
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 180–188,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Semantic Role Labeling via Instance-Based Learning

Chi-San Althon Lin
Department of Computer Science

Waikato University

Hamilton, New Zealand

cl123@cs.waikato.ac.nz

Tony C. Smith
Department of Computer Science

Waikato University

Hamilton, New Zealand

tcs@cs.waikato.ac.nz

Abstract

This paper demonstrates two methods to

improve the performance of instance-

based learning (IBL) algorithms for the

problem of Semantic Role Labeling

(SRL). Two IBL algorithms are utilized:

k-Nearest Neighbor (kNN), and Priority

Maximum Likelihood (PML) with a

modified back-off combination method.

The experimental data are the WSJ23 and

Brown Corpus test sets from the CoNLL-

2005 Shared Task. It is shown that ap-

plying the Tree-Based Predicate-

Argument Recognition Algorithm

(PARA) to the data as a preprocessing

stage allows kNN and PML to deliver F1:

68.61 and 71.02 respectively on the

WSJ23, and F1: 56.96 and 60.55 on the

Brown Corpus; an increase of 8.28 in F1

measurement over the most recent pub-

lished PML results for this problem

(Palmer et al., 2005). Training times for

IBL algorithms are very much faster than

for other widely used techniques for SRL

(e.g. parsing, support vector machines,

perceptrons, etc); and the feature reduc-

tion effects of PARA yield testing and

processing speeds of around 1.0 second

per sentence for kNN and 0.9 second per

sentence for PML respectively, suggest-

ing that IBL could be a more practical

way to perform SRL for NLP applica-

tions where it is employed; such as real-

time Machine Translation or Automatic

Speech Recognition.

1 Introduction

The proceedings from CoNLL2004 and

CoNLL2005 detail a wide variety of approaches

to Semantic Role Labeling (SRL). Many re-

search efforts utilize machine learning (ML) ap-

proaches; such as support vector machines (Mo-

schitti et al., 2004; Pradhan et al., 2004), percep-

trons (Carreras et al., 2004), the SNoW learning

architecture (Punyakanok et al., 2004), EM-

based clustering (Baldewein et al., 2004), trans-

formation-based learning (Higgins, 2004), mem-

ory-based learning (Kouchnir, 2004), and induc-

tive learning (Surdeanu et al., 2003). This paper

compares two instance-based learning ap-

proaches, kNN and PML. The PML method

used here utilizes a modification of the backoff

lattice method used by Gildea & Jurafsky (2002)

to use a set of basic features—specifically, the

features employed for learning in this paper are

Predicate (pr), Voice (vo), Phrase Type (pt), Dis-

tance (di), Head Word (hw), Path (pa), Preposi-

tion in a PP (pp), and an “Actor” heuristic.

The general approach presented here is an

example of memory-based learning. Many

existing SRL systems are also memory-based

(Bosch et al., 2004;Kouchnir, 2004),

implemented using TilMBL software

(http://ilk.kub.nl/software.html) with advanced

methods such as Feature Weighting, and so forth.

This paper measures the performance of kNN

and PML for comparison in terms of accuracy

and processing speed, both against each other

and against previously published results.

2 Related Work

Features
Most of the systems outlined in CoNLL2004 and

CoNLL2005 utilize as many as 30 features for

learning approaches to SRL. The research pre-

sented here uses only seven of these:

180

Figure 1. Illustration of path “NP↑S↓VP↓VBD”

from a constituent “The officer” to the predicate “came”

.
Predicate – the given predicate lemma

Voice – whether the predicate is realized as an

active or passive construction (Pradhan et al.,

2004, claim approximately 11% of the sentences in

PropBank use a passive instantiation)

Phrase Type – the syntactic category (NP, PP, S,

etc.) of the phrase corresponding to the semantic

argument

Distance – the relative displacement from the

predicate, measured in intervening constituents

(negative if the constituent appears prior to the

predicate, positive if it appears after it)

Head Word – the syntactic head of the phrase,

calculated by finding the last noun of a Noun

Phrase

Path – the syntactic path through the parse tree,

from the parse constituent to the predicate being

classified (for example, in Figure 1, the path from

Arg0 – “The officer“ to the predicate “came“, is

represented with the string NP↑S↓VP↓VBD”

represent upward and downward movements in the

tree respectively)

Preposition – the preposition of an argument in a

PP, such as “during”, “at”, “with”, etc (for exam-

ple, in Figure 1, the preposition for the PP with

Argm-Loc label is “to”).

