
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X),
pages 201–205, New York City, June 2006.c©2006 Association for Computational Linguistics

Vine Parsing and Minimum Risk Reranking for Speed and Precision∗

Markus Dreyer, David A. Smith, and Noah A. Smith
Department of Computer Science / Center for Language and Speech Processing

Johns Hopkins University, Baltimore, MD 21218 USA
{markus, {d,n }asmith }@cs.jhu.edu

Abstract

We describe our entry in the CoNLL-X shared task.
The system consists of three phases: a probabilistic
vine parser (Eisner and N. Smith, 2005) that pro-
duces unlabeled dependency trees, a probabilistic
relation-labeling model, and a discriminative mini-
mum risk reranker (D. Smith and Eisner, 2006). The
system is designed for fast training and decoding and
for high precision. We describe sources of cross-
lingual error and ways to ameliorate them. We then
provide a detailed error analysis of parses produced
for sentences in German (much training data) and
Arabic (little training data).

1 Introduction

Standard state-of-the-art parsing systems (e.g.,
Charniak and Johnson, 2005) typically involve two
passes. First, aparser produces a list of the most
likely n parse trees under a generative, probabilistic
model (usually some flavor of PCFG). A discrim-
inative reranker then chooses among trees in this
list by using an extended feature set (Collins, 2000).
This paradigm has many advantages: PCFGs are
fast to train, can be very robust, and perform bet-
ter as more data is made available; and rerankers
train quickly (compared to discriminative models),
require few parameters, and permit arbitrary fea-
tures.

We describe such a system fordependencypars-
ing. Our shared task entry is a preliminary system
developed in only 3 person-weeks, and its accuracy
is typically one s.d. below the average across sys-
tems and 10–20 points below the best system. On

∗This work was supported by NSF ITR grant IIS-0313193,
an NSF fellowship to the second author, and a Fannie and John
Hertz Foundation fellowship to the third author. The views ex-
pressed are not necessarily endorsed by the sponsors. We thank
Charles Schafer, Keith Hall, Jason Eisner, and Sanjeev Khudan-
pur for helpful conversations.

the positive side, its decoding algorithms have guar-
anteedO(n) runtime, and training takes only a cou-
ple of hours. Having designed primarily forspeed
androbustness, we sacrifice accuracy. Betteresti-
mation, reranking on larger datasets, and more fine-
grained parsing constraints are expected to boost ac-
curacy while maintaining speed.

2 Notation

Let a sentencex = 〈x1, x2, ..., xn〉, where eachxi is
a tuple containing a part-of-speech tagti and a word
wi, and possibly more information.1 x0 is a special
wall symbol, $, on the left. A dependency treey
is defined by three functions:yleft andyright (both
{0, 1, 2, ..., n} → 2{1,2,...,n}) that map each word to
its sets of left and right dependents, respectively, and
ylabel : {1, 2, ..., n} → D, which labels the relation-
ship between wordi and its parent from label setD.

In this work, the graph is constrained to be apro-
jectivetree rooted at $: each word except $ has a sin-
gle parent, and there are no cycles or crossing depen-
dencies. Using a simple dynamic program to find the
minimum-error projective parse, we find that assum-
ing projectivity need not harm accuracy very much
(Tab. 1, col. 3).

3 Unlabeled Parsing

The first component of our system is an unlabeled
parser that, given a sentence, finds theU best un-
labeled trees under a probabilistic model using a
bottom-up dynamic programming algorithm.2 The
model is a probabilistic head automaton grammar
(Alshawi, 1996) that assumes conditional indepen-

1We used words and fine tags in our parser and labeler, with
coarse tags in one backoff model. Other features are used in
reranking; we never used the given morphological features or
the “projective” annotations offered in the training data.

2The execution model we use is best-first, exhaustive search,
as described in Eisner et al. (2004). All of our dynamic pro-
gramming algorithms are implemented concisely in the Dyna
language.

