since, as discussed
in section 2, TüBa-D/Z includes unary-branching
phrases above all single-word arguments whereas
Negra does not. In effect, single-word arguments
in Negra – mainly pronouns and bare nouns – are
not considered in the evaluation from Kübler et al.
(2006). The result is thus a comparison of multi-
word arguments in Negra to both single- and multi-
word arguments in TüBa-D/Z. Recall from section
3.1 that this is not a minor difference: single-word
arguments account for 38% of subjects, accusative
objects, and dative objects in Negra.

As discussed in the data preparation section, Ne-
gra was modified for our experiment so as not to

9Genitive objects are also annotated in both corpora, but
they are too infrequent to provide meaningful results. As dis-
cussed in Rehbein and van Genabith (2007b), labels such as
subject (SB for Negra, ON for TüBa-D/Z) are not necessarily
comparable in all instances, but such cases are infrequent.

provide the parser with the grammatical function la-
bels for single word phrases as part of the perfect
tags provided. This evaluation handles multiple cat-
egories of arguments, not just NPs, so it focuses
solely on the grammatical function labels, ignoring
the phrasal categories. For example, in Negra an NP-
OA in a parse is considered a correct accusative ob-
ject even if the OA label in the gold standard has the
category MPN. The results are shown in Table 4.

Negra TüBa-D/Z
Prec Rec F Prec Rec F

Subj 69.69 69.12 69.42 65.74 72.24 68.99
Acc 48.17 50.97 49.57 41.37 46.81 44.09
Dat 20.93 15.22 18.08 21.40 11.51 16.46

Table 4: Grammatical Function Label Evaluation

In contrast to the results for NP grammatical func-
tions of Kübler et al. (2006) we saw in Table 3, Ne-
gra and TüBa-D/Z perform quite similarly overall,
with Negra slightly outperforming TüBa-D/Z for all
types of arguments.

These results also form a clear contrast to the
PARSEVAL results we saw in Table 2. Contrary
to the finding in Kübler et al. (2006), the PAR-
SEVAL evaluation does not echo the grammatical
function label evaluation. In keeping with the re-
sults from Rehbein and van Genabith (2007a), we
find that PARSEVAL is not an adequate predictor of
performance in an evaluation targeting the functor-
argument structure of the sentence for comparisons
between PCFG parsers trained on corpora with dif-
ferent annotation schemes.

3.4.2 Labeled Dependency Triple Evaluation
While determining the grammatical function of an
element is an important part of determining the
functor-argument structure of a sentence, the other
necessary component is determining the head of
each function. To evaluate whether both the functor
and the argument have been correctly found, an eval-
uation of labeled dependency triples is needed. As
in the previous section, we focus on the grammatical
function labels for arguments of verbs. To complete
a labeled dependency triple for each argument, we
additionally need to locate the lexical verbal head.

In Negra, the head is the sister of an argu-
ment marked with the function label “HD”, however
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heads are only marked for a subset of the phrase cat-
egories: S, VP, AP, and AVP.10 This subset includes
the phrase categories that contain verbs and their ar-
guments, S and VP. In our experiment, the parser
finds the HD grammatical function labels with a very
high f-score: 99.5% precision and 96.5% recall. If
the sister with the label HD is a word, then that word
is the lexical head for the purposes of this depen-
dency evaluation. If the sister with the label HD is
a phrase, then a recursive search for heads within
that phrase finds a lexical head. In 3.2% of cases in
the gold standard, it is not possible to find a lexical
head for an argument. Further methods could be ap-
plied to find the remaining heads heuristically, but
we avoid the additional parameters this introduces
for this evaluation by ignoring these cases.

For TüBa-D/Z, finding the head is not as simple
because the verbal head and its arguments are in dif-
ferent topological fields. To create a parallel com-
parison to Negra, the finite verb from the local clause
is chosen as the head for all subjects. The (finite or
non-finite) main full verb is designated as the head
for the accusative and dative objects. It is possible
to automatically find an appropriate head verb for all
but 2.7% of subjects, accusative objects, and dative
objects.11 As with Negra, only cases where a head
verb can be found in the gold standard are consid-
ered in the evaluation.

As in the grammatical function evaluation in the
previous section, only the grammatical function la-
bel, not the phrase category is considered in the eval-
uation. The results for the labeled dependency eval-
uation are shown in Table 5. The parser trained on
Negra outperforms the one trained on TüBa-D/Z for
all types of arguments.

4 Discussion of Results

Comparing PARSEVAL scores for a parser trained
on the Negra and the TüBa-D/Z corpus with a gram-
matical function and a labeled dependency evalua-

10However, some strings labeled as S and VP do not contain
a head and thus lack a daughter with a HD function label.

11The relative numbers of instances where a lexical head is
not found are comparable for Negra and TüBa-D/Z. Heads are
not found for approximately 4% of subjects, 1% of accusative
objects, and 1% of dative objects. These instances are fre-
quently due to elision of the verb in headlines and coordinated
clauses.

Negra TüBa-D/Z
Prec Rec F Prec Rec F

Subj 72.84 69.03 70.93 60.52 65.98 63.25
Acc 47.96 48.80 48.38 37.39 40.83 39.11
Dat 19.56 14.01 16.79 19.32 10.39 14.85

Table 5: Labeled Dependency Evaluation

tion, we confirm that the PARSEVAL scores do not
correlate with the scores in the other two evalua-
tions, which given their closeness to the semantic
functor argument structure make meaningful targets
for evaluating parsers.

Shifting the focus to the grammatical function
evaluation, we showed that a grammatical function
evaluation based on phrasal arguments as provided
by Kübler et al. (2006) is inadequate for compar-
ing parsers trained on the Negra and TüBa-D/Z cor-
pora. By introducing non-branching phrase nodes
above single-word arguments in Negra, it is possi-
ble to provide a balanced comparison for the gram-
matical function label evaluation between Negra and
TüBa-D/Z on both phrasal and single-word argu-
ments. The models trained on both corpora perform
very similarly in the grammatical function evalua-
tion, in contrast to the claims in Kübler et al. (2006).

When the grammatical function label evaluation
is extended into a labeled dependency evaluation by
finding the verbal head to complete the labeled de-
pendency triple, the parser trained on Negra outper-
forms that trained on TüBa-D/Z. The more signifi-
cant drop in results for TüBa-D/Z compared to the
grammatical function label evaluation may be due
to the fact that a verbal lexical head in TüBa-D/Z is
not in the same local tree as its dependents, whereas
it is in Negra. The presence of intervening topolog-
ical field nodes in TüBa-D/Z may make it difficult
for the parser to consistently identify the elements
of the dependency triple across several subtrees.

The Negra corpus annotation scheme makes it
simple to identify the heads of verb arguments, but
the flat NP and PP structures make it difficult to ex-
tend a labeled dependency analysis beyond verb ar-
guments. On the other hand, TüBa-D/Z has marked
heads in NPs and PPs, but it is not as easy to pair
verb arguments with their heads because the verbs
are in separate topological fields from their argu-

30



ments. For a constituent-based corpus annotation
scheme to lend itself to a thorough labeled depen-
dency evaluation, heads should be marked clearly
for all phrase categories and all non-head elements
need to have marked grammatical functions.

The presence of topological field nodes in TüBa-
D/Z deserves more discussion in relation to a gram-
matical dependency evaluation. The corpus con-
tains two very different types of nodes in its syntac-
tic trees: nodes such as NP and PP that correspond
to constituents and nodes such as VF (Vorfeld) and
MF (Mittelfeld) that correspond to word order do-
mains. Constituents such as NP have grammatical
relations to other elements in the sentence and have
identifiable heads within them, whereas nodes en-
coding word order domains have neither.12 While
constituents and word order domains sometimes co-
incide, such as the Vorfeld normally consisting of a
single constituent, this is not the general case. For
example, the Mittelfeld often contains multiple con-
stituents which each stand in different grammatical
relations to the verb(s) in the left and right sentence
brackets (LK and VC).

Returning to the issue of finding dependencies be-
tween constituents, the intervening word order do-
main nodes can make it non-trivial to determine
these relations in TüBa-D/Z. For example, word or-
der domain nodes will always intervene between a
verb and its arguments. In order to have all gram-
matical dependencies directly encoded in the tree-
bank, it would be preferable for corpus annotation
schemes to ensure that a homogeneous constituency
representation can be easily obtained.

5 Future Work

An evaluation on arguments of verbs is just a first
step in working towards a more complete labeled
dependency evaluation. Because Negra and TüBa-
D/Z do not have parallel uses of many grammatical
function labels beyond arguments of verbs, a more
detailed evaluation on more types of dependency re-
lations will require a complex dependency conver-
sion method to provide comparable results.

12While the focus in this work is on unlexicalized parsing,
this also calls into question the effect of head lexicalization for
a corpus that contains elements that by their nature are not the
types of elements that have heads.

Since previous work on head-lexicalized pars-
ing models for German has focused on PARSEVAL
evaluations, it would also be useful to perform a la-
beled dependency evaluation to determine what ef-
fect head lexicalization has on particular construc-
tions for the parsers. Because of the concerns dis-
cussed in the previous section and the difference in
which types of clauses have marked heads in Negra
and TüBa-D/Z, the effect of head lexicalization on
the parsing results may differ for the two corpora.

6 Conclusion

Addressing the general question of how to compare
parsing results for different annotation schemes, we
revisited the comparison of PCFG parsing results for
the Negra and TüBa-D/Z corpora. We show that
these different annotation schemes lead to very sig-
nificant differences in PARSEVAL scores for un-
lexicalized PCFG parsing models, but grammatical
function label and labeled dependency evaluations
for arguments of verbs show that this difference does
not carry over to measures which are relevant to the
semantic functor-argument structure. In contrast to
Kübler et al. (2006) a grammatical function evalua-
tion on subjects, accusative objects, and dative ob-
jects establishes that Negra and TüBa-D/Z perform
similarly when all types of words and phrases ap-
pearing as arguments are taken into consideration. A
labeled dependency evaluation based on grammati-
cal relations, which links this work to current work
on formalism-independent parser evaluation (e.g.,
Clark and Curran, 2007), shows that the parsing per-
formance for Negra and TüBa-D/Z is comparable.
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Abstract

We describe experiments on learning latent
variable grammars for various German tree-
banks, using a language-agnostic statistical
approach. In our method, a minimal ini-
tial grammar is hierarchically refined using an
adaptive split-and-merge EM procedure, giv-
ing compact, accurate grammars. The learn-
ing procedure directly maximizes the likeli-
hood of the training treebank, without the use
of any language specific or linguistically con-
strained features. Nonetheless, the resulting
grammars encode many linguistically inter-
pretable patterns and give the best published
parsing accuracies on three German treebanks.

1 Introduction

Probabilistic context-free grammars (PCFGs) under-
lie most high-performance parsers in one way or an-
other (Collins, 1999; Charniak, 2000; Charniak and
Johnson, 2005). However, as demonstrated in Char-
niak (1996) and Klein and Manning (2003), a PCFG
which simply takes the empirical rules and probabil-
ities off of a treebank does not perform well. This
naive grammar is a poor one because its context-
freedom assumptions are too strong in some ways
(e.g. it assumes that subject and object NPs share
the same distribution) and too weak in others (e.g.
it assumes that long rewrites do not decompose into
smaller steps). Therefore, a variety of techniques
have been developed to both enrich and generalize
the naive grammar, ranging from simple tree anno-
tation and symbol splitting (Johnson, 1998; Klein

and Manning, 2003) to full lexicalization and intri-
cate smoothing (Collins, 1999; Charniak, 2000).

We view treebank parsing as the search for an
optimally refined grammar consistent with a coarse
training treebank. As a result, we begin with the
provided evaluation symbols (such as NP, VP, etc.)
but split them based on the statistical patterns in
the training trees. A manual approach might take
the symbol NP and subdivide it into one subsymbol
NPˆS for subjects and another subsymbol NPˆVP
for objects. However, rather than devising linguis-
tically motivated features or splits, we take a fully
automated approach, in which each symbol is split
into unconstrained subsymbols. For example, NP
would be split into NP-1 through NP-8. We use
the Expectation-Maximization (EM) to then fit our
split model to the observed trees; therein the vari-
ous subsymbols will specialize in ways which may
or may not correspond to our linguistic intuitions.
This approach is relatively language independent,
because the hidden subsymbols are induced auto-
matically from the training trees based solely on data
likelihood, though of course it is most applicable to
strongly configurational languages.