In addition, an actor heuristic is adopted: where

an instance can be labeled as A0 (actor) only if

the argument is a subject before the predicate in

active voice, or if the preposition “by” appears

prior to this argument but after the predicate in a

passive voice sentence. For example, if there is a

set of labels, A0 (subject or actor) V (active) A0

(non actor), then the latter “A0” after V is

skipped and labeled to another suitable role by

this heuristic; such as the label with the second

highest probability for this argument according

to the PML estimate, or with the second shortest

distance estimate by kNN.

2.1 k Nearest Neighbour (kNN) Algorithm

One instance-based learning algorithm is k-

Nearest Neighbour (kNN), which is suitable

when 1) instances can be mapped to

points/classifications in n-dimensional feature

dimension, 2) fewer than 20 features are utilized,

and 3) training data is sufficiently abundant.

One advantage of kNN is that training is very

fast; one disadvantage is it is generally slow at

testing. The implementation of kNN is described

as following

1. Instance base:
All the training data is stored in a format

similar to Bosch et al., (2004)—specifically,

“Role, Predicate, Voice, Phrase type, Dis-

tance, Head Word, Path”. As an example in-

stance, the second argument of a predicate

“take” in the training data is stored as:
A0 take active NP –1 classics NP↑S↓VP↓VBD

This format maps each argument to six fea-

ture dimensions + one classification.

2. Distance metric (Euclidean distance) is de-

fined as:

D(xi, xj) = √√√√Σ(ar(xi))-ar(xj))
2

where r=1 to n (n = number of different clas-

sifications), and ar(x) is the r-th feature of in-

stance x. If instances xi and xj are identical,

then D(xi , xj)=0 otherwise D(xi , xj) repre-

sents the vector distance between xi and xj .

3. Classification function

Given a query/test instance xq to be classified,

let x1, ... xk denote the k instances from the

training data that are nearest to xq. The clas-

sification function is

F^(xq) <- argmaxΣδ(v,f(xi))

where i =1 to k, v =1 to m (m = size of train-

ing data), δ(a,b)=1 if a=b, 0 otherwise; and

v denotes a semantic role for each instance

of training data.

Computational complexity for kNN is linear,

such that TkNN -> O(m * n), which is propor-

tional to the product of the number of features (m)

and the number of training instances (n).

2.2 Priority Maximum Likelihood (PML)

Estimation

Gildea & Jurafsky (2002), Gildea & Hocken-

maier (2003) and Palmer et al., (2005) use a sta-

tistical approach based on Maximum Likelihood

method for SRL, with different backoff combina-

Predicate Arg0

Argm-LOC

181

P(r | hw, pt, pre ,pp) P(r | pt, pa, pr, pp) P(r | pt, di, vo, pr, pp)

P(r | hw, pr, pp) P(r | pt, pr, pp)

 P(r | pr, pp) Local

 Global

P(r | hw, pp) P(r | pt, di, vo, pp)

tion methods in which selected probabilities are

combined with linear interpolation. The prob-

ability estimation or Maximum Likelihood is

based on the number of known features available.

If the full feature set is selected the probability is

calculated by

P (r | pr, vo, pt, di, hw, pa, pp) =

(r, pr, vo, pt, di, hw, pa, pp) /

 # (pr, vo, pt, di, hw, pa, pp)

Gildea & Jurafsky (2002) claims “there is a

trade-off between more-specific distributions,

which have higher accuracy but lower coverage,

and less-specific distributions, which have lower

accuracy but higher coverage” and that the se-

lection of feature subsets is exponential; and that

selection of combinations of different feature

subsets is doubly exponential, which is NP-

complete. Gildea & Jurafsky (2002) propose the

backoff combination in a linear interpolation for

both coverage and precision. Following their

lead, the research presented here uses Priority

Maximum Likelihood Estimation modified from

the backoff combination as follows:

P
’
 (r | pr, vo, pt, di, hw, pa, pp) =

 λ1*P(r | pr, pp) +λ2*P(r | pt, pr, pp) +

λ3*P(r | pt, pa, pr, pp) + λ4*P(r | pt, di,

vo, pp) + λ5*P(r | pt, di, vo, pr, pp) +

λ6*P(r | hw, pp) + λ7*P(r | hw, pr, pp)

+ λ8*P(r | hw, pt, pr, pp)

where Σiλi = 1.

