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Abstract

In this paper we present a graph-based
approach to question answering. The
method assumes a graph representation
of question sentences and text sentences.
Question answering rules are automati-
cally learnt from a training corpus of ques-
tions and answer sentences with the an-
swer annotated. The method is indepen-
dent from the graph representation formal-
ism chosen. A particular example is pre-
sented that uses a specific graph represen-
tation of the logical contents of sentences.

1 Introduction

Text-based question answering (QA) is the process
of automatically finding the answers to arbitrary
questions in plain English by searching collections
of text files. Recently there has been intensive re-
search in this area, fostered by evaluation-based
conferences such as the Text REtrieval Conference
(TREC) (Voorhees, 2001b), the Cross-Lingual Eval-
uation Forum (CLEF) (Vallin et al., 2005), and the
NII-NACSIS Test Collection for Information Re-
trieval Systems workshops (NTCIR) (Kando, 2005).
Current research focuses on factoid question an-
swering, whereby the answer is a short string that
indicates a fact, usually a named entity. An exam-
ple of a factoid question is Who won the 400m race
in the 2000 Summer Olympic games?, which has a
short answer: Cathy Freeman.

There are various approaches to question answer-
ing. The focus of this paper is on rule-based sys-

tems. A rule could be, say, “if the question is of
the form Who is the <position> of <country>” and
a text sentence says <position> of <country> Y
and Y consists of two capitalised words, then Y is
the answer”). Such a rule was used by Soubbotin
(2001), who developed a system who obtained the
best accuracy in the 2001 Text REtrieval Conference
(Voorhees, 2001a). The system developed by Soub-
botin (2001) relied on the development of a large
set of patterns of potential answer expressions, and
the allocation of those patterns to types of questions.
The patterns were developed by hand by examining
the data.

Soubbotin (2001)’s work shows that a rule-based
QA system can produce good results if the rule set is
comprehensive enough. Unfortunately, if the system
is ported to a new domain the set of rules needs to
be ported as well. It has not been proven that rules
like the ones developed by Soubbotin (2001), which
were designed for the TREC QA task, can be ported
to other domains. Furthermore, the process of pro-
ducing the rules was presumably very labour inten-
sive. Consequently, the cost of manually producing
new rules for a specialised domain could become too
expensive for some domains.

In this paper we present a method for the auto-
matic learning of question answering rules by apply-
ing graph manipulation methods. The method relies
on the representation of questions and answer sen-
tences as graphs. Section 2 describes the general
format of the graph-based QA rules and section 3
describes the method to learn the rules. The meth-
ods described on the above two sections are indepen-
dent of the actual sentence representation formalism,
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as long as the representation is a graph. Section 4
presents a specific application using logical graphs.
Finally, sections 5 and 6 focus on related research
and final conclusions, respectively.

2 Question Answering Rules

In one form or another, a question answering rule
must contain the following information:

1. a pattern that matches the question;

2. a pattern that matches the corresponding an-
swer sentence; and

3. a pointer to the answer in the answer sentence

The patterns in our rules are expressed as graphs
with vertices containing variables. A vertex with
a variable can unify with a subgraph. For exam-
ple, Figure 1 shows two graphs and a pattern that
matches both graphs.

Graph 1
1 2 3

4

5

Graph 2
1 2 7 8

9

Pattern
1 2 X

Y

Figure 1: Two graphs and a pattern (variables in up-
percase)

Such patterns are used to match the graph repre-
sentation of the question. If a pattern defined in a
rule matches a question sentence, then the rule ap-
plies to the sentence.

Our rules specify the pattern of the answer sen-
tence in an unusual way. Instead of keeping a pat-
tern to match the answer sentence, our rules define
an extension graph that will be added to the graph of
the question. The rationale for this is that we want to
reward answer sentences that have a high similarity
with the question. Therefore, the larger the num-
ber of vertices and edges that are shared between the
question and the answer, the better. The extension
graph contains information that simulates the dif-
ference between a question sentence and a sentence
containing an answer.

For example, lets us use graph representations
of syntactic dependency structures. We will base
our representation on the output of Connexor
(Tapanainen and Järvinen, 1997), but the choice of
parser is arbitrary. The same method applies to the
output of any parser, as long as it can be represented
as a graph. In our choice, the dependency structure
is represented as a bipartite graph where the lexi-
cal entries are the vertices represented in boxes and
the dependency labels are the vertices represented in
ovals. Figure 2 shows the graphs of a question and
an answer sentence, and an extension of the question
graph. The answer is shown in thick lines, and the
extension is shown in dashed lines. This is what we
aim to reproduce with our graph rules. In particular,
the extension of the question graph is such that the
graph of the answer sentence becomes a subgraph of
the extended question graph.