201

B` Br

projective oracle

(B
` , B

r)-vine oracle

20-best unlabeled oracle

1-best unlabeled

unlabeled, reranked

20×50-best labeled oracle

1×1-best labeled

reranked (labeled)

(unlabeled)

(non-$ unl. recall)

(non-$ unl. precision)
Arabic 10 4 99.8 90.7 71.5 68.1 68.7 59.7 52.0 53.4 68.5 63.4 76.0
Bulgarian 5 4 99.6 90.7 86.4 80.1 80.5 85.1 73.0 74.8 82.0 74.3 86.3
Chinese 4 4 100.0 93.1 89.9 79.4 77.7 88.6 72.6 71.6 77.6 61.4 80.8
Czech 6 4 97.8 90.5 79.2 70.3 71.5 72.8 58.1 60.5 70.7 64.8 75.7
Danish 5 4 99.2 91.4 84.6 77.7 78.6 79.3 65.5 66.6 77.5 71.4 83.4
Dutch 6 5 94.6 88.3 77.5 67.9 68.8 73.6 59.4 61.6 68.3 60.4 73.0
German 8 7 98.8 90.9 83.4 75.5 76.2 82.3 70.1 71.0 77.0 70.2 82.9
Japanese 4 1 99.2 92.2 90.7 86.3 85.1 89.4 81.6 82.9 86.0 68.5 91.5
Portuguese 5 5 98.8 91.5 85.9 81.4 82.5 83.7 73.4 75.3 82.4 76.2 87.0
Slovene 6 4 98.5 91.7 80.5 72.0 73.3 72.8 57.5 58.7 72.9 66.3 78.5
Spanish 5 6 100.0 91.2 77.3 71.5 72.6 74.9 66.2 67.6 72.9 69.3 80.7
Swedish 4 5 99.7 94.0 87.5 79.3 79.6 81.0 65.5 67.6 79.5 72.6 83.3
Turkish 6 1 98.6 89.5 73.0 61.0 61.8 64.4 44.9 46.1 60.5 48.5 61.6

parser reranker labeler reranker

1 2 3 4 5 6 7 8 9 10 11 12 13

Table 1: Parameters and performance on test data.B` andBr were chosen to retain 90% of dependencies
in training data. We show oracle, 1-best, and reranked performance on the test set at different stages of the
system. Boldface marks oracle performance that, given perfect downstream modules, would supercede the
best system. Italics mark the few cases where the reranker increased error rate. Columns 8–10 show labeled
accuracy; column 10 gives the final shared task evaluation scores.

dence between the left yield and the right yield of
a given head, given the head (Eisner, 1997).3 The
best known parsing algorithm for such a model is
O(n3) (Eisner and Satta, 1999). TheU -best list is
generated using Algorithm 3 of Huang and Chiang
(2005).

3.1 Vine parsing (dependency length bounds)

Following Eisner and N. Smith (2005), we also im-
pose a bound on the string distance between every

3To empirically test this assumption across languages, we
measured the mutual information between different features of
yleft(j) andyright(j), givenxj . (Mutual information is a statis-
tic that equals zero iff conditional independence holds.) A de-
tailed discussion, while interesting, is omitted for space, but we
highlight some of our findings. First, unsurprisingly, the split-
head assumption appears to be less valid for languages with
freer word order (Czech, Slovene, German) and more valid for
more fixed-order languages (Chinese, Turkish, Arabic) or cor-
pora (Japanese). The children of verbs and conjunctions are the
most frequent violators. The mutual information between the
sequence of dependency labels on the left and on the right, given
the head’s (coarse) tag, only once exceeded 1 bit (Slovene).

child and its parent, with the exception of nodes at-
taching to $. Bounds of this kind are intended to im-
prove precision of non-$ attachments, perhaps sac-
rificing recall. Fixing boundB`, no left dependency
may exist between childxi and parentxj such that
j−i > B` (similarly for right dependencies andBr).
As a result, edge-factored parsing runtime is reduced
from O(n3) to O(n(B2

` + B2
r)). For each language,

we chooseB` (Br) to be the minimum value that
will allow recovery of 90% of the left (right) depen-
dencies in the training corpus (Tab. 1, cols. 1, 2, and
4). In order to match the training data to the parsing
model, we re-attach disallowed long dependencies
to $ during training.