Figure 2 depicts a graphic organization of the

priority combination with more-specific distribu-

tion toward the top, similar to Palmer et al. (2005)

but adding another preposition feature. The

backoff lattice is consulted to calculate probabili-

ties for whichever subset of features is available

to combine. As Gildea & Jurasksy (2002) state,

“the less-specific distributions were used only

when no data were present for any more-specific

distribution. Thus, the distributions selected are

arranged in a cut across the lattice representing

the most-specific distributions for which data are

available.”

Figure 2. Combination of Priority Estimation for

PML system originated from Gildea et al., (2002)

The classification decision is made by the fol-

lowing calculation for each argument in a sen-

tence: argmax r1 .. n P(r1…n | f1,..n) This approach is

described in more detail in Gildea and Jurasky

(2002).

The computational complexity of PML is hard to

calculate due to the many different distributions

at each priority level. In Figure 2, the two calcu-

lations P(r | hw, pp), and P(r | pt, di, vo, pp) be-

long to the global search, while the rest belong to

a local search which can reduce the computa-

tional complexity. Examination of the details of

execution time (described in the results section

of this paper) show that a plot of the execution

time exhibits logarithmic characteristics, imply-

ing that the computational complexity for PML

is log-linear, such that TPML -> O(m * log n)

where m denotes the size of features and n de-

notes the size of training data.

2.3 Predicate-Argument Recognition Algo-

rithm (PARA)

Lin & Smith (2005; 2006) describe a tree-based

predicate-argument recognition algorithm

(PARA). PARA simply finds all boundaries for

given predicates by browsing input parse-trees,

such as given by Charniak’s parser or hand-

corrected parses. There are three major types of

phrases including given predicates, which are VP,

NP, and PP. Boundaries can be recognized

within boundary areas or from the top levels of

clauses (as in Xue & Palmer, 2004). Figure 3

shows the basic algorithm of PARA, and more

details can be found in Lin & Smith (2006). The

best state-of-the-art ML technique using the

same syntactic information (Moschitti, 2005)

only just outperforms a preliminary version of

PARA in F1 from 80.72 to 81.52 for boundary

recognition tasks. But PARA is much faster than

all other existing techniques, and is therefore

used for preprocessing in this study to minimize

query time when applying instance-based learn-

ing to SRL. The computational complexity of

PARA is constant.

3 System Architecture

There are two stages to this system: the building

stage (comparable to training for inductive sys-

tems) and testing (or classification). The build-

ing stage shown in Figure 4 just stores all feature

representations of training instances in memory

without any calculations. All instances are

stored in memory in the format described earlier,

denoting {Role (r), Predicate (pr), Voice (vo),

182

Phrase Type (pt), Path (pa), Distance (di), Head

Word (hw), Preposition in a PP (pp) }. Figure 5

characterizes the testing stage, where new in-

stances are classified by matching their feature

representation to all instances in memory in or-

der to find the most similar instances. There are

two tasks during the testing stage: Argument

Identification (or Boundary recognition) per-

formed by PARA, and Argument Classification

(or Role Labeling) performed using either kNN

or PML. This approach is thus a “lazy learning”

strategy applied to SRL because no calculations

occur during the building stage.

4 Data, Evaluation, and Parsers

The research outlined here uses the dataset re-

leased by the CoNLL-05 Shared Task

(http://www.lsi.upc.edu/~srlconll/soft.html). It

includes several Wall Street Journal sections

with parse-trees from both Charniak’s (2000)

parser and Collins’ (1999) parser. These sections

are also part of the PropBank corpus

(http://www.cis.upenn.edu/~treebank). WSJ sec-

tions 20 and 21 (with Charniak’s parses) were

used as test data. PARA operates directly on the

parse tree. Evaluation is carried out using preci-

sion, recall and F1 measures of assignment-

accuracy of predicated arguments. Precision (p)

is the proportion of arguments predicated by the

system that are correct. Recall (r) is the propor-

tion of correct arguments in the dataset that are

predicated by the system.

Finally, the F1 measure computes the harmonic

mean of precision and recall, such that F1 =2*p*r

/ (p+r), and is the most commonly used primary

measure when comparing different SRL systems.

For consistency, the performance of PARA for

boundary recognition is tested using the official

evaluation script from CoNLL 2005, srl-eval.pl

(http://www.lsi.upc.edu/~srlconll/soft.html) in all

experiments presented in this paper. Related sta-

tistics of training data and testing data are out-

lined in Table 1. The average number of predi-

cates in a sentence for WSJ02-21 is 2.27, and

each predicate comes with an average of 2.64

arguments.