In our experiments, we find that we can learn
compact grammars that give the highest parsing ac-
curacies in the 2008 Parsing German shared task.
Our F1-scores of 69.8/84.0 (TIGER/TueBa-D/Z) are
more than four points higher than those of the
second best systems. Additionally, we investigate
the patterns that are learned and show that the la-
tent variable approach recovers linguistically inter-
pretable phenomena. In our analysis, we pay partic-
ular attention to similarities and differences between
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Figure 1: (a) The original tree. (b) The binarized tree
with latent variables.

grammars learned from the two treebanks.

2 Latent Variable Parsing

In latent variable parsing (Matsuzaki et al., 2005;
Prescher, 2005; Petrov et al., 2006), we learn
rule probabilities on latent annotations that, when
marginalized out, maximize the likelihood of the
unannotated training trees. We use an automatic ap-
proach in which basic nonterminal symbols are al-
ternately split and merged to maximize the likeli-
hood of the training treebank.

In this section we briefly review the main ideas
in latent variable parsing. This work has been pre-
viously published and we therefore provide only
a short overview. For a more detailed exposi-
tion of the learning algorithm the reader is re-
ferred to Petrov et al. (2006). The correspond-
ing inference procedure is described in detail in
Petrov and Klein (2007). The parser, code,
and trained models are available for download at
http://nlp.cs.berkeley.edu.

2.1 Learning

Starting with a simple X-bar grammar, we use the
Expectation-Maximization (EM) algorithm to learn
a new grammar whose nonterminals are subsymbols
of the original evaluation nonterminals. The X-bar
grammar is created by binarizing the treebank trees;
for each local tree rooted at an evaluation nonter-
minal X, we introduce a cascade of new nodes la-
beledX so that each node has at most two children,
see Figure 1. This initialization is the absolute mini-
mum starting grammar that distinguishes the evalua-
tion nonterminals (and maintains separate grammars
for each of them).

In Petrov et al. (2006) we show that a hierarchical
split-and-merge strategy learns compact but accurate

grammars, allocating subsymbols adaptively where
they are most effective. Beginning with the base-
line grammar, we repeatedly split and re-train the
grammar. In each iteration, we initialize EM with
the results of the previous round’s grammar, splitting
every previous symbol in two and adding a small
amount of randomness (1%) to break the symme-
try between the various subsymbols. Note that we
split all nonterminal symbols, including the part-of-
speech categories. While creating more latent an-
notations can increase accuracy, it can also lead to
overfitting via oversplitting. Adding subsymbols di-
vides grammar statistics into many bins, resulting in
a tighter fit to the training data. At the same time,
each bin has less support and therefore gives a less
robust estimate of the grammar probabilities. At
some point, the fit no longer generalizes, leading to
overfitting.

To prevent oversplitting, we could measure the
utility of splitting each latent annotation individu-
ally and then split the best ones first. However, not
only is this impractical, requiring an entire training
phase for each new split, but it assumes the contri-
butions of multiple splits are independent. In fact,
extra subsymbols may need to be added to several
nonterminals before they can cooperate to pass in-
formation along the parse tree. This point is cru-
cial to the success of our method: because all splits
are fit simultaneously, local splits can chain together
to propagate information non-locally. We therefore
address oversplitting in the opposite direction; after
training all splits, we measure for each one the loss
in likelihood incurred by removing it. If this loss
is small, the new annotation does not carry enough
useful information and can be removed. Another ad-
vantage of evaluating post-hoc merges is that, unlike
the likelihood gain from splitting, the likelihood loss
from merging can be efficiently approximated.

To summarize, splitting provides an increasingly
tight fit to the training data, while merging improves
generalization and controls grammar size. In order
to further overcome data fragmentation and overfit-
ting, we also smooth our parameters along the split
hierarchy. Smoothing allows us to add a larger num-
ber of annotations, each specializing in only a frac-
tion of the data, without overfitting our training set.
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2.2 Inference

At inference time, we want to use the learned gram-
mar to efficiently and accurately compute a parse
tree for a give sentence.

For efficiency, we employ a hierarchical coarse-
to-fine inference scheme (Charniak et al., 1998;
Charniak and Johnson, 2005; Petrov and Klein,
2007) which vastly improves inference time with no
loss in test set accuracy. Our method considers the
splitting history of the final grammar, projecting it
onto its increasingly refined prior stages. For each
such projection of the refined grammar, we estimate
the projection’s parameters from the source PCFG
itself (rather than the original treebank), using tech-
niques for infinite tree distributions and iterated fix-
point equations. We then rapidly pre-parse with each
refinement stage in sequence, such that any item
X:[i, j] with sufficiently low posterior probability
triggers the pruning of its further refined variants in
all subsequent finer parses.

Our refined grammarsG are over symbols of the
form X-k whereX is an evaluation symbol (such as
NP) andk is some indicator of a subsymbol, which
may encode something linguistic like a parent anno-
tation context, but which is formally just an integer.
G therefore induces aderivation distribution over
trees labeled with split symbols. This distribution
in turn induces aparse distribution over (projected)
trees with unsplit evaluation symbols. We have
several choices of how to select a tree given these
posterior distributions over trees. Since computing
the most likely parse tree is NP-complete (Sima’an,
1992), we settle for an approximation that allows us
to (partially) sum out the latent annotation. In Petrov
and Klein (2007) we relate this approximation to
Goodman (1996)’s labeled brackets algorithm ap-
plied to rules and to Matsuzaki et al. (2005)’s sen-
tence specific variational approximation. This pro-
cedure is substantially superior to simply erasing the
latent annotations from the the Viterbi derivation.

2.3 Results

In Petrov and Klein (2007) we trained models for
English, Chinese and German using the standard
corpora and setups. We applied our latent variable
model directly to each of the treebanks, without any

≤ 40 words all
Parser LP LR LP LR

ENGLISH
Charniak et al. (2005) 90.1 90.1 89.5 89.6
Petrov and Klein (2007) 90.7 90.5 90.2 89.9

ENGLISH (reranked)
Charniak et al. (2005) 92.4 91.6 91.8 91.0

GERMAN (NEGRA)
Dubey (2005) F1 76.3 -
Petrov and Klein (2007) 80.8 80.7 80.1 80.1

CHINESE
Chiang et al. (2002) 81.1 78.8 78.0 75.2
Petrov and Klein (2007) 86.9 85.7 84.8 81.9

Table 1: Our split-and-merge latent variable approach
produces the best published parsing performance on
many languages.

language dependent modifications. Specifically, the
same model hyperparameters (merging percentage
and smoothing factor) were used in all experiments.
Table 1 summarizes the results: automatically in-
ducing latent structure is a technique that generalizes
well across language boundaries and results in state
of the art performance for Chinese and German. On
English, the parser is outperformed by the reranked
output of Charniak and Johnson (2005), but it out-
performs their underlying lexicalized parser.

3 Experiments

We conducted experiments on the two treebanks
provided for the 2008 Parsing German shared task.
Both treebanks are annotated collections of Ger-
man newspaper text, covering from similar top-
ics. They are annotated with part-of-speech (POS)
tags, morphological information, phrase structure,
and grammatical functions. TueBa-D/Z addition-
ally uses topological fields to describe fundamental
word order restrictions in German clauses. However,
the treebanks differ significantly in their annotation
schemes: while TIGER relies on crossing branches
to describe long distance relationships, TueBa-D/Z
uses planar tree structures with designated labels
that encode long distance relationships. Addition-
ally, the annotation in TIGER is relatively flat on the
phrasal level, while TueBa-D/Z annotates more in-
ternal phrase structure.

We used the standard splits into training and de-
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Figure 2: Parsing accuracy improves when the amount of
latent annotation is increased.

velopment set, containing roughly 16,000 training
trees and 1,600 development trees, respectively. All
parsing figures in this section are on the develop-
ment set, evaluating on constituents and grammat-
ical functions using gold part-of-speech tags, un-
less noted otherwise. Note that even when we as-
sume goldevaluation part-of-speech tags, we still
assign probabilities to the different subsymbols of
the provided evaluation tag. The parsing accuracies
in the final results section are the official results of
the 2008 Parsing German shared task.

3.1 Latent Annotation

As described in Section 2.1, we start with a mini-
mal X-Bar grammar and learn increasingly refined
grammars in a hierarchical split-and-merge fashion.
We conjoined the constituency categories with their
grammatical functions, creating initial categories
like NP-PD and NP-OA which were further split
automatically. Figure 2 shows how held-out accu-
racy improves when we add latent annotation. Our
baseline grammars have low F1-scores (63.3/72.8,
TIGER/TueBa-D/Z), but performance increases as
the complexity of latent annotation increases. After
four split-and-merge iterations, performance levels
off. Interestingly, the gap in performance between
the two treebanks increases from 9.5 to 13.4 F1-
points. It appears that the latent variable approach
is better suited for capturing the rich structure of the
TueBa-D/Z treebank.

As languages vary in their phrase-internal head-

TIGER TueBa-D/Z
F1 EX F1 EX

Auto Tags 71.12 28.91 83.18 18.46
Gold Tags 71.74 34.04 85.10 20.98

Table 2: Parsing accuracies (F1-score and exact match)
with gold POS tags and automatic POS tags. Many parse
errors are due to incorrect tagging.

edness, we varied the binarization scheme, but, con-
sistent with our experience in other languages, no-
ticed little difference between right and left bina-
rization. We also experimented with starting from
a more constrained baseline by adding parent and
sibling annotation. Adding initial structural annota-
tion results in a higher baseline performance. How-
ever, since it fragments the grammar, adding latent
annotation has a smaller effect, eventually resulting
in poorer performance compared to starting from a
simple X-Bar grammar. Essentially, the initial gram-
mar is either mis- or oversplit to some degree.

3.2 Part-of-speech tagging

When gold parts-of-speech are not assumed, many
parse errors can be traced back to part-of-speech
(POS) tagging errors. It is therefore interesting to in-
vestigate the influence of tagging errors on the over-
all parsing accuracy. For the shared task, we could
assume gold POS tags: during inference we only al-
lowed (and scored) the different subsymbols of the
correct tags. However, this assumption cannot be
made in a more realistic scenario, where we want to
parse text from an unknown source. Table 2 com-
pares the parsing performance with gold POS tags
and with automatic tagging. While POS tagging er-
rors have little influence on the TIGER treebank,
tagging errors on TueBa-D/Z cause an substantial
number of subsequent parse errors.

3.3 Two pass parsing

In the previous experiments, we conflated the
phrasal categories and grammatical functions into
single initial grammar symbol. An alternative is
to first determine the categorical constituency struc-
ture and then to assign grammatical functions to the
chosen constituents in a separate, second pass. To
achieve this, we trained latent variable grammars
for base constituency parsing by stripping off the
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grammatical functions. After four rounds of split
and merge training, these grammars achieve very
good constituency accuracies of 85.1/94.1 F1-score
(TIGER/TueBa-D/Z). For the second pass, we es-
timated (but did not split) X-Bar style grammars
on the grammatical functions only. Fixing the con-
stituency structure from the first pass, we used those
to add grammatical functions. Unfortunately, this
approach proved to be inferior to the unified, one
pass approach, giving F1-scores of only 50.0/69.4
(TIGER/TueBa-D/Z). Presumably, the degradation
can be attributed to the fact that grammatical func-
tions model long-distance relations between the con-
stituents, which can only be captured poorly by an
unsplit, highly local X-bar style grammar.

3.4 Final Results

The final results of the shared task evaluation are
shown in Table 3. These results were produced by
a latent variable grammar that was trained for four
split-and-merge iterations, starting from an X-Bar
grammar over conjoined categorical/grammatical
symbols, with a left-branching binarization. Our
automatic latent variable approach serves better for
German disambiguation than the competing ap-
proaches, despite its being very language agnostic.

4 Analysis

In this section, we examine the learned grammars,
discussing what is learned. Because the grammat-
ical functions significantly increase the number of
base categories and make the grammars more diffi-
cult to examine, we show examples from grammars
that were trained for categorical constituency pars-
ing by initially stripping off all grammatical function
annotations.