The question and answer sentence of Figure 2
have an almost identical dependency graph and con-
sequently the extension required to the question
graph is very small. Sentence pairs with more dif-
ferences would induce a more substantial extension
graph.

Note that the extended graph still contains the rep-
resentation of information that does not appear in
the answer sentence, namely the question term what
book. There is no need to remove any element from
the question graph because, as we will see later, the
criteria to score the answer extracted are based on
the overlap between graphs.

In sum, a graph rule has the following compo-
nents:

Rp a question pattern;

Re an extension graph, which is a graph to be added
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Q: What book did Rachel Carson write in 1962? A: In 1962 Rachel Carson wrote “Silent Spring”
write

v ch obj loc

do book in

subj det pcomp

carson what 1962

attr

rachel

write

subj obj tmp

carson in

attr

1962

spring

attr

silent

Q extended
write

v ch obj loc

do book in

subj det pcomp

carson what 1962

attr

rachel

spring

attr2

silent

Figure 2: Graph of a question, an answer sentence, and an extension of the question graph
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to the question graph; and

Ra a pointer to the answer in the extension graph

An example of a rule is shown in Figure 3. This
rule is derived from the pair of question and answer
sentence shown in Figure 2.

X

obj

Y

det

what

ANSWER

Figure 3: Example of a QA rule. Rp is in solid lines,
Re is in dashed lines, and Ra is in thick lines.

The rule can be used with a fresh pair of question
qi and answer sentence asi. Let us use the notation
Gr(s) to denote the graph that represents the string
s. Also, unless said explicitly, names starting with
uppercase denote graphs, and names starting with
lowercase denote strings. Informally, the process to
find the answer is:

1. If Gr(qi) matches Rp then the rule applies.
Otherwise try a new rule.

2. Extend Gr(qi) with re to produce a new graph
ERe

qi
.

3. Compute the overlap between ERe
qi

and
Gr(asi).

4. If a part of Ra is in the resulting overlap, then
expand its projection on Gr(asi).

The crucial point in the process is to determine
the projection of an overlap on the answer sentence,
and then to extend it. Once the overlap is found in
step 3, if this overlap includes part of the annotated
answer, that is if it includes Ra, then part of the an-
swer will be the string in the answer sentence that
corresponds to the overlap. The full answer can be
retrieved by expanding the answer found in the over-
lap by following the outgoing edges in the graph of

qi What book did Michael Ende write in 1984? ex-
tended with the extension graph (Re) of Figure 3

write

v ch obj loc

do book in

subj det pcomp

ende what 1984

attr

michael

ANSWER

asi In 1984 Michael Ende wrote the novel titled
“The Neverending Story”

write

v ch obj loc

do novel in

subj det mod pcomp

ende the title 1984

attr mod

michael story

det attr

the neverending

Figure 4: An extended graph of a question and a
graph of an answer sentence
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write

v ch obj loc

do in

subj pcomp

ende 1984

attr

michael

novel

Figure 5: Overlap of the graphs of Figure 4

the answer. Part of the process is shown in Figures 4
and 5.

In Figure 5 the overlap between the extended
question graph and the answer sentence graph con-
tains the answer fragment novel. After expanding it
we obtain the full answer the novel titled “The Never
Ending Story”.1

3 Learning of Graph Rules

To learn a QA rule we need to determine the in-
formation that is common between a question and
a sentence containing an answer. In terms of graphs,
this is a variant of the well-known problem of find-
ing the maximum common subgraph (MCS) of two
graphs (Bunke et al., 2002).

The problem of finding the MCS of two graphs is
known to be NP-complete, but there are implemen-
tations that are fast enough for practical uses, espe-
cially if the graphs are not particularly large (Bunke
et al., 2002). Given that our graphs are used to repre-
sent sentences, their size would usually stay within
a few tens of vertices. This size is acceptable.

There is an algorithm based on Conceptual
Graphs (Myaeng and López-López, 1992) which is
particularly efficient for our purposes.Their method
follows the traditional procedure of building the as-
sociation graph of the two input graphs. However, in

1Note that this answer is not an exact answer according to
the TREC definition since it contains the string the novel titled;
one further step would be needed to extract the exact answer;
this is work for further research.

contrast with the traditional approach, which finds
the cliques of the association graph (and this is the
part that is NP-complete), the method by Myaeng
and López-López (1992) first simplifies the associa-
tion graph by merging some of its vertices, and then
it proceeds to searching the cliques. By so doing the
algorithm is still exponential on the size of n, but
now n is smaller than with the traditional approach
for the same input graphs.