3.2 Estimation

The probability model predicts, for each parent word
xj , {xi}i∈yleft (j) and{xi}i∈yright (j). An advantage
of head automaton grammars is that, for a given par-
ent nodexj , the children on the same side,yleft(j),

202

for example, can depend on each other (cf. McDon-
ald et al., 2005). Child nodes in our model are gener-
ated outward, conditional on the parent and the most
recent same-side sibling (MRSSS). This increases
our parser’s theoretical runtime toO(n(B3

` + B3
r)),

which we found was quite manageable.
Let pary : {1, 2, ..., n} → {0, 1, ..., n} map each

node to its parent iny. Let predy : {1, 2, ..., n} →
{∅, 1, 2, ..., n} map each node to the MRSSS iny if
it exists and∅ otherwise. Let∆i = |i − j| if j is i’s
parent. Our (probability-deficient) model defines

p(y) =

n∏
j=1

 ∏
i∈yleft (j)

p(xi, ∆i | xj , xpredy(i), left)

×p(STOP | xj , xminyleft (j) j , left)

×

 ∏
i∈yright (j)

p(xi, ∆i | xj , predy(i), right)

×p(STOP | xj , xmaxyright (j) j , right) (1)

Due to the familiar sparse data problem, a maxi-
mum likelihood estimate for theps in Eq. 1 performs
very badly (2–23% unlabeled accuracy). Good sta-
tistical parsers smooth those distributions by mak-
ing conditional independence assumptionsamong
variables, including backoff and factorization. Ar-
guably the choice of assumptions made (or interpo-
lated among) is central to the success of many exist-
ing parsers.

Noting that (a) there are exponentially many such
options, and (b) the best-performing independence
assumptions will almost certainly vary by language,
we use a mixture among 8 such models. The same
mixture is used for all languages. The models were
not chosen with particular care,4 and the mixture is
not trained—the coefficients are fixed at uniform,
with a unigram coarse-tag model for backoff. In
principle, this mixture should be trained (e.g., to
maximize likelihood or minimize error on a devel-
opment dataset).

The performance of our unlabeled model’s top
choice and the top-20 oracle are shown in Tab. 1,
cols. 5–6. In 5 languages (boldface), perfect label-
ing and reranking at this stage would have resulted in
performance superior to the language’s best labeled

4Our infrastructure provides a concise, interpreted language
for expressing the models to be mixed, so large-scale combina-
tion and comparison are possible.

system, although the oracle is never on par with the
bestunlabeledperformance.

4 Labeling

The second component of our system is a labeling
model thatindependentlyselects a label fromD for
each parent/child pair in a tree. Given theU best
unlabeled trees for a sentence, the labeler produces
the L best labeled trees for each unlabeled one.
The computation involves anO(|D|n) dynamic pro-
gramming algorithm, the output of which is passed
to Huang and Chiang’s (2005) algorithm to generate
theL-best list.

We separate the labeler from the parser for two
reasons: speed and candidate diversity. In prin-
ciple the vine parser could jointly predict depen-
dency labels along with structures, but parsing run-
time would increase by at least a factor of|D|. The
two stage process also forces diversity in the candi-
date list (20 structures with 50 labelings each); the
1,000-best list ofjointly-decoded parses often con-
tained many (bad) relabelings of the same tree.

In retrospect, assuming independence among de-
pendency labels damages performance substantially
for some languages (Turkish, Czech, Swedish, Dan-
ish, Slovene, and Arabic); note the often large drop
in oracle performance between Tab. 1, cols. 5 and
8. This assumption is necessary in our framework,
because theO(|D|M+1n) runtime of decoding with
anM th-order Markov model of labels5 is in general
prohibitive—in some cases|D| > 80. Pruning and
search heuristics might ameliorate runtime.

If xi is a child ofxj in directionD, andxpred is
the MRSSS (possibly∅), where∆i = |i− j|, we es-
timatep(`, xi, xj , xpred ,∆i | D) by a mixture (un-
trained, as in the parser) of four backed-off, factored
estimates.