4.1 Lexical Splits

Since both treebanks use the same part-of-speech
categories, it is easy to compare the learned POS
subcategories. To better understand what is being
learned, we selected two grammars after two split
and merge iterations and examined the word dis-
tributions of the subcategories of various symbols.
The three most likely words for a number of POS
tags are shown in Table 4. Interestingly, the sub-
categories learned from the different treebanks ex-
hibit very similar patterns. For example, in both

cases, the nominal category (NE) has been split
into subcategories for first and last names, abbrevi-
ations and places. The cardinal numbers (CARD)
have been split into subcategories for years, spelled
out numbers, and other numbers. There are of-
ten subcategories distinguishing sentence initial and
sentence medial placement (KOND, PDAT, ART,
APPR, etc.), as well as subcategories capturing case
distinctions (PDAT, ART, etc.).

A quantitative way of analyzing the complexity of
what is learned is to compare the number of subcat-
egories that our split-and-merge procedure has allo-
cated to each category. Table 5 shows the automat-
ically determined number of subcategories for each
POS tag. While many categories have been split into
comparably many of subcategories, the POS tags in
the TIGER treebank have in general been refined
more heavily. This increased refinement can be ex-
plained by our merging criterion. We compute the
loss in likelihood that would be incurred from re-
moving a split, and we merge back the least useful
splits. In this process, lexical and phrasal splits com-
pete with each other. In TueBa-D/Z the phrasal cat-
egories have richer internal structure and therefore
get split more heavily. As a consequence, the lexi-
cal categories are often relatively less refined at any
given stage than in TIGER. Having different merg-
ing thresholds for the lexical and phrasal categories
would eliminate this difference and we might expect
the difference in lexical refinement to become less
pronounced. Of course, because of the different un-
derlying statistics in the two treebanks, we do not
expect the number of subcategories to become ex-
actly equal in any case.

4.2 Phrasal splits

Analyzing the phrasal splits is much more difficult,
as the splits can model internal as well as exter-
nal context (as well as combinations thereof) and,
in general, several splits must be considered jointly
before their patterning can be described. Further-
more, the two treebanks use different annotation
standards and different constituent categories. Over-
all, the phrasal categories of the TueBa-D/Z tree-
bank have been more heavily refined, in order to bet-
ter capture the rich internal structures. In both tree-
banks, the most heavily split categories are the noun,
verb and prepositional phrase categories (NP/NX,
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TIGER TueBa-D/Z
LP LR F1 LP LR F1

Berkeley Parser 69.23 70.41 69.81 83.91 84.04 83.97
Växjö Parser 67.06 63.40 65.18 76.20 74.56 75.37
Stanford Parser 58.52 57.63 58.07 79.26 79.22 79.24

Table 3: Final test set results of the 2008 Parsing German shared task (labeled precision, labeled recall and F1-score)
on both treebanks (including grammatical functions and using gold part-of-speech tags).

NE
Kohl Klaus SPD Deutschland
Rabin Helmut USA dpa

Lafontaine Peter CDU Bonn
CARD

1996 zwei 000 zwei
1994 drei 100 3
1991 vier 20 2

KOND
Und und sondern und
Doch oder aber oder
Aber aber bis sowie

PDAT
Diese dieser diesem -
Dieser dieses diese -
Dieses diese dieser -

ART
Die der der die
Der des den der
Das Die die den

APPR
In als in von

Von nach von in
Nach vor mit für

PDS
Das dessen das -
Dies deren dies -
Diese die diese -

NE
Milosevic Peter K. Berlin

Müller Wolfgang W. taz
Clinton Klaus de Kosovo

CARD
1998 zwei 500 zwei
1999 drei 100 20
2000 fünf 20 18

KOND
Und und sondern und
Aber oder weder Denn
Doch aber sowohl oder

PDAT
Dieser diese diesem dieser
Diese dieser dieser diese
Dieses dieses diesen dieses

ART
Die die die der
die Die der die
Der das den den

APPR
In bis in von

Mit Von auf in
Nach Bis mit für

PDS
dem dessen das Das
das die Das das
jene denen dies diese

Table 4: The three most likely words for several part-of-speech (sub-)categories. The left column corresponds to the
TIGER treebank the right column to the TueBa-D/Z treebank. Similar subcategories are learned for both treebanks.
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POS Ti Tue
ADJA 32 17
NN 32 32
NE 31 32
ADV 30 15
ADJD 30 19
VVFIN 29 5
VVPP 29 4
APPR 25 24
VVINF 18 7
CARD 18 16
ART 10 7
PIS 9 14
PPER 9 2
PIDAT - 9

POS Ti Tue
PIAT 8 7
VAFIN 8 3
KON 8 8
$[ 7 11
PROAV 7 -
APPRART 6 5
$ 6 2
PDS 5 5
PPOSAT 4 4
$. 4 5
PDAT 4 5
KOUS 4 3
VMFIN 4 1
PRELS 3 1

POS Ti Tue
VVIZU 3 2
VAINF 3 3
PTKNEG 3 1
FM 3 8
PWS 2 2
PWAV 2 5
XY 2 2
TRUNC 2 4
KOUI 2 1
PTKVZ 2 1
VAPP 2 2
KOKOM 2 5
PROP - 2
VVIMP 1 1

POS Ti Tue
VAIMP 1 1
VMPP 1 2
PPOSS 1 1
PRELAT 1 1
NNE 1 -
APPO 1 1
PTKA 1 2
PTKANT 1 2
PWAT 1 2
PRF 1 1
PTKZU 1 1
APZR 1 1
VMINF 1 1
ITJ 1 2

Table 5: Automatically determined number of subcategoriesfor the part-of-speech tags. The left column corresponds
to the TIGER treebank the right column to the TueBa-D/Z treebank. Many categories are split in the same number of
subcategories, but overall the TIGER categories have been more heavily refined.

PP/PX, VP/VX*) as well as the sentential categories
(S/SIMPX). Categories that are rare or that have lit-
tle internal structure, in contrast, have been split
lightly or not at all.

5 Conclusions

We presented a series of experiments on pars-
ing German with latent variable grammars. We
showed that our latent variable approach is very
well suited for parsing German, giving the best
parsing figures on several different treebanks, de-
spite being completely language independent. Ad-
ditionally, we examined the learned grammars
and showed examples illustrating the linguistically
meaningful patterns that were learned. The parser,
code, and models are available for download at
http://nlp.cs.berkeley.edu.
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Abstract

Previous work on German parsing has pro-
vided confusing and conflicting results con-
cerning the difficulty of the task and whether
techniques that are useful for English, such
as lexicalization, are effective for German.
This paper aims to provide some understand-
ing and solid baseline numbers for the task.
We examine the performance of three tech-
niques on three treebanks (Negra, Tiger, and
TüBa-D/Z): (i) Markovization, (ii) lexicaliza-
tion, and (iii) state splitting. We additionally
explore parsing with the inclusion of gram-
matical function information. Explicit gram-
matical functions are important to German
language understanding, but they are numer-
ous, and naı̈vely incorporating them into a
parser which assumes a small phrasal category
inventory causes large performance reductions
due to increasing sparsity.

1 Introduction

Recent papers provide mixed evidence as to whether
techniques that increase statistical parsing perfor-
mance for English also improve German parsing
performance (Dubey and Keller, 2003; Kübler et al.,
2006). We provide a systematic exploration of this
topic to shed light on what techniques might bene-
fit German parsing and show general trends in the
relative performance increases for each technique.
While these results vary across treebanks, due to
differences in annotation schemes as discussed by
Kübler (2005), we also find similarities and provide
explanations for the trend differences based on the
annotation schemes.

We address three parsing techniques:
(i) Markovization, (ii) lexicalization, and (iii) state
splitting (i.e., subcategorization). These techniques
are not independent, and we thus examine how
lexicalization and Markovization interact, since
lexicalization for German has been the most
contentious area in the literature. Many of these
techniques have been investigated in other work
(Schiehlen, 2004; Dubey, 2004; Dubey, 2005),
but, we hope that by consolidating, replicating,
improving, and clarifying previous results we can
contribute to the re-evaluation of German proba-
bilistic parsing after a somewhat confusing start to
initial literature in this area.

One feature of German that differs markedly from
English is substantial free word order. This requires
the marking of grammatical functions on phrases to
indicate their syntactic function in sentences (sub-
ject, object, etc.), whereas for English these func-
tions can be derived from configurations (Chomsky,
1965; de Marneffe et al., 2006). While some simi-
lar functions are present in English treebanks, they
are used more frequently in German treebanks and
many more unique functions and category-function
pairings exist. Because of the relatively free word
ordering in German, the usefulness of parses is sub-
stantially increased by generating them with this in-
formation. We demonstrate the difficulties intro-
duced by naı̈vely concatenating these functions to
categories and how this treatment interacts with the
other parsing techniques. There are several avenues
for improving this situation in future work. The ver-
sions of the treebanks we use here do not include
case information in part-of-speech tags and we do

40



Treebank Train Dev ≤ 40 Test ≤ 40
Tiger 20894 2611 2535 2611 2525
TüBa-D/Z 20894 2611 2611 2611 2611
Negra v2 18602 1000 975 1000 968

Table 1: Size in sentences of treebanks used in this paper.
“Tiger” and “TüBa-D/Z” refer to the corpora prepared for
the ACL-08 workshop shared task; the full Tiger corpus
is much larger. Our Negra results are on the test set.

not use any morphological analyzer; this should be
rectified in future work. A new parsing model could
be written to treat separate grammatical functions
for nodes as first class objects, rather than just con-
catenating phrasal categories and functions. Finally,
assignment of grammatical functions could be left
to a separate post-processing phase, which could ex-
ploit not only case information inside noun phrases
but joint information across the subcategorization
frames of predicates.

2 Methodology

We use the Stanford Parser (Klein and Manning,
2003b) for all experiments. An advantage of this
parser for baseline experiments is that it provides
clean, simple implementations of component mod-
els, with many configuration options. We show re-
sults in most instances for evaluations both with and
without grammatical functions and with and without
gold tags. When training and parsing with the inclu-
sion of grammatical functions, we treat each pair-
ing of basic category and grammatical function as
one new category. Rules are learned for each such
category with a separate orthographic form, with
no attempt to learn general rules for nodes with the
same basic category but different functions. Clearly,
more sophisticated methods of handling grammat-
ical functions exist, but our focus is on providing
baseline results that are easily replicable by others.

We focus primarily on the TüBa-D/Z and Tiger
corpora, training on the training sets for the ACL
2008 Workshop on Parsing German shared task and
providing ablation results based on development set
performance. Additionally, we show a limited num-
ber of results on the Negra corpus, using the standard
training/development/test splits, defined in (Dubey
and Keller, 2003). The sizes of these data sets are
shown in table 1.

3 Markovization

Previous work has shown that adding vertical
Markovization ((grand-)parent annotation) and us-
ing horizontal Markovization can greatly improve
English parsing performance (Klein and Manning,
2003a). Several papers have already reported par-
tially corresponding results on German: Schiehlen
(2004) and Dubey (2004) reported gains of several
percent for unlexicalized parsing on Negra; Kübler
et al. (2006) agreed with these results for Negra, but
suggests that they do not hold for TüBa-D/Z. We ex-
tend these results by examining a variety of com-
binations of Markovization parameters for all three
corpora (TüBa-D/Z, Tiger, and Negra) in table 2. No
results presented here do include grammatical func-
tions; we present results on the interaction between
these functions and Markovization in section 4.

For TüBa-D/Z, we see that adding vertical
Markovization provides a substantial performance
gain of about 2% (vertical Markovization = 2) for
all levels of horizontal Markovization; increasing
vertical Markovization improves performance only
slightly further. Decreasing horizontal Markoviza-
tion from the default of infinity for a standard
PCFG also provides marginal gains, and decreases
the number of rules learned by the parser, cre-
ating a more compact grammar. The results of
Markovization on the Tiger and Negra corpora il-
lustrate the problems of a large grammar. While a
modest improvement is found by using parent anno-
tation (vertical Markovization = 2) when horizontal
Markovization is small, increasing either horizontal
or vertical Markovization past this point decreases
performance due to sparsity. Thus, while the gen-
eral results concerning Markovization from English
hold, the size of performance increase is affected ap-
preciably by the annotation strategy.

