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1 Introduction

One step in the curation process isgeneId finding—
the task of finding the database identifier of every
gene discussed in an article. GeneId-finding was
studied experimentally in the BioCreatIvE challenge
(Hirschman et al., 2005), which developed testbed
problems for each of three model organisms (yeast,
mice, and fruitflies). Here we considergeneId rank-
ing, a relaxation of geneId-finding in which the sys-
tem provides a ranked list of genes that might be
discussed by the document. We show how multi-
ple named entity recognition (NER) methods can
be combined into a single high-performance geneId-
ranking system.

2 Methods and Results

We focused on the mouse dataset, which was the
hardest for the BioCreatIvE participants. This
dataset consists of several parts. Thegene synonym
list consists of 183,142 synonyms for 52,594 genes;
the training data consists of 100 mouse-relevant
Medline abstracts, associated with the MGI geneId’s
for those genes that are mentioned in the abstract;
the evaluation dataconsists of an additional 50
mouse-relevant Medline abstracts, also associated
with the MGI geneId’s as above; thetest datacon-
sists of an additional 250 mouse-relevant Medline
abstracts, again associated with MGI geneId’s; fi-
nally the historical data consists of 5000 mouse-
relevant Medline abstracts, each of which is associ-
ated with the MGI geneId’s for all genes which are
(a) associated with the article according to the MGI
database, and (b) mentioned in the abstract, as deter-

mined by an automated procedure based on the gene
synonym list.1 We also annotated the evaluation-
data for NER evaluation.

We used two closely related gene-protein NER
systems in our experiments, both trained using
Minorthird (Min, 2004) on the YAPEX corpus
(Franźen et al., 2002). Thelikely-protein extractor
was designed to have high precision and lower re-
call, and thepossible-protein extractorwas designed
to have high recall and lower precision. As shown in
Table 1, the likely-protein extractor performs well
on the YAPEX test set, but neither system performs
well on the mouse evaluation data—here, they per-
form only comparably to exact matching against the
synonym dictionary. This performance drop is typ-
ical when learning-based NER systems are tested
on data from a statistical distribution different from
their training set.

As a baseline for geneId-ranking, we used a string
similarity metric calledsoft TFIDF, as implemented
in the SecondString open-source software package
(Cohen and Ravikumar, 2003), and soft-matched ex-
tracted gene names against the synonym list. Ta-
ble 2 shows themean average precisionon the eval-
uation data. Note that the geneId ranker based on
possible-protein performs statistically significantly
better2 than the one based on likely-protein, even
though possible-protein has a lower F score.

To combine these two NER systems, we represent
all information as a labeled directed graph which in-

1The training data and evaluation data are subsets of the
BioCreatIvE “devtest” set. The historical data was called “train-
ing data” in the BioCreatIvE publications. The test data is the
same as the blind test set used in BioCreatIvE.

2With z = 3.1, p > 0.995 using a two-tailed paired test.
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Precis. Recall F
mouse eval
likely-prot 0.667 0.268 0.453
possible-prot 0.304 0.566 0.396
dictionary 0.245 0.439 0.314
YAPEX test
likely-prot 0.872 0.621 0.725
YAPEX system 0.678 0.664 0.671

Table 1: Performance of the NER systems on the
mouse evaluation corpus and the YAPEX test cor-
pus.

Mean Average
Precision (MAP)

mouse evaluation data
likely-prot + softTFIDF 0.450
possible-prot + softTFIDF 0.626
graph-based ranking 0.513

+ extra links 0.730
+ extra links & learning 0.807

Table 2: Mean average precision of several geneId-
ranking methods on the 50 abstracts from the mouse
evaluation dataset.

cludes the test abstracts, the extracted names, the
synonym list, and the historical data. We then use
proximity in a graphfor ranking. The graph used
is illustrated in Figure 1. Nodes in this graph can
be eitherfiles, strings, terms, or user-defined types.
Abstracts and gene synonyms are represented asfile
and string nodes, respectively. Files are linked to
the terms (i.e., the words) that they contain, and
terms are linked to the files that contain them.3 File
nodes are also linked tostring nodes corresponding
to the output of an NER system on that file. (String
nodes are simply short files.) The graph also con-
tains geneIdnodes andsynonymstring nodes cre-
ated from the dictionary, and for each historical-data
abstract, we include links to its associated geneId
nodes.