After parsing and labeling, we have for each sen-
tence a list ofU × L candidates. Both the oracle
performance of the best candidate in the(20 × 50)-
best list and the performance of the top candidate are
shown in Tab. 1, cols. 8–9. It should be clear from
the drop in both oracle and 1-best accuracy that our
labeling model is a major source of error.

5We tested first-order Markov models that conditioned on
parent or MRSSS dependency labels.

203

5 Reranking

We train a log-linear model combining many feature
scores (see below), including the log-probabilities
from the parser and labeler. Training minimizes
the expected error under the model; we use deter-
ministic annealing to smooth the error surface and
avoid local minima (Rose, 1998; D. Smith and Eis-
ner, 2006).

We reserved 200 sentences in each language for
training the reranker, plus 200 for choosing among
rerankers trained on different feature sets and differ-
ent(U × L)-best lists.6

Features Our reranking features predict tags, la-
bels, lemmata, suffixes and other information given
all or some of the following non-local conditioning
context: bigrams and trigrams of tags or dependency
labels; parent and grandparent dependency labels;
subcategorization frames (in terms of tags or depen-
dency labels); the occurrence of certain tags between
head and child; surface features like the lemma7 and
the 3-character suffix. In some cases the children of
a node are considered all together, and in other cases
left and right are separated.

The highest-ranked features during training, for
all languages, are the parser and labeler probabil-
ities, followed byp(∆i | tparent), p(direction |
tparent), p(label | labelpred , label succ , subcat), and
p(coarse(t) | D, coarse(tparent),Betw), where
Betw is TRUE iff an instance of the coarse tag type
with the highest mutual information between its left
and right children (usually verb) is between the child
and its head.

Feature and Model Selection For training speed
and to avoid overfitting, only a subset of the above
features are used in reranking. Subsets of differ-
ent sizes (10, 20, and 40, plus “all”) are identified
for each language using two naı̈ve feature-selection
heuristics based on independent performance of fea-
tures. The feature subset with the highest accuracy
on the 200 heldout sentences is selected.

6In training our system, we made a serious mistake in train-
ing the reranker on only 200 sentences. As a result, our pre-
testing estimates of performance (on data reserved for model
selection) were very bad. The reranker, depending on condition,
had only 2–20 times as many examples as it had parameters to
estimate, with overfitting as the result.

7The first 4 characters of a word are used where the lemma
is not available.

Performance Accuracy of the top parses after
reranking is shown in Tab. 1, cols. 10–11. Reranking
almost always gave some improvement over 1-best
parsing.8 Because of the vine assumption and the
preprocessing step that re-attaches all distant chil-
dren to $, our parser learns to over-attach to $, treat-
ing $-attachment as a default/agnostic choice. For
many applications a local, incomplete parse may be
sufficiently useful, so we also measured non-$ unla-
beled precision and recall (Tab. 1, cols. 12–13); our
parser has> 80% precision on 8 of the languages.
We also applied reranking (with unlabeled features)
to the 20-best unlabeled parse lists (col. 7).

6 Error Analysis: German

The plurality of errors (38%) in German were er-
roneous $ attachments. For ROOT dependency la-
bels, we have a high recall (92.7%), but low pre-
cision (72.4%), due most likely to the dependency
length bounds. Among the most frequent tags, our
system has most trouble finding the correct heads of
prepositions (APPR), adverbs (ADV), finite auxil-
iary verbs (VAFIN), and conjunctions (KON), and
finding the correct dependency labels for preposi-
tions, nouns, and finite auxiliary verbs.

The German conjunctionund is the single word
with the most frequent head attachment errors. In
many of these cases, our system does not learn
the subtle difference between enumerations that are
headed byA in A und B, with two childrenundand
B on the right, and those headed byB, with undand
A as children on its left.

Unlike in some languages, our labeled oracle ac-
curacy is nearly as good as our unlabeled oracle ac-
curacy (Tab. 1, cols. 8, 5). Among the ten most fre-
quent dependency labels, our system has the most
difficulty with accusative objects (OA), genitive at-
tributes (AG), and postnominal modifiers (MNR).
Accusative objects are often mistagged as subject
(SB), noun kernel modifiers (NK), or AG. About
32% of the postnominal modifier relations (ein Platz
in der Geschichte, ‘a place in history’) are labeled
as modifiers (in die Stadt fliegen, ‘fly into the city’).
Genitive attributes are often tagged as NK since both
are frequently realized as nouns.