In table 3, we show a subset of the results of var-
ious Markovization parameters when gold part-of-
speech tags are used, focusing on models that per-
formed well without gold tags and that produce rel-
atively compact grammars. Gold tags provide 2–3%
absolute improvement in F1 over tagging while pars-
ing; slightly greater improvements are seen when the
PCFG model is used individually (3–4% absolute
improvement), and absolute improvement does not
vary greatly between treebanks. These results are
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TüBa-D/Z Tiger Negra
Horiz. Vertical Markov Order Vertical Markov Order Vertical Markov Order
Order 1 2 3 1 2 3 1 2 3
1 86.50 88.60 88.71 76.69 77.40 76.46 76.63 77.20 75.91

(+2.76) (+1.21) (+0.89) (+3.54) (+3.57) (+3.27) (+2.39) (+2.06) (+2.08)
2 86.55 88.61 88.84 75.91 75.30 74.20 76.39 75.39 73.77

(+2.63) (+1.22) (+0.90) (+3.22) (+3.09) (+3.10) (+3.40) (+2.20) (+2.16)
3 86.47 88.56 88.74 75.27 74.08 72.88 75.30 74.22 72.53

(+2.63) (+1.18) (+0.90) (+3.36) (+3.41) (+2.85) (+3.74) (+2.12) (+2.60)
∞ 86.04 88.41 88.67 74.44 73.26 71.96 74.48 73.50 71.84

(+2.17) (+1.07) (+0.91) (+3.10) (+3.02) (+2.51) (+3.31) (+1.97) (+3.02)

Table 2: Factored parsing results for TüBa-D/Z, Tiger, and Negra when tagging is done by the parser. Numbers in
italics show difference between factored parser and PCFG, where improvements over the PCFG are positive.

comparable to Maier (2006), which found 3–6% im-
provement using an unlexicalized PCFG; these ab-
solute improvements hold despite the fact that the
Maier (2006) parser has results with 2–4% absolute
lower F1 than those in this paper.

4 Inclusion of Grammatical Functions

In this section we examine how the addition of gram-
matical functions for training and evaluation affects
performance. As noted previously, we add gram-
matical functions simply by concatenating them to
the dependent phrasal categories and calling each
unique symbol a PCFG nonterminal; this is an ob-
vious way to adapt an existing PCFG parser, but not
a sophisticated model of grammatical functions. We
also present our shared task results (table 6).

4.1 Effects on Evaluation

As shown in table 4, the inclusion of grammati-
cal functions decreases performance by 10–15% for
both treebanks. This is partially due to the increase
in grammar size, creating less supporting evidence
for each rule, and the fact that the parser must now
discriminate amongst more categories. The larger
grammar is particularly problematic for Tiger due to
its flat annotation style. Adding gold tags (table 5)
increases performace by 2–3%, a similar gain to that
for the parsers without grammatical functions. We
also see that lexicalization provides smaller gains
when grammatical functions are included; we dis-
cuss this further in section 5. Finally, especially for
the Tiger corpus, vertical Markovization diminishes

TüBa-D/Z Vertical Markov Order
Horizontal Order 1 2
1 89.66 91.69

(+1.82) (+0.54)
2 89.72 91.71

(+1.56) (+0.43)
∞ 89.34 91.43

(+1.39) (+0.29)
Tiger Vertical Markov Order
Horizontal Order 1 2
1 79.39 79.67

(+2.83) (+2.53)
2 78.60 77.40

(+2.74) (+2.22)
∞ 76.65 75.29

(+2.50) (+1.94)
Negra Vertical Markov Order
Horizontal Order 1 2
1 78.80 79.51

(+2.39) (+1.55)
2 77.92 77.43

(+2.15) (+1.81)
∞ 74.44 73.26

(+3.10) (+3.02)

Table 3: Factored parsing results for TüBa-D/Z, Tiger,
and Negra when gold tags are provided as input to the
parser. Numbers in italics show difference between fac-
tored parser and PCFG, where improvements over the
PCFG are positive.
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TueBa-D/Z Tiger
Horiz. Vertical Vertical
Order 1 2 1 2
1 75.97 77.21 60.48 58.00

(+2.69) (+1.49) (+2.69) (+2.24)
2 76.96 53.68

(+1.44) (+2.22)
∞ 75.24 76.66 55.36 50.94

(+2.18) (+1.22) (+2.50) (+1.94)

Table 4: Results for TüBa-D/Z and Tiger when gram-
matical functions are included and tagging is done by
the parser. Numbers in italics show difference between
factored parser and PCFG, where improvements over the
PCFG are positive.

TüBa-D/Z Tiger
Horiz. Vertical Vertical
Order 1 2 1 2
1 78.91 80.64 67.72 64.93

(+1.60) (+0.81) (+1.16) (+0.77)
2 80.32 59.60

(+0.69) (+0.67)
∞ 78.38 80.01 60.36 56.77

(+1.33) (+0.59) (+0.89) (+0.18)

Table 5: Results for TüBa-D/Z and Tiger when gram-
matical functions are included and gold tags (including
grammatical functions) are given to the parser.

TüBa-D/Z Tiger
Petrov & Klein 83.97 69.81
Rafferty & Manning 79.24 59.44
Hall 75.37 65.18
Rafferty & Manning -gf 73.36 49.03

Table 6: Shared task results (F1) for TüBa-D/Z and Tiger
when grammatical functions are included and gold tags
are given to the parser. Gold tags include grammatical
functions except in the case of ”Rafferty & Manning -gf”.

performance. Sparsity becomes too great of an is-
sue for increased vertical annotations to be effective:
the grammar grows from 11,170 rules with horizon-
tal Markovization = 1, vertical Markovization = 1
to 39,435 rules with horizontal Markovization = ∞,
vertical Markovization = 2.

TüBa-D/Z Fact. PCFG
Configuration F1 ∆ F1 ∆

H = 1, V = 1 87.63 +1.63 85.32 +1.58
H = 1, V = 2 88.47 −0.13 87.31 −0.08
H = 2, V = 2 88.30 −0.31 87.13 −0.26
H = ∞, V = 1 87.23 +1.17 85.27 +1.40
H = ∞, V = 2 88.18 −0.23 87.09 −0.25

Tiger Fact. PCFG
Configuration F1 ∆ F1 ∆

H = 1, V = 1 72.09 −4.60 69.09 −4.06
H = 1, V = 2 69.25 −8.15 67.24 −6.59
H = 2, V = 2 66.08 −9.22 64.42 −7.79
H = ∞, V = 1 67.58 −9.07 64.85 −6.49
H = ∞, V = 2 63.54 −11.75 62.21 −8.03

Table 7: Effect of adding grammatical functions infor-
mation to the training data only. The difference (∆) is
from a parser with same Markovization parameters but
not trained with grammatical functions.

4.2 Effects on Training Only

While training and testing with grammatical func-
tions significantly reduces our performance, this
does not necessarily mean that we cannot benefit
from grammatical functions. We explored whether
training with grammatical functions could improve
the parser’s test time performance on syntactic cat-
egories (ignoring grammatical functions), hypothe-
sizing that the functions could provide additional in-
formation for disambiguating which rule should be
applied. This test also provides evidence of whether
decreased performance with grammatical functions
is due to sparseness caused by the large grammar
or simply that more categorization needs to be done
when grammatical functions are included.

We found, as shown in table 7, that grammatical
functions provide limited gains for basic categories
but have no extra utility once vertical Markoviza-
tion is added. These results suggest that adding
grammatical functions is not only problematic due to
increased categorization but because of sparseness
(this task has the same categorization demands as
parsing without grammatical functions considered
in section 3). The Stanford Parser was initially de-
signed under the assumption of a small phrasal cat-
egory set, and makes no attempts to smooth gram-
mar rule probabilities (smoothing only probabilities
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of words having a certain tag and probabilities of de-
pendencies). While this approach is in general not
optimal when many category splits are used inside
the parser – smoothing helps, cf. Petrov et al. (2006)
– it becomes untenable as the category set grows
large, multi-faceted, and sparse. This is particularly
evident given the results in table 7 that show the pre-
cipitous decline in F1 on the Tiger corpus, where
the general problems are exacerbated by the flatter
annotation style of Tiger.

5 Lexicalization

In the tables in section 3, we showed the utility
of lexicalization for German parsing when gram-
matical functions are not required. This contrasts
strongly with the results of (Dubey and Keller, 2003;
Dubey, 2004) where no performance increases (in-
deed, performance decreases) are reported from lex-
icalization. Lexicalization shows fairly consistent
2–3% gains on the Negra and Tiger treebanks. As
the number of tags increases, however, such as when
grammatical functions are included, gains from lex-
icalization are limited due to sparseness. While use-
ful category splits lessen the need for lexicaliza-
tion, we think the diminishing gain is primarily due
to problems resulting from the unsmoothed PCFG
model. As the grammar becomes sparser, there are
limited opportunities for the lexical dependencies
to correct the output of the PCFG grammar under
the factored parsing model of Klein and Manning
(2003b). Indeed, as shown in table 8, the grammar
becomes sufficiently sparse that for many sentences
there is no tree on which the PCFG and dependency
grammar can agree, and the parser falls back to sim-
ply returning the best PCFG parse. This falloff, in
addition to overall issues of sparsity, helps explain
the drop in performance with the addition of gram-
matical functions: our possible gain from lexicalized
parsing is decreased by the increasing rate of fail-
ure for the factored parser. Thus, for future German
work to gain from lexicalization, it may be necessary
to explore smoothing the grammar or working with
a diminished tagset without grammatical functions.

Lexicalized parsing focuses on identifying depen-
dencies. As recognized by Collins (2003), identi-
fying dependencies between words allows for bet-
ter evaluation of attachment accuracy, diminishing

Total Parseable
Dataset Sent. w.o. GFs with GFs
TüBa-D/Z 2611 2610 2197
Tiger 2535 2534 1592

Table 8: Number of sentences parseable by the factored
lexicalized parser. If the factored model fails to return
a parse, the parser returns the best PCFG parse, so the
parser maintains 100% coverage.

TüBa-D/Z Tiger
Gold Tags 91.00 90.21
Auto. Tags 86.90 83.39
Gold Tags -gf 89.89 88.97
Auto. Tags -gf 86.89 85.86

Table 9: Performance (F1) on identifying dependencies
in TüBa-D/Z and Tiger. Tags were either provided (“Gold
Tags”) or generated during parsing (“Auto. Tags”); gram-
matical functions were used for the first two results and
omitted for the final two (“-gf”).

spurious effects on labeled bracketing F1 of differ-
ent annotation schemes. In particular, Rehbein and
van Genabith (2007) correctly emphasize how F1
scores are very dependent on the amount of branch-
ing structure in a treebank, and are hence not validly
comparable across annotation styles. We evaluate
performance on identifying unlabeled dependencies
between heads and modifiers, extracting dependen-
cies automatically from the parse trees. Most heads
in the TüBa-D/Z and Tiger treebanks are marked,
and we use marked heads when possible for train-
ing and evaluation. When heads were not marked,
we used heuristic rules to identify the likely head.
Broadly consistent with the results of Rehbein and
van Genabith (2007), Table 9 shows that the dis-
parity in performance between TüBa-D/Z and Tiger
is much smaller when measuring dependency accu-
racy rather than labeled bracketing F1, especially
when using gold tags. These results also reverse the
trend in our other results that adding grammatical
functions greatly reduces F1. While F1 decreases
or remains constant when grammatical functions are
used with automatic tags, probably reflecting a de-
crease in accuracy on tags when using grammatical
functions, they increase F1 given gold tags. These
results suggest both that useful information may be
gained from grammatical functions and that the dif-
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ferences between the annotation schemes of TüBa-
D/Z and Tiger may not cause as large a fundamen-
tal difference in parser performance as suggested in
Kübler et al. (2006).

6 Feature Splits

Another technique shown to improve accuracy in
English parsing is state splits (Klein and Manning,
2003a). We experimented with such splits in an
attempt to show similar utility for German. How-
ever, despite trying a number of splits that leveraged
observations of useful splits for English as well as
information from grammatical functions, we were
unable to find any splits that caused significant im-
provement for German parsing performance. Some-
what more positive results are reported by Schiehlen
(2004) – in particular, his relative clause marking
adds significantly to performance – although many
of the other features he explores also yield little.