Given this graph, gene identifiers for an abstract
are generated by traversing the graph away from the
abstract node, and looking forgeneIdnodes that are
“close” to the abstract according to a certain proxim-

3In fact, all edges have inverses in the graph.

Figure 1: Part of a simplified version of the graph
used for geneId ranking.

ity measure for nodes. Similarity between two nodes
is defined by alazy walk process, similar to PageR-
ank with decay. The details of this are described in
the full paper and elsewhere (Minkov et al., 2006).
Intuitively, however, this measures the similarity of
two nodes by the weighted sum of all paths that con-
nect the nodes, where shorter paths will be weighted
exponentially higher than longer paths. One conse-
quence of this measure is that information associ-
ated with paths like the one on the left-hand side of
the graph—which represents a soft-match between a
likely-protein and a synonym—can be reinforced by
other types of paths, like the one on the right-hand
side of the figure.

As shown in Table 2, the graph-based approach
has performance intermediate between the two base-
line systems. However, the baseline approaches in-
clude some information which is not available in the
graph, e.g., the softTFIDF distances, and the implicit
knowledge of the “importance” of paths from an ab-
stract to a synonym via an NER-extracted string. To
include this information, we inserted extra edges la-
beledproteinToSynonymbetween the extracted pro-
tein stringsx and comparable synonymsy, and also
“short-cut” edges in the graph that directly link ab-
stractsx to geneIdnodes reachable via one of the
“important” paths described above.

As Table 2 shows, graph search with the aug-
mented graph does indeed improve MAP perfor-
mance on the mouse evaluation data: performance
is better than the simple graph, and also better than
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MAP Avg Max F
mouse test data
likely-prot + softTFIDF 0.368 0.421
possible-prot + softTFIDF 0.611 0.672
graph-based ranking 0.640 0.695

+ extra links & learning 0.711 0.755

Table 3: Mean average precision of several geneId-
ranking methods on the 250 abstracts from the
mouse test dataset.

either of the baseline methods described above.
Finally we extended the lazy graph walk to pro-

duce, for each nodex reached on the walk, a feature
vector summarizing the walk. Intuitively, the fea-
ture vector records certain features of each edge in
the graph, weighting these features according to the
probability of traversing the edge. We then use a
learning-to-rank method (Collins and Duffy, 2002)
to rerank the top 100 nodes. Table 2 shows that
learning improves performance. In combination, the
techniques described have improved MAP perfor-
mance to 0.807, an improvement of nearly 80% over
the most natural baseline (i.e., soft-matching the dic-
tionary to the NER method with the best F measure).

As a final prospective test, we applied these meth-
ods to the 250-abstract mouse test data. We com-
pared their performance to the graph-based search
method combined with a reranking postpass learned
from the 100-abstract mouse training data. The per-
formance of these methods is summarized in Ta-
ble 3. The somewhat lower performance is proba-
bly due to variation in the two samples.4 We also
computed the maximal F-measure (over any thresh-
old) of each ranked list produced, and then averaged
these measures over all queries. This is compara-
ble to the best F1 scores in the BioCreatIvE work-
shop, although the averaging for BioCreatIvE was
done differently.

3 Conclusion

We evaluate several geneId-ranking systems, in
which an article is associated with a ranked list of
possible gene identifiers. We find that, when used

4For instance, the test-set abstracts contain somewhat more
proteins on average (2.2 proteins/abstract) than the evaluation-
set abstracts (1.7 proteins/abstract).

in the most natural manner, the F-measure perfor-
mance of an NER systems does not correlate well
with MAP of the geneId-ranker based on it: rather,
the NER system with higher recall, but lower overall
performance, has significantly better performance
when used for geneId-ranking.

We also present a graph-based scheme for com-
bining NER systems, which allows many types of
information to be combined. Combining this sys-
tem with learning produces performance much bet-
ter than either NER system can achieve alone. On
average, 68% of the correct proteins will be found in
the top two elements of the list, 84% will be found
in the top five elements, and more than 90% will
be found in the top ten elements. This level of per-
formance is probably good enough to be of use in
curation.
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