8The exception is Chinese, where the training set for rerank-
ing is especially small (see fn. 6).

204

7 Error Analysis: Arabic

As with German, the greatest portion of Arabic er-
rors (40%) involved attachments to $. Prepositions
are consistently attached too low and accounted for
26% of errors. For example, if a form in construct
(idafa) governed both a following noun phrase and
a prepositional phrase, the preposition usually at-
taches to the lower noun phrase. Similarly, prepo-
sitions usually attach to nearby noun phrases when
they should attach to verbs farther to the left.

We see a more serious casualty of the dependency
length bounds with conjunctions. In ground truth
test data, 23 conjunctions are attached to $ and 141
to non-$ to using the COORD relation, whereas 100
conjunctions are attached to $ and 67 to non-$ us-
ing the AUXY relation. Our system overgeneralizes
and attaches 84% of COORD and 71% of AUXY
relations to $. Overall, conjunctions account for
15% of our errors. The AUXY relation is defined
as “auxiliary (in compound expressions of various
kinds)”; in the data, it seems to be often used for
waw-consecutive or paratactic chaining of narrative
clauses. If the conjunctionwa (‘and’) begins a sen-
tence, then that conjunction is tagged in ground truth
as attaching to $; if the conjunction appears in the
middle of the sentence, it may or may not be at-
tached to $.

Noun attachments exhibit a more subtle problem.
The direction of system attachments is biased more
strongly to the left than is the case for the true data.
In canonical order, Arabic nouns do generally attach
on the right: subjects and objects follow the verb; in
construct, the governed noun follows its governor.
When the data deviate from this canonical order—
when, e.g, a subject precedes its verb—the system
prefers to find some other attachment point to the
left. Similarly, a noun to the left of a conjunction
often erroneously attaches to its left. Such ATR re-
lations account for 35% of noun-attachment errors.

8 Conclusion

The tradeoff between speed and accuracy is famil-
iar to any parsing researcher. Rather than starting
with an accurate system and then applying corpus-
specific speedups, we start by imposing carefully-
chosen constraints (projectivity and length bounds)
for speed, leaving accuracy to the parsing and

reranking models. As it stands, our system performs
poorly, largely because the estimation is not state-
of-the-art, but also in part due to dependency length
bounds, which are rather coarse at present. Better re-
sults are achievable by picking different bounds for
different head tags (Eisner and N. Smith, 2005). Ac-
curacy should not be difficult to improve using bet-
ter learning methods, especially given our models’
linear-time inference and decoding.

References

H. Alshawi. 1996. Head automata and bilingual
tiling: Translation with minimal representations.
In Proc. of ACL.

E. Charniak and M. Johnson. 2005. Coarse-to-fine
n-best parsing and maxent discriminative rerank-
ing. In Proc. of ACL.

M. Collins. 2000. Discriminative reranking for nat-
ural language parsing. InProc. of ICML.

J. Eisner and G. Satta. 1999. Efficient parsing
for bilexical context-free grammars and head au-
tomaton grammars. InProc. of ACL.

J. Eisner and N. A. Smith. 2005. Parsing with soft
and hard constraints on dependency length. In
Proc. of IWPT.

J. Eisner, E. Goldlust, and N. A. Smith. 2004.
Dyna: A declarative language for implementing
dynamic programs. InProc. of ACL(companion
volume).

J. Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. InProc. of IWPT.

L. Huang and D. Chiang. 2005. Betterk-best pars-
ing. In Proc. of IWPT.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič.
2005. Non-projective dependency parsing us-
ing spanning tree algorithms. InProc. of HLT-
EMNLP.

K. Rose. 1998. Deterministic annealing for cluster-
ing, compression, classification, regression, and
related optimization problems.Proc. of the IEEE,
86(11):2210–2239.

D. A. Smith and J. Eisner. 2006. Minimum risk an-
nealing for training log-linear models. To appear
in Proc. of COLING-ACL.

205