7 Errors by Category

In this section, we examine which categories have
the most parsing errors and possible reasons for
these biases. Two types of error patterns are con-
sidered: errors on particularly salient grammatical
functions and overall category errors.

7.1 Grammatical Function Errors

A subset of grammatical functions was recognized
by Kübler et al. (2006) as particularly important for
using parsing results, so we investigated training
and testing with the inclusion of these grammatical
functions but without any others. These functions
were the subject, dative object, and accusative object
functions. We found that the three categories had
distinctively different patterns of errors, although we
unfortunately still do not achieve particularly high
F1 for any of the individual pairings of node label
and grammatical function. Note that this analysis
differs from that of Kübler et al. (2006) due to our
analysis of the accuracy of node labels and gram-
matical functions, rather than only performance on
identifying these three grammatical functions (with-
out regards to the correctness of the original node
label). Overall, dative objects occur much less fre-
quently than either of the other two types, and ac-
cusative objects occur less frequently than subjects.

Consistent with sparsity causing degradations in per-
formance, for both Tiger and TüBa-D/Z, we show
the best performance on subjects, followed by ac-
cusative objects and then dative objects. For all cat-
egories, we find that these functions occur most fre-
quently with noun phrases, and we achieve higher
performance when pairing tthem with a noun phrase
than with any other basic category. While Kübler
et al. (2006) suggests these functions are particu-
larly important for parsing, our low performance on
dative objects (F1 between 0.00 and 0.06) may not
matter a great deal given that dative objects consist
of only 0.42% of development set nodes in TüBa-
D/Z and 0.76% of such nodes in Tiger.

7.2 Overall Errors

One limiting factor for overall parsing accuracy is
roughly defined by the number of local (one-level)
trees in the test set that are present in the training set.
While changes such as Markovization may allow
rules to be learned that do not correspond directly to
such local trees, it is unlikely that many such rules
will be created. Thus, if a local tree in the test set
is not represented in the training set, it is unlikely
we will be able to correctly parse this sentence. The
number of such local trees and the amount of test set
coverage they provide varies widely between TüBa-
D/Z and Tiger. Without grammatical functions, the
training set for TüBa-D/Z contains 4,532 unique lo-
cal trees, whereas the training set for Tiger con-
tains 20,957; both have 20,894 complete trees. Lo-
cal trees from the training set represent 79.6% of
the unique local trees in the development set for
TüBa-D/Z, whereas they represent 61.8% of unique
local trees in Tiger’s development set. This trans-
lates to 99.3% of total local trees in the develop-
ment set represented in the training set for TüBa-
D/Z versus 92.3% for Tiger. With grammatical func-
tions, the number of unique local trees increases for
both TüBa-D/Z and Tiger (10,464 and 32,614 trees
in training, respectively), and total coverage in the
development sets drop to 98.6% (TüBa-D/Z) and
87.7% (Tiger). Part of the reason for this decrease
in coverage with the addition of grammatical func-
tions, and the disparity between corpora, is a large
increase in the number of possible categories for
each node: from 26 to 139 categories for TüBa-D/Z
and from 24 to 192 categories for Tiger.
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Abstract
We present a dependency-driven parser that
parses both dependency structures and con-
stituent structures. Constituency representa-
tions are automatically transformed into de-
pendency representations with complex arc la-
bels, which makes it possible to recover the
constituent structure with both constituent la-
bels and grammatical functions. We report a
labeled attachment score close to 90% for de-
pendency versions of the TIGER and TüBa-
D/Z treebanks. Moreover, the parser is able to
recover both constituent labels and grammat-
ical functions with an F-Score over 75% for
TüBa-D/Z and over 65% for TIGER.

1 Introduction

Is it really that difficult to parse German? Kübler et
al. (2006) point out three grammatical features that
could make parsing of German more difficult: finite
verb placement, flexible phrase ordering and discon-
tinuous constituents. Earlier studies by Dubey and
Keller (2003) and Dubey (2005) using the Negra
treebank (Skut et al., 1997) reports that lexicaliza-
tion of PCFGs decrease the parsing accuracy when
parsing Negra’s flat constituent structures. However,
Kübler et al. (2006) present a comparative study
that suggests that it is not harder to parse German
than for example English. By contrast, Rehbein and
van Genabith (2007) study different parser evalua-
tion metrics by simulating parser errors on two Ger-
man treebanks (with different treebank annotation
schemes) and they claim that the question whether
German is harder to parse than English is still unde-
cided.

This paper does not try to answer the question
above, but presents a new way of parsing constituent
structures that can output the whole structure with
all grammatical functions. The shared task on pars-
ing German was to parse both the constituency ver-
sion and the dependency version of the two Ger-
man treebanks: TIGER (Brants et al., 2002) and
TüBa-D/Z (Telljohann et al., 2005). We present a
dependency-driven parser that parses both depen-
dency structures and constituent structures using an
extended version of MaltParser 1.0.1 The focus of
this paper is how MaltParser parses the constituent
structures with a dependency-based algorithm.

This paper is structured as follows. Section 2
briefly describes the MaltParser system, while sec-
tion 3 continues with presenting the dependency
parsing. Section 4 explains how a transition-based
dependency-driven parser can be turned into a con-
stituency parser. Section 5 presents the experimen-
tal evaluation and discusses the results. Finally sec-
tion 6 concludes.

2 MaltParser

MaltParser is a transition-based parsing system
which was one of the top performing systems on
multilingual dependency parsing in the CoNLL
2006 shared task (Buchholz and Marsi, 2006; Nivre
et al., 2006) and the CoNLL shared task 2007 (Nivre
et al., 2007; Hall et al., 2007). The basic idea of
MaltParser is to derive dependency graphs using a
greedy parsing algorithm that approximates a glob-

1MaltParser is distributed with an open-source license
and can be downloaded free of charge from following page:
http://www.vxu.se/msi/users/jha/maltparser/
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ally optimal solution by making a sequence of lo-
cally optimal choices. The system is equipped with
several parsing algorithms, but we have chosen to
only optimize Nivre’s parsing algorithm for both
the dependency track and the constituency track.
Nivre’s algorithm is a deterministic algorithm for
building labeled projective dependency structures in
linear time (Nivre, 2006). There are two essential
parameters that can be varied for this algorithm. The
first is the arc order and we selected the arc-eager or-
der that attaches the right dependents to their head as
soon as possible. The second is the stack initializa-
tion and we chose to use an empty stack initializa-
tion that attaches root dependents with a default root
label after completing the left-to-right pass over the
input.

The algorithm uses two data structures: a stack
to store partially processed tokens and a queue of
remaining input tokens. The arc-eager transition-
system has four parser actions:

1. LEFT-ARC(r): Adds an arc labeled r from the
next input token to the top token of the stack,
the top token is popped from the stack because
it must be complete with respect to left and
right dependents at this point.

2. RIGHT-ARC(r): Adds an arc labeled r from
the top token of the stack to the next input token
and pushes the next input token onto the stack
(because it may have dependents further to the
right).

3. REDUCE: Pops the top token of the stack. This
transition can be performed only if the top to-
ken has been assigned a head and is needed for
popping a node that was pushed in a RIGHT-
ARC(r) transition and which has since found
all its right dependents.

4. SHIFT: Pushes the next input token onto the
stack. This is correct when the next input token
has its head to the right or should be attached
to the root.

MaltParser uses history-based feature models for
predicting the next parser action at nondeterminis-
tic choice points. Previously, MaltParser combined
the prediction of the transition with the prediction of
the arc label r into one complex prediction with one

feature model. The experiments presented in this pa-
per use another prediction strategy, which divide the
prediction of the parser action into several predic-
tions. First the transition is predicted; if the transi-
tion is SHIFT or REDUCE the nondeterminism is re-
solved, but if the predicted transition is RIGHT-ARC

or LEFT-ARC the parser continues to predict the arc
label r. This prediction strategy enables the system
to have three different feature models: one for pre-
dicting the transition and two for predicting the arc
label r (RIGHT-ARC and LEFT-ARC). We will see
in section 4 that this change makes it more feasi-
ble to encode the inverse mapping into complex arc
labels for an arbitrary constituent structure without
losing any information.

All symbolic features were converted to nu-
merical features and we use the quadratic kernel
K(xi, xj) = (γxT

i xj + r)2 of the LIBSVM pack-
age (Chang and Lin, 2001) for mapping histories to
parser actions and arc labels. All results are based
on the following settings of LIBSVM: γ = 0.2 and
r = 0 for the kernel parameters, C = 0.5 for the
penalty parameter, and ε = 1.0 for the termination
criterion. We also split the training instances into
smaller sets according to the fine-grained part-of-
speech of the next input token to train separate one-
versus-one multi-class LIBSVM-classifiers.

3 Dependency Parsing

Parsing sentences with dependency structures like
the one in Figure 1 is straightforward using Malt-
Parser. During training, the parser reconstructs the
correct transition sequence needed to derive the gold
standard dependency graph of a sentence. This in-
volves choosing a label r for each arc, which in
a pure dependency structure is an atomic symbol.
For example, in Figure 1, the arc from hat to Beck-
meyer is labeled SUBJ. This is handled by train-
ing a separate labeling model for RIGHT-ARC and
LEFT-ARC. During parsing, the sentence is pro-
cessed in the same way as during training except that
the parser requests the next transition from the tran-
sition classifier. If the predicted transition is an arc
transition (RIGHT-ARC or LEFT-ARC), it then asks
the corresponding classifier for the arc label r.

One complication when parsing the dependency
version of the two German treebanks is that they
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Figure 1: The sentence ”For this statement has Beckmeyer until now not presented any evidence.” is taken from
dependency version of TüBa-D/Z treebank.

contain non-projective structures, such as the depen-
dency graph illustrated in Figure 1. Nivre’s pars-
ing algorithm only produces projective dependency
structures, and therefore we used pseudo-projective
parsing for recovering non-projective structures.
The training data are projectivized and information
about these transformations is encoded into the arc
labels to enable deprojectivizition of the parser out-
put (Nivre and Nilsson, 2005).

4 Constituency Parsing

This section explains how a transition-based depen-
dency parser can be used for parsing constituent
structures. The basic idea is to use the common
practice of transforming a constituent structure into
a dependency graph and encode the inverse mapping
with complex arc labels. Note that the goal is not to
create the best dependency representation of a con-
stituent structure. Instead the main objective is to
find a general method to transform constituency to
dependency so that is easy to do the inverse trans-
formation without losing any information. More-
over, another goal is to transform the constituent
structures so that it is feasible for a transition-based
dependency parser to induce a parser model based
on the resulting dependency graphs and during pars-
ing use this parser model to derive constituent struc-
tures with the highest accuracy possible. Hence, the
transformation described below is not designed with
the purpose of deriving a linguistically sound depen-
dency graph from a constituent structure.

Our strategy for turning a dependency parser into
a constituency parser can be summarized with the
following steps:

1. Identify the lexical head of every constituent in

the constituent structure.

2. Identify the head of every token in the depen-
dency structure.

3. Build a labeled dependency graph that encodes
the inverse mapping in the arc labels.

4. Induce a parser model based on the labeled de-
pendency graphs.

5. Use the induced parser model to parse new sen-
tences into dependency graphs.

6. Derive the constituent structure by performing
the inverse mapping encoded in the dependency
graph produced in step 5.

4.1 Identify the Heads
The first steps are basically the steps that are used
to convert a constituent structure to a dependency
structure. One way of doing this is to traverse the
constituent structure from the root node and iden-
tify the head-child and the lexical head of all con-
stituent nodes in a recursive depth-first search. Usu-
ally this process is governed by pre-defined head-
finding rules that define the direction of the search
for each distinct constituent label. Moreover, it
is quite common that the head-finding rules define
some kind of priority lists over which part of speech
or grammatical function is the more preferable head-
child.

For our experiment on German we have kept this
search of the head-child and lexical head very sim-
ple. For the TIGER treebank we perform a left-
to-right search to find the leftmost lexical child. If
no lexical child can be found, the head-child of the
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constituent will be the leftmost constituent child and
the lexical head will be the lexical child of the head
child recursively. For the TüBa-D/Z treebank we got
higher accuracy if we varied the direction of search
according to the label of the target constituent.2 We
also tried more complex and linguistically motivated
head rules, but unfortunately no improvement in ac-
curacy could be found. We want to stress that the
use of more complex head rules was done late in the
parser optimization process and it would not be a
surprise if more careful experiments resulted in the
opposite conclusion.