The method presented by Myaeng and López-
López (1992) finds connected graphs but we also
need to find overlaps that form unconnected graphs.
For example, Figure 6 shows two graphs and their
MCS. The resulting MCS is an unconnected graph,
though Myaeng and López-López (1992)’s algo-
rithm returns the two parts of the graph as indepen-
dent MCSs. It is easy to modify the original algo-
rithm to obtain the desired output, as we did.

Graph 1 Graph 2
1

2
3

4

5

1

2

3 4

5

MCS (overlap)
1

2

4

5

Figure 6: MCS of two graphs

Given two graphs G1 and G2, then their MCS
is MCS(G1, G2). To simplify the notation, we
will often refer to the MCS of two sentences
as MCS(s1, s2). This is to be understood to
be the MCS of the graphs of the two sentences
MCS(Gr(s1), Gr(s2)).

Let us now assume that the graph rule R is origi-
nated from a pair (q,as) in the training corpus, where
q is a question and as a sentence containing the an-
swer a. The rule components are built as follows:

Rp is the MCS of q and as, that is, MCS(q, as).

Re is the path between the projection of Rp in
Gr(as) and the actual answer Gr(a).

Ra is the graph representation of the exact answer.
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Note that this process defines Rp as the MCS of
question and answer sentence. Consequently, Rp

is a subgraph of both the question and the answer
sentence. This constraint is stronger than that of a
typical QA rule, where the pattern needs to match
the question only. The resulting question pattern is
therefore more general than it could be had one man-
ually built the rule. Rp does not include question-
only elements in the question pattern because it is
difficult to determine what components of the ques-
tion are to be added to the pattern, and what compo-
nents are idiosyncratic to the specific question used
in the training set.

Rules learnt this way need to be generalised in or-
der to form generic patterns. We currently use a sim-
ple method of generalisation: convert a subset of the
vertices into variables. To decide whether a vertex
can be generalised a list of very common vertices is
used. This is the list of “stop vertices”, in analogy to
the concept of stop words in methods to detect key-
words in a string. Thus, if a vertex is not in the list
of stop vertices, then the vertex can be generalised.
The list of stop vertices is fixed and depends on the
graph formalism used.

For the question answering process it is useful to
associate a weight to every rule learnt. The rule
weight is computed by testing the accuracy of the
rule in the training corpus. This way, rules that over-
generalise acquire a low weight. The weight W(r)
of a rule r is computed according to its precision on
the training set:

W(r) =
# correct answers found

# answers found

4 Application: QA with Logical Graphs

The above method has been applied to graphs rep-
resenting the logical contents of sentences. There
has been a long tradition on the use of graphs for
this kind of sentence representation, such as Sowa’s
Conceptual Graphs (Sowa, 1979), and Quillian’s Se-
mantic Nets (Quillian, 1968). In our particular ex-
periment we have used a graph representation that
can be built automatically and that can be used effi-
ciently for QA (Mollá and van Zaanen, 2006).

A Logical Graph (LG) is a directed, bipartite
graph with two types of vertices, concepts and re-
lations.

Concepts Examples of concepts are objects dog, ta-
ble, events and states run, love, and properties
red, quick.

Relations Relations act as links between concepts.
To facilitate the production of the LGs we have
decided to use relation labels that represent
verb argument positions. Thus, the relation 1
indicates the link to the first argument of a verb
(that is, what is usually a subject). The re-
lation 2 indicates the link to the second argu-
ment of a verb (usually the direct object), and
so forth. Furthermore, relations introduced by
prepositions are labelled with the prepositions
themselves. Our relations are therefore close to
the syntactic structure.

An example of a LG is shown in Figure 7, where
the concepts are pictured in boxes and the relations
are pictured in ovals.

The example in Figure 7 shows LG’s ability to
provide the graph representation of sentences with
embedded clauses. In contrast, other theories (such
as Sowa (1979)’s Conceptual Graphs) would rep-
resent the sentence as a graph containing vertices
that are themselves graphs. This departs from the
usual definition of a graph, and therefore standard
Graph Theory algorithms would need to be adapted
for Conceptual Graphs. An advantage of our LGs,
therefore, is that they can be manipulated with stan-
dard Graph Theory algorithms such as the ones de-
scribed in this paper.