Given that all constituents have been assigned a
lexical head it is a straightforward process to iden-
tify the head and the dependents of all input tokens.
The algorithm investigates, for each input token, the
containing constituent’s lexical head, and if the to-
ken is not the lexical head of the constituent it takes
the lexical head as its head in the dependency graph;
otherwise the head will be assigned the lexical head
of a higher constituent in the structure. The root of
the dependency graph will be the lexical head of the
root of the constituent structure.

4.2 Build a Labeled Dependency Graph

The next step builds a labeled dependency represen-
tation that encodes the inverse mapping in the arc
labels of the dependency graph. Each arc label is a
quadruple consisting of four sublabels (dependency
relation, head relations, constituent labels, attach-
ment). The meaning of each sublabel is following:

• The dependency relation is the grammatical
function of the highest constituent of which the
dependent is the lexical head.

• The head relations encode the path of function
labels from the dependent to the highest con-
stituent of which is the lexical head (with path
elements separated by |).

• The constituent labels encode the path of con-
stituent labels from the dependent to the highest
constituent of which is the lexical head (with
path elements separated by |).

2It was beneficial to make a right-to-left search for the fol-
lowing labels: ADJX, ADVX, DM, DP, NX, PX

• The attachment is a non-negative integer i that
encodes the attachment level of the highest con-
stituent of which it is the lexical head.

4.3 Encoding Example
Figure 2 illustrates the procedure of encoding the
constituency representation as a dependency graph
with complex arc labels for a German sentence.
The constituent structure is shown above the sen-
tence and below we can see the resulting depen-
dency graph after the transformation. We want to
stress that the resulting dependency graph is not lin-
guistically sound, and the main purpose is to demon-
strate how a constituent structure can be encoded in
a dependency graph that have all information need
for the inverse transformation.

For example, the constituent MF has no lexical
child and therefore the head-child is the leftmost
constituent NX. The lexical head of MF is the token
Beckmeyer because it is the lexical head of NX. For
the same reason the lexical head of the constituent
SIMPX is the token Für and this token will be the
head of the token Beckmeyer, because SIMPX dom-
inates MF. In the dependency graph this is illustrated
with an arc from the head Für to its dependent Beck-
meyer.

The arc Für to Beckmeyer is labeled with a com-
plex label (??, HD|ON, NX|MF, 2), which consists
of four sublabels. The first sublabel is the grammat-
ical function above MF and because this is missing
a dummy label ?? is used instead. The sublabel
HD|ON encodes a sequence of head relations from
the lexical head Beckmeyer to MF. The constituent
labels are encoded in the same way in the third sub-
label NX|MF. Finally, the fourth sublabel indicates
the attachment level of the constituent MF. In this
case, MF should be attached to the constituent two
levels up in the structure with respect to the head
Für.3

The two arcs diese to Behauptung and keinen to
Nachweis both have the complex arc label (HD, *, *,
0), because the tokens Behauptung and Nachweis are
attached to a constituent without being a lexical head
of any dominating constituent. Consequently, there
are no sequences of head relations and constituent

3If the fourth sublabel had an attachment level of 1, then the
constituent MF would be attached to the constituent VF instead
of the constituent SIMPX.
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Figure 2: The sentence ”For this statement has Beckmeyer until now not presented any evidence.” is taken from
TüBa-D/Z treebank and show the encoding of a constituent structure as a dependency graph.

labels to encode, and these are therefore marked *.
The encoding of the virtual root VROOT is treated
in a special way and the label VROOT is regarded as
a dependency relation instead of a constituent label.

If we compare the dependency graphs in Figure 1
and Figure 2, we can see large differences. The more
linguistically motivated dependency graph (LDG) in
Figure 1 has a completely difference structure and
different arc labels compared to the automatically
generated dependency graph (ADG) in Figure 2.
There are several reasons, some of which are listed
here:

• Different conversions strategies: LDG is based
on a conversion that sometimes leads to non-
projective structures for non-local dependen-
cies. For example, in Figure 2, the extracted
PP Für diese Behauptung has the grammati-
cal function OAMOD, which indicates that it
is a modifier (MOD) of a direct object (OA)
elsewhere in the structure (in this case keinen
Nachweis). In LDG, this is converted to a non-
projective dependency from Nachweis to Für
(with the label PP). No such transformtion is

attempted in ADC, which simply attaches Für
to the lexical head of the containing constituent.

• Different head-finding rules: ADG are derived
without almost no rules at all. Most likely, the
conversion of LDG makes use of several lin-
guistically sound head-finding rules. A striking
difference is the root of the dependency graph,
where LDG has its root at the linguistically mo-
tivated token hat. Whereas ADG has its root at
the end of the sentence, because the leftmost
lexical child of the virtual root VROOT is the
punctuation.

• Different arc labels: ADG encodes the con-
stituent structure in the complex arc labels to
be able to recover the constituent structure,
whereas LDG have linguistically motivated de-
pendency relations that are not present in the
constituent structure.

We believe that our simplistic approach can be fur-
ther improved by using ideas from the conversion
process of LDG.
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4.4 Inverse Mapping

The last step of our presented strategy is to make the
inverse transformation from a dependency graph to
a constituent structure. This is done by a bottom-
up and top-down process of the dependency graph.
First we iterate over all tokens in the dependency
graph and restore the sequence of constituent nodes
with constituent labels and grammatical functions
for each individual token using the information of
the sublabels head relations and constituent labels.
After this bottom-up process we have the lineage of
constituents for each token where the token is the
lexical head. The top-down process then traverse
the dependency graph recursively from the root with
pre-order depth-first search. For each token, the
highest constituent of the lineage of the token is at-
tached to its head lineage at an attachment level ac-
cording to the sublabel attachment. Finally, the edge
between the dominating constituent and the highest
constituent of the lineage is labeled with a grammat-
ical function according to the sublabel dependency
relation.

4.5 Parsing

For the constituency versions of both TIGER and
TüBa-D/Z we can recover the constituent structure
without any loss of information, if we transform
from constituency to dependency and back again to
constituency. During parsing we predict the sub-
labels separately with separate feature models for
RIGHT-ARC and LEFT-ARC. Moreover, the parsed
constituent structure can contain discontinuous con-
stituency because of wrong attachment levels of con-
stituents. To overcome this problem, the structure
is post-processed and the discontinuous constituents
are forced down in the structure so that the parser
output can be represented in a nested bracketing for-
mat.

5 Experiments

The shared task on parsing German consisted of
parsing either the dependency version or the con-
stituency version of two German treebanks, al-
though we chose to parse both versions. This section
first presents the data sets used. We continue with a
brief overview of how we optimized the four differ-
ent parser models. Finally, the results are discussed.

5.1 Data Sets
The prepared training and development data dis-
tributed by the organizers were based on the German
TIGER (Brants et al., 2002) and TüBa-D/Z (Telljo-
hann et al., 2005) treebanks, one dependency and
one constituency version for each treebank. Both
treebanks contain German newspaper text and the
prepared data sets were of the same size. The devel-
opment set contained 2611 sentences and the train-
ing set contained 20894 sentences. The dependency
and constituency versions contained the same set of
sentences.

The dependency data were formated according
to the CoNLL dependency data format.4 The
LEMMA, FEATS, PHEAD and PDEPREL columns
of the CoNLL format were not used at all.

The constituency data have been converted into a
bracketing format similar to the Penn Treebank for-
mat. All trees are dominated by a VROOT node
and all constituents are continuous. The test data
consisted of sentences with gold-standard part-of-
speech tags and also the gold-standard grammatical
functions attached to the part-of-speech tags. Unfor-
tunately, we were not aware of that the grammatical
functions attached to the part-of-speech tags should
be regarded as input to the parser and therefore our
presented results are based on not using the gram-
matical functions attached to the part-of-speech tags
as input to the parser.

We divided the development data into two sets,
one set used for parser optimization (80%) and the
other 20% we saved for final preparation before the
release of the test data. For the final test run we
trained parser models on all the data, both the train-
ing data and the development data.

5.2 Parser optimization
We ran several experiments to optimize the four dif-
ferent parser models. The optimization of the de-
pendency versions was conducted in a way simi-
lar to the parser optimization of MaltParser in the
CoNLL shared tasks (Nivre et al., 2006; Hall et al.,
2007). A new parameter for the extended version

4More information about the CoNLL dependency data for-
mat can be found at: http://nextens.uvt.nl/ conll/#dataformat.
Yannick Versley has done work of converting both treebanks to
a dependency annotation that is similar to the Hamburg depen-
dency format.
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of MaltParser 1.0 is the prediction strategy, where
we could choose between combining the prediction
of the transition with the prediction of the arc label
into one complex prediction or dividing the predic-
tion of the parser action into two predictions (one
model for predicting the transition and two models
for predicting the arc label depending on the out-
come of the transition-model). It was beneficial to
use the divided predication strategy for all four data
sets. In the next step we performed a feature opti-
mization with both forward and backward selection,
starting from a model extrapolated from many pre-
vious experiments on different languages. Because
we chose to use the divided predication strategy this
step was more complicated compared to using the
combined strategy, because we needed to optimize
three feature models (one transition-model and two
arc-label models, one for RIGHT-ARC and one for
LEFT-ARC).

The optimization of the constituency versions was
even more complex because each parser model con-
tained nine feature models (one transition-model,
two models for each sublabel). Another problem
for the parser optimization was the fact that we tried
out new ideas and for example changed the encod-
ing a couple of times. Due to the time constraints
of the shared task it was not possible to start parser
optimization all over again for every change. We
also performed some late experiments with different
head-finding rules to make the intermediate depen-
dency graphs more linguistically sound, but unfor-
tunately these experiments did not improve the pars-
ing accuracy. We want to emphasize that the time
for developing the extended version of MaltParser
to handle constituency was severely limited, espe-
cially the implementation of head-finding rules, so
it is very likely that head-finding rules can improve
parsing accuracy after more careful testing and ex-
periments.

5.3 Results and Discussion

The results based on the prepared test data for the de-
pendency and constituency tracks are shown in table
1. The label attachment score (LAS) was used by the
organizer for evaluating the dependency versions,
that is, the proportion of tokens that are assigned the
correct head and the correct arc label (punctuation
included). We can see that the dependency results

Dependency Constituency
Treebank LAS LP LR LF
TIGER 90.80 67.06 63.40 65.18
TüBa-D/Z 88.64 76.44 74.79 75.60

Table 1: The results for the extended version of Malt-
Parser 1.0 in the shared task on parsing German depen-
dency and constituency representations.

are close to 90% for both the treebanks, 90.80 for
TIGER and 88.64 for Tüba-D/Z, which were the un-
challenged best scores in the shared task. The high-
est score on parsing German in the CoNLL-X shared
task was obtained by the system of McDonald et al.
(2006) with a LAS of 87.34 based on the TIGER
treebank, but we want to stress that these results
are not comparable due to different data sets (and
a different policy regarding the inclusion of punctu-
ation).

The constituency versions were evaluated accord-
ing to the labeled recall (LR), labeled precision
(LP) and labeled F-score (LF). Labeled in this con-
text means that both the constituent label and the
grammatical function should agree with the gold-
standard, but grammatical functions labeling the
edge between a constituent and a token were not in-
cluded in the evaluation. The labeled F-scores are
75.60 for Tüba-D/Z and 65.18 for TIGER and these
results are the second best results in the shared task
out of three systems. We want to emphasize that the
results may not be strictly comparable because of
different use of the grammatical functions attached
to the parts of speech in the bracketing format. We
did not use these grammatical functions as input,
instead these were assigned by the parser. Our re-
sults are competitive if we compare with Kübler et
al. (2006), who report 51.41 labeled F-score on the
Negra treebank and 75.33 on the TüBa-D/Z treebank
using the unlexicalized, markovized PCFG version
of the Stanford parser.

We believe that our results for the constituency
representations can be improved upon by investi-
gating different methods for encoding the inverse
mapping in the complex arc labels and performing
a more careful evaluation of head-finding rules to
derive a more linguistically sound dependency rep-
resentation. Another interesting line of future work
is to try to parse discontinuous constituents by using
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a non-projective parsing algorithm like the Coving-
ton algorithm (Covington, 2001) or using pseudo-
projective parsing for discontinuous constituency
parsing (Nivre and Nilsson, 2005).

6 Conclusion

We have shown that a transition-based dependency-
driven parser can be used for parsing German with
both dependency and constituent representations.
We can report state-of-the-art results for parsing the
dependency versions of two German treebanks, and
we have demonstrated, with promising results, how
a dependency parser can parse full constituent struc-
tures by encoding the inverse mapping in complex
arc labels of the dependency graph. We believe that
this method can be improved by using, for example,
head-finding rules.

Acknowledgments

We want to thank the treebank providers for making
the data available for the shared task and the orga-
nizers for their efforts in organizing it. Thanks also
to two reviewers for useful comments.

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang

Lezius, and George Smith. 2002. The TIGER Tree-
bank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories Sozopol, pages 1–18.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X Shared Task on Multilingual Dependency Parsing.
In Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning (CoNLL-X), pages
149–164.

Chih-Chung Chang and Chih-Jen Lin. 2001. LIBSVM:
A Library for Support Vector Machines.

Michael A. Covington. 2001. A Fundamental Algorithm
for Dependency Parsing. In Proceedings of the 39th
Annual ACM Southeast Conference, pages 95–102.

Amit Dubey and Frank Keller. 2003. Probabilistic Pars-
ing for German using Sister-Head Dependencies. In
Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 96–
103.

Amit Dubey. 2005. What to do when Lexicaliza-
tion fails: Parsing German with Suffix Analysis and
Smoothing. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 314–321.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülşen Eryiğit,
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and Svetoslav Marinov. 2006. Labeled Pseudo-
Projective Dependency Parsing with Support Vector
Machines. In Proceedings of the Tenth Conference on
Computational Natural Language Learning (CoNLL-
X), pages 221–225.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
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the Tübingen Treebank of Written German (TüBa-
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Abstract

The ACL 2008 Workshop on Parsing German
features a shared task on parsing German. The
goal of the shared task was to find reasons
for the radically different behavior of parsers
on the different treebanks and between con-
stituent and dependency representations. In
this paper, we describe the task and the data
sets. In addition, we provide an overview of
the test results and a first analysis.

1 Introduction

German is one of the very few languages for which
more than one syntactically annotated resource ex-
ists. Other languages for which this is the case in-
clude English (with the Penn treebank (Marcus et
al., 1993), the Susanne Corpus (Sampson, 1993),
and the British section of the ICE Corpus (Wallis
and Nelson, 2006)) and Italian (with ISST (Mon-
tegmagni et al., 2000) and TUT (Bosco et al.,
2000)). The three German treebanks are Negra
(Skut et al., 1998), TIGER (Brants et al., 2002), and
TüBa-D/Z (Hinrichs et al., 2004). We will concen-
trate on TIGER and TüBa-D/Z here; Negra is an-
notated with an annotation scheme very similar to
TIGER but is smaller. In contrast to other languages,
these two treebanks are similar on many levels:
Both treebanks are based on newspaper text, both
use the STTS part of speech (POS) tagset (Thie-
len and Schiller, 1994), and both use an annotation

∗I am very grateful to Gerald Penn, who suggested this
workshop and the shared task, took over the biggest part of the
workshop organization and helped with the shared task.

scheme based on constituent structure augmented
with grammatical functions. However, they differ in
the choices made in the annotation schemes, which
makes them ideally suited for an investigation of
how these decisions influence parsing accuracy in
different parsers.

On a different level, German is an interesting
language for parsing because of the syntactic phe-
nomena in which the language differs from English,
the undoubtedly most studied language in parsing:
German is often listed as a non-configurational lan-
guage. However, while the word order is freer
than in English, the language exhibits a less flexible
word order than more typical non-configurational
languages. A short overview of German word order
phenomena is given in section 2.

The structure of this paper is as follows: Section
2 discusses three characteristics of German word or-
der, section 3 provides a definition of the shared task,
and section 4 gives a short overview of the treebanks
and their annotation schemes that were used in the
shared task. In section 5, we give an overview of the
participating systems and their results.

2 German Word Order

In German, the order of non-verbal phrases is rela-
tively free, but the placement of the verbal elements
is determined by the clause type. Thus, we will
first describe the placement of the finite verb, then
we will explain phrasal ordering, and finally we will
look at discontinuous constituents.
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2.1 Verb Placement
In German, the clause type determines the place-
ment of finite verbs: In non-embedded declarative
clauses, as in (1a), the finite verb is in second posi-
tion (V2). In yes/no questions, as in (1b), the finite
verb is the clause-initial constituent (V1), and in em-
bedded clauses, as in (1c), it appears clause finally
(Vn).

(1) a. Der
The

Mann
man

hat
has

das
the

Auto
car

gekauft.
bought

’The man has bought the car.’

b. Hat
Has

der
the

Mann
man

das
the

Auto
car

gekauft?
bought

’Has the man bought the car?’

a. dass
that

der
the

Mann
man

das
the

Auto
car

gekauft
bought

hat.
has

’. . . that the man has bought the car.’

All non-finite verbs appear at the right periphery
of the clause (cf. 2), independently of the clause
type.

(2) Der
The

Mann
man

sollte
should

das
the

Auto
car

gekauft
bought

haben.
have

’The man should have bought the car.’

2.2 Flexible Phrase Ordering
Apart from the fixed placement of the verbs, the or-
der of the non-verbal elements is flexible. In (3), any
of the four complements and adjuncts of the main
verb (ge)geben can be in sentence-initial position,
depending on the information structure of the sen-
tence.

(3) a. Das
The

Kind
child

hat
has

dem
the

Mann
man

gestern
yesterday

den
the

Ball
ball

gegeben.
given

’The child has given the ball to the man yes-
terday.’

b. Dem Mann hat das Kind gestern den Ball
gegeben.

c. Gestern hat das Kind dem Mann den Ball
gegeben.

d. Den Ball hat das Kind gestern dem Mann
gegeben.

In addition, the ordering of the elements that oc-
cur between the finite and the non-finite verb forms
is also free so that there are six possible lineariza-
tions for each of the examples in (3a-d).
One exception to the free ordering of non-verbal

elements is the ordering of pronouns. If the pro-
nouns appear to the right of the finite verb in V1
and V2 clauses, they are adjacent to the finite verb
in fixed order.

(4) Gestern
Yesterday

hat
has

sie
she

sie
her/them

ihm
him

gegeben.
given.

’Yesterday, she gave her/them to him.’

In (4), three pronouns are present. Although
the pronoun sie is ambiguous between nomina-
tive/accusative singular and nominative/accusative
plural, the given example is unambiguous with re-
spect to case since the nominative precedes the ac-
cusative, which in turn precedes the dative.
Due to the flexible phrase ordering, the grammat-

ical functions of constituents in German, unlike in
English, cannot be deduced from the constituents’
location in the constituent tree. As a consequence,
parsing approaches to German need to be based on
treebank data which contain a combination of con-
stituent structure and grammatical functions – for
parsing and evaluation. For English, in contrast,
grammatical functions are often used internally in
parsers but suppressed in the final parser output.

2.3 Discontinuous Constituents
Another characteristic of German word order is the
frequency of discontinuous constituents. The sen-
tence in (5) shows an extraposed relative clause that
is separated from its head noun das Buch by the non-
finite verb gelesen.

(5) Der
The

Mann
man

hat
has

das
the

Buch
book

gelesen,
read,

das
which

ich
I

ihm
him

empfohlen
recommended

habe.
have

’The man read the book that I recommended to
him.’
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In German, it is also possible to partially front
VPs, such as in sentence (6). This sentence is taken
from the TüBa-D/Z treebank.

(6) Für
For

den
the

Berliner
Berlin

Job
job

qualifiziert
qualified

hat
has

sich
himself

Zimmermann
Zimmermann

auch
also

durch
by

seinen
his

Blick
view

fürs
for the

finanziell
financially

Machbare.
doable

’Zimmermann qualified for the job in Berlin
partially because of his view for what is finan-
cially feasible.’

Here, the canonical word order would be Zimmer-
mann hat sich auch durch seinen Blick f̈urs finanziell
Machbare für den Berliner Job qualifiziert.
Such discontinuous structures occur frequently in

the TIGER and TüBa-D/Z treebanks and are handled
differently in the two annotation schemes, as will be
discussed in more detail in section 4.

3 Task Definition

In this section, we give the definition of the shared
task. We provided two subtasks: parsing constituent
structure and parsing the dependency representa-
tions. Both subtasks involved training and testing on
data from the two treebanks, TIGER and TüBa-D/Z.
The dependency format was derived from the con-
stituent format so that the sentences were identical
in the two versions. The participants were given
training sets, development sets, and test sets of the
two treebanks. The training sets contained 20894
sentences per treebank, the development and test
set consisted of 2611 sentences each. The test sets
contained gold standard POS labels. In these sets,
sentence length was restricted to a maximum of 40
words. Since for some sentences in both treebanks,
the annotation consists of more than one tree, all
trees were joined under a virtual root node, VROOT.
Since some parsers cannot assign grammatical

functions to part of speech tags, these grammati-
cal functions were provided for the test data as at-
tached to the POS tags. Participants were asked to
perform a test without these functions if their parser
was equipped to provide them. Two participants did
submit these results, and in both cases, these results
were considerably lower.

Evaluation for the constituent version consisted
of the PARSEVAL measures precision, recall, and
F1 measure. All these measures were calculated on
combinations of constituent labels and grammatical
functions. Part of speech labels were not considered
in the evaluation. Evaluation for the dependency
version consisted of labeled and unlabeled attach-
ment scores. For this evaluation, we used the scripts
provided by the CoNLL shared task 2007 on depen-
dency parsing (Nivre et al., 2007).

4 The Treebanks

The two treebanks used for the shared task were
the TIGER Corpus, (Brants et al., 2002) version
2, and the TüBa-D/Z treebank (Hinrichs et al.,
2004; Telljohann et al., 2006), version 3. Both
treebanks use German newspapers as their data
source: the Frankfurter Rundschau newspaper for
TIGER and the ’die tageszeitung’ (taz) newspaper
for TüBa-D/Z. The average sentence length is
very similar: In TIGER, sentences have an average
length of 17.0, and in TüBa-D/Z, 17.3. This can
be regarded as an indication that the complexity of
the two texts is comparable. Both treebanks use
the same POS tagset, STTS (Thielen and Schiller,
1994), and annotations based on phrase structure
grammar, enhanced by a level of predicate-argument
structure.

4.1 The Constituent Data

Despite all the similarities presented above, the
constituent annotations differ in four important as-
pects: 1) TIGER does not allow for unary branch-
ing whereas TüBa-D/Z does; 2) in TIGER, phrase
internal annotation is flat whereas TüBa-D/Z uses
phrase internal structure; 3) TIGER uses crossing
branches to represent long-distance relationships
whereas TüBa-D/Z uses a pure tree structure com-
bined with functional labels to encode this informa-
tion. The two treebanks also use different notions of
grammatical functions: TüBa-D/Z defines 36 gram-
matical functions covering head and non-head in-
formation, as well as subcategorization for comple-
ments and modifiers. TIGER utilizes 51 grammati-
cal functions. Apart from commonly accepted gram-
matical functions, such as SB (subject) or OA (ac-
cusative object), TIGER grammatical functions in-
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Figure 1: TIGER annotation with crossing branches.

Figure 2: TIGER annotation with resolved crossing branches.

clude others, e.g. RE (repeated element) or RC (rel-
ative clause).

(7) Beim
At the

Münchner
Munich

Gipfel
Summit

ist
is
die
the

sprichwörtliche
proverbial

bayerische
Bavarian

Gemütlichkeit
’Gemütlichkeit’

von
by

einem
a

Bild
picture

verdrängt
supplanted

worden,
been,

das
which

im
in the

Wortsinne
literal sense

an
of
einen
a

Polizeistaat
police state

erinnert.
reminds

’At the Munich Summit, the proverbial Bavar-
ian ’Gemütlichkeit’ was supplanted by an im-
age that is evocative of a police state.’