Using the LG as the graph representation of
questions and answer sentences, we implemented a
proof-of-concept QA system. The implementation
and examples of graphs are described by Mollá and
van Zaanen (2005) and here we only describe the
method to generalise rules and the decisions taken
to choose the exact answer.

The process to generalise rules takes advantage
of the two kinds of vertices. Basically, relation ver-
tices represent names of relations and we considered
these to be important in the rule. Consequently rela-
tions edges were left unmodified in the generalised
rule. Concept vertices are generalised by replacing
them with generic variables, except for a specific set
of “stop concepts” which were not generalised. The
list of stop concepts is very small:
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tom 1 believe 2

want1mary 2

marry1 2

sailor

Tom believes that Mary wants to marry a sailor

Figure 7: Example of a Logical Graph

and, or, not, nor, if, otherwise, have, be,
become, do, make

Every question/answer pair in the training corpus
generates one rule (or more if we use a process of
increasingly generalising the rules). Since the rule is
based on deep linguistic information, it generalises
over syntactic paraphrases. Consequently, a small
training corpus suffices to produce a relatively large
number of rules.

The QA system was trained with an annotated
corpus of 560 pairs of TREC questions and answer
sentences where the answers were manually anno-
tated. We only tested the ability of the system to ex-
tract the exact answers. Thus, the system accepted
pairs of question and answer sentences (where the
sentence is guaranteed to contain an answer), and
returned the exact answer. Given a question and an-
swer sentence pair, the answer is found by applying
all matching rules. All strings found as answers are
ranked by multiplying the rule weights and the sizes
of the overlaps. If an answer is found by several
rules, its score is the sum of all scores of each indi-
vidual sentence. Finally, if an answer occurs in the
question it is ignored. The results of a five-fold cross
validation on the annotated corpus gave an accuracy
(percentage of questions where the correct answer
was found) of 21.44%. Given that the QA system
does not do any kind of question classification and it
does not use any NE recogniser, the results are sat-
isfactory.

5 Related Research

There have been other attempts to learn QA rules au-
tomatically. For example, Ravichandran and Hovy
(2002) learns rules based on simple surface patterns.
Given that surface patterns ignore much linguistic
information, it becomes necessary to gather a large

corpus of questions together with their answers and
sentences containing the answers. To obtain such
a corpus Ravichandran and Hovy (2002) mine the
Web to gather the relevant data.

Other methods learn patterns based on syntactic
information. For example, Shen et al. (2005) de-
velop a method of extracting dependency paths con-
necting answers with words found in the question.
However we are not aware of any method that at-
tempts to learn patterns based on logical informa-
tion, other than our own.

There is recent interest on the use of graph
methods for Natural Language Processing, such
as document summarisation (Mihalcea, 2004) doc-
ument retrieval (Montes-y-Gómez et al., 2000;
Mishne, 2004), and recognition of textual entailment
(Pazienza et al., 2005). The present very workshop
shows the current interest on the area. However,
we are not aware of any significant research about
the use of conceptual graphs (or any other form of
graph representation) for question answering other
than our own.

6 Conclusions

We have presented a method to learn question an-
swering rules by applying graph manipulation meth-
ods on the representations of questions and answer
sentences. The method is independent of the actual
graph representation formalism.

We are studying to combine WordNet with a
Named Entity Recogniser to produce generalised
rules. This way it becomes possible to replace ver-
tices with vertex types (e.g. “PERSON”, “DATE”,
etc). We are also exploring the use of machine learn-
ing techniques to learn classes of vertices. In par-
ticular, grammar induction techniques (van Zaanen,
2002) could be applied to learn types of regularities
in the strings.
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Further research will also focus on developing
methods to extend the question pattern Rp with in-
formation found in the question only. A possibility
is to keep a database of question subgraphs that are
allowed to be added to Rp. This database could be
built by hand, but ideally it should be learnt auto-
matically.

Additional research efforts will be allocated to de-
termine degrees of word similarity or paraphrasing,
such as the connection between was born in and ’s
birthplace is. In particular, we will explore the use
of nominalisations. We will also study paraphrasing
methods to detect these connections.

Considering that text information as complex as
syntactic information or even logic and semantic
information can be expressed in graphs (Quillian,
1968; Schank, 1972; Sowa, 1979), we are convinced
that the time is ripe to explore the use of graphs for
question answering.
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