Figure 1 shows a typical tree from the TIGER
treebank for sentence (7). The syntactic categories
are shown in circular nodes, the grammatical func-
tions as edge labels in square boxes. A major

phrasal category that serves to structure the sen-
tence as a whole is the verb phrase (VP). It con-
tains non-finite verbs (here: verdrängt worden) as
well as their complements and adjuncts. The subject
NP (die sprichwörtliche bayerische Gemütlichkeit)
is outside the VP and, depending on its linear po-
sition, leads to crossing branches with the VP. This
happens in all cases where the subject follows the
finite verb as in Figure 1. Notice also that the PPs
are completely flat. An additional crossing branch
results from the direct attachment of the extraposed
relative clause (the lower S node with function RC)
to the noun that it modifies.

As mentioned in the previous section, TIGER
trees must be transformed into trees without crossing
branches prior to training PCFG parsers. The stan-
dard approach for this transformation is to re-attach
crossing non-head constituents as sisters of the low-
est mother node that dominates all the crossing con-
stituent and its sister nodes in the original TIGER
tree. Figure 2 shows the result of this transformation
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Figure 3: TüBa-D/Z annotation without crossing branches.

of the tree in Figure 1. Crossing branches not only
arise with respect to the subject at the sentence level
but also in cases of extraposition and fronting of par-
tial constituents. As a result, approximately 30% of
all TIGER trees contain at least one crossing branch.
Thus, tree transformations have a major impact on
the type of constituent structures that are used for
training probabilistic parsing models.
Figure 3 shows the TüBa-D/Z annotation for sen-

tence (8), a sentence with a very similar structure to
the TIGER sentence shown in Figure 1. Crossing
branches are avoided by the introduction of topo-
logical structures (here: VF, LK, MF, VC, NF, and
C) into the tree. Notice also that compared to the
TIGER annotation, TüBa-D/Z introduces more inter-
nal structure into NPs and PPs. In TüBa-D/Z, long-
distance relationships are represented by a pure tree
structure and specific functional labels. Thus, the
extraposed relative clause is attached to the matrix
clause directly, but its functional label ON-MOD ex-
plicates that it modifies the subject ON.

(8) In
In
Bremen
Bremen

sind
are

bisher
so far

nur
only

Fakten
facts

geschaffen
produced

worden,
been,

die
which

jeder
any

modernen
modern

Stadtplanung
city planning

entgegenstehen.
contradict

’In Bremen, so far only such attempts have
been made that are opposed to any modern city
planning.’

4.2 The Dependency Data

The constituent representations from both treebanks
were converted into dependencies. The conver-
sion aimed at finding dependency representations
for both treebanks that are as similar to each other
as possible. Complete identity is impossible be-
cause the treebanks contain different levels of dis-
tinction for different phenomena. The conversion is
based on the original formats of the treebanks in-
cluding crossing branches. The target dependency
format was defined based on the dependency gram-
mar by Foth (2003). For the conversion, we used
pre-existing dependency converters for TIGER trees
(Daum et al., 2004) and for TüBa-D/Z trees (Vers-
ley, 2005). The dependency representations of the
trees in Figures 1 and 3 are shown in Figures 4 and
5. Note that the long-distance relationships are con-
verted into non-projective dependencies.

5 Submissions and Results

The shared task drew submissions from 3 groups:
the Berkeley group, the Stanford group, and the
Växjö group. Four more groups or individuals had
registered but did not submit any data. The submit-
ted systems and results are described in detail in pa-
pers in this volume (Petrov and Klein, 2008; Raf-
ferty and Manning, 2008; Hall and Nivre, 2008). All
three systems submitted results for the constituent
task. For the dependency task, the Växjö group had
the only submission. For this reason, we will con-
centrate on the analysis of the constituent results and
will mention the dependency results only shortly.
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Beim M. Gipfel ist die sprichw. bayer. Gem. von einem Bild verdrängt worden, das im Worts. an einen P.staat erinnert.

PP

ATTR

PN

DET

ATTR

ATTR

SUBJ

PP

DET

PN

AUX

AUX SUBJ

PP

PN

OBJP

DET

PN

REL

Figure 4: TIGER dependency annotation.

In Bremen sind bisher nur Fakten geschaffen worden, die jeder modernen Stadtplanung entgegenstehen.

PN

PP ADV

ADV

SUBJ

AUX

AUX

SUBJ

DET

ATTR OBJD

REL

Figure 5: TüBa-D/Z dependency annotation.

5.1 Constituent Evaluation

The results of the constituent analysis are shown
in Table 1. The evaluation was performed with re-
gard to labels consisting of a combination of syn-
tactic labels and grammatical functions. A subject
noun phrase, for example, is only counted as correct
if it has the correct yield, the correct label (i.e. NP
for TIGER and NX for TüBa-D/Z), and the correct
grammatical function (i.e. SB for TIGER and ON
for TüBa-D/Z). The results show that the Berke-
ley parser reaches the best results for both treebanks.
The other two parsers compete for second place. For
TIGER, the Växjö parser outperforms the Stanford
parser, but for TüBa-D/Z, the situation is reversed.
This gives an indication that the Växjö parser seems
better suited for the flat annotations in TIGER while
the Stanford parser is better suited for the more hier-
archical structure in TüBa-D/Z. Note that all parsers
reach much higher F-scores for TüBa-D/Z.
A comparison of howwell suited two different an-

notation schemes are for parsing is a surprisingly
difficult task. A first approach would be to com-
pare the parser performance for specific categories,
such as for noun phrases, etc. However, this is
not possible for TIGER and TüBa-D/Z. On the one

hand, the range of phenomena described as noun
phrases, for example, is different in the two tree-
banks. The most obvious difference in annotation
schemes is that TüBa-D/Z annotates unary branch-
ing structures while TIGER does not. As a conse-
quence, in TüBa-D/Z, all pronouns and substitut-
ing demonstratives are annotated as noun phrases; in
TIGER, they are attached directly to the next higher
node (cf. the relative pronouns, POS tag PRELS, in
Figures 1 and 3). Kübler (2005) and Maier (2006)
suggest a method for comparing such different an-
notation schemes by approximating them stepwise
so that the decisions which result in major changes
can be isolated. They come to the conclusion that
the differences between the two annotation schemes
is a least partially due to inconsistencies introduced
into TIGER style annotations during the resolution
of crossing branches. However, even this method
cannot give any indication which annotation scheme
provides more useful information for systems that
use such parses as input. To answer this question, an
in vivo evaluation would be necessary. It is, how-
ever, rather difficult to find systems into which a
parser can be plugged in without too many modi-
fications of the system.
On the other hand, it is a well-known fact that
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TIGER TüBa-D/Z
system precision recall F-score precision recall F-score
Berkeley 69.23 70.41 69.81 83.91 84.04 83.97
Stanford 58.52 57.63 58.07 79.26 79.22 79.24
Växjö 67.06 63.40 65.18 76.44 74.79 75.60

Table 1: The results of the constituent parsing task.

TIGER TüBa-D/Z
system GF precision recall F-score precision recall F-score
Berkeley SB/ON 74.46 78.31 76.34 78.33 77.08 77.70

OA 60.08 66.61 63.18 58.11 65.81 61.72
DA/OD 49.28 41.72 43.19 59.46 44.72 51.05

Stanford SB/ON 64.40 63.11 63.75 71.16 77.76 74.31
OA 45.52 45.91 45.71 47.23 51.28 49.17
DA/OD 12.40 9.82 10.96 24.42 8.54 12.65

Växjö SB/ON 75.33 73.00 74.15 72.37 69.53 70.92
OA 57.01 57.65 57.33 58.07 57.55 57.81
DA/OD 55.45 37.42 44.68 63.75 20.73 31.29

Table 2: The results for subjects, accusative objects, and dative objects.

the PARSEVALmeasures favor annotation schemes
with hierarchical structures, such as in TüBa-D/Z,
in comparison to annotation schemes with flat struc-
tures (Rehbein and van Genabith, 2007). Here,
TIGER and TüBa-D/Z differ significantly: in TIGER,
phrases receive a flat annotation. Prepositional
phrases, for example, do not contain an explicitly
annotated noun phrase. TüBa-D/Z phrases, in con-
trast, are more hierarchical; preposition phrases do
contain a noun phrase, and non phrases distinguish
between pre- and post-modification. For this reason,
the evaluation presented in Table 1 must be taken
with more than a grain of salt as a comparison of an-
notation schemes. However, it seems safe to follow
Kübler et al. (Kübler et al., 2006) in the assump-
tion that the major grammatical functions, subject
(SB/ON), accusative object (OA), and dative object
(DA/OD) are comparable. Again, this is not com-
pletely true because in the case of one-word NPs,
these functions are attached to the POS tags and
thus are given in the input. Another solution, which
was pursued by Rehbein and van Genabith (2007),
is the introduction of new unary branching nodes in
the tree in cases where such grammatical functions
are originally attached to the POS tag. We refrained

from using this solution because it introduces fur-
ther inconsistencies (only a subset of unary branch-
ing nodes are explicitly annotated), which make it
difficult for a parser to decide whether to group such
phrases or not. The evaluation shown in Table 2 is
based on all nodes which were annotated with the
grammatical function in question.
The results presented in Table 2 show that the

differences between the two treebanks are incon-
clusive. While the Stanford parser performs con-
sistently better on TüBa-D/Z, the Berkeley parser
handles accusative objects better in TIGER, and the
Växjö parser subjects and dative objects. The results
indicate that the Berkeley parser profits from the
TIGER annotation of accusative objects, which are
grouped in the verb phrase while TüBa-D/Z groups
all objects in their fields directly without resorting to
a verb phrase. However, this does not explain why
the Berkeley parser cannot profit from the subject
attachment on the clause level in TIGER to the same
degree.

5.2 Dependency Evaluation

The results of the dependency evaluation for the
Växjö system are shown in Table 3. The results are
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TIGER TüBa-D/Z
UAS 92.63 91.45
LAS 90.80 88.64

precision recall precision recall
SUBJ 90.20 89.82 88.99 88.55
OBJA 77.93 82.19 77.18 82.71
OBJD 57.00 44.02 67.88 45.90

Table 3: The results of the dependency evaluation.

important for the comparison of constituent and de-
pendency parsing since in the conversion to depen-
dencies, most of the differences between the anno-
tation schemes, and as a consequence, the prefer-
ence of the PARSEVAL measures have been neu-
tralized. Therefore, it is interesting to see that the
results for TIGER are slightly better than the results
for TüBa-D/Z, both for unlabeled (UAS) and la-
beled attachment scores. The reasons for these dif-
ferences are unclear: either the TIGER texts are eas-
ier to parse, or the (original annotation and) conver-
sion from TIGER is more consistent. Another sur-
prising fact is that the dependency results are clearly
better than the constituent ones. This is partly due
to the fact that the dependency representation is of-
ten less informative than then constituent representa-
tion. One example for this can be found in coordina-
tions: In dependency representations, the scope am-
biguity in phrases like young men and women is not
resolved. This gives parsers fewer opportunities to
go wrong. However, this cannot explain all the dif-
ferences. Especially the better performance on the
major grammatical functions cannot be explained in
this way.

A closer look at the grammatical functions shows
that here, precision and recall are higher than for
constituent parses. This is a first indication that de-
pendency representation may be more appropriate
for languages with freer word order. A compari-
son between the two treebanks is inconclusive: for
the accusative object, the results are similar between
the treebanks. For subjects, the results for TIGER
are better while for dative objects, the results for
TüBa-D/Z are better. This issue requires closer in-
vestigation.

6 Conclusion

This is the first shared task on parsing German,
which provides training and test sets from both ma-
jor treebanks for German, TIGER and TüBa-D/Z.
For both treebanks, we provided a constituent and a
dependency representation. It is our hope that these
data sets will spark more interest in the comparison
of different annotation schemes and their influence
on parsing results. The evaluation of the three par-
ticipating systems has shown that for both treebanks,
the use of a latent variable grammar in the Berkeley
system is beneficial. However, many questions re-
main unanswered and require further investigation:
To what extent do the evaluation metrics distort the
results? Does a measure exist that is neutral towards
the differences in annotation? Is the dependency for-
mat better suited for parsing German? Are the dif-
ferences between the dependency results of the two
treebanks indicators that TIGER provides more im-
portant information for dependency parsing? Or can
the differences be traced back to the conversion al-
gorithms?
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Tübingen, Germany.
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