Create_Boundary(predicate, tree)

If the phrase type of the predicate == VP

- find the boundary area (the closest S clause)

- find NP before predicate

- If there is no NP, then find the closest NP from Ancestors.

- find if WHNP in it’s siblings of the boundary area,

if found // for what, which, that , who,…

- if the word of the first WP’s family is “what” then

- add WHNP to boundary list

else // not what, such as who which,…

 - find the closest NP from Ancestors

 - add the NP to the boundary list and add

 this WHNP to boundary list as reference of NP

 - add valid boundaries of the rest of constituents to boundary list.

If phrase type of the predicate ==NP

- find the boundary area (the NP clause)

- find RB(POS) before predicate and add to boundary list.

- Add this predicate to boundary list.

- Add the rest of word group after the predicate and before the end of the NP clause as a

whole boundary to boundary list.

If phrase type of the predicate ==PP

- find the boundary area (the PP clause)

- find the closet NP from Ancestors if the lemma of the predicate is “include”, and add

this NP to boundary list.(special for PropBank)

- Add this predicate to boundary list.

-

Add the rest of children of this predicate to boundary list or add one closest NP outside the boundary

area to boundary list if there is no child after this predicate.

Figure 3. Outline of the Predicate Argument Recognition Algorithm (PARA)

183

Figure 4. Illustration of System Architecture for

the building stage

Figure 5. Illustration of System Architecture for

the testing stage

5 Experiments and Results

Experimental results were obtained for part of

the Brown corpus (the part provided by CoNLL-

2005) and for Wall Street Journal (WSJ)

Sections 21, 23, and 24 using different training

data sets (WSJ 21, WSJ 15 to 18, and WSJ 02 to

21) shown in Table 1. There are two tasks, Role

classification with known arguments as input,

and Boundary recognition & Role classification

with gold (hand-corrected) parses or auto

(Charniak’s) parses. In addition, execution speed,

the learning curve, and some further results for

exploration of kNN and PML are also included

below.

5.1 WSJ 24 with known arguments

Table 2 shows the results from kNN and PML

with known boundaries/arguments (i.e. the sys-

tems are given the correct arguments for role

classification). All training datasets (WSJ02-21)

include Charniak’s parse trees. The table shows

that PML achieves F1: 2.69 better than kNN.

5.2 Features & Heuristic on WSJ 24 with

known arguments

Table 3 shows the contribution of each feature

and the actor heuristic by excluding one feature

or heuristic. It indicates that Head Word, Prepo-

sition, and Distance are the three features that

contribute most to system accuracy, and the addi-

tional Actor heuristic is fourth. Path, Phrase type

and Voice are the three features contibuting the

least for both classification algorithms.

 W02-21 W15-18 W21 W23 W24 Brown

Sent 39,832 8,936 1,671 2,416 1,346 426

Tok 950,028 211,727 40,039 56,684 32,853 7,159

Pred 90,750 19,098 3,627 5,267 3,248 804

Verb 3,101 1,838 855 982 860 351

Args 239,858 50,182 9,598 14,077 8,346 2,177

Table 1. Counts on the data sets used in this pa-

per from CoNLL 2005 Shared Task

Known Boundary on WSJ 24

Algorithm P R F1 Lacc

kNN 83.71 83.73 83.72 85.03

PML 86.29 86.52 86.41 87.20

Table 2. Illustration of results by kNN (k=1)

and PML on WSJ Section 24 with known argu-

ments

5.3 Learning Curve

Table 4 shows that performance improves as

more training data is provided; and that PML

outperforms kNN by about F1:2.8 on average for

WSJ 24 for the three different training sets,

mainly because the backoff lattice improves both

recall and precision. The table shows that it is

not always beneficial to include all features for

labeling all roles. While P(r | hw, pt, pre, pp) is

mainly for adjunctive roles (e.g. AM-TMP), P(r |

pt, di, vo, pr, pp) is mainly for core roles (e.g. A0).

5.4 Performance of Execution Time

Building (or training) time is about 2.5 minutes

for both PML and kNN, whereas it takes any-

where from about 10 hours to 60 hours for other

ML-based architectures (according to the data

presented by McCracken http://www.lsi.upc.es/

~srlconll/st05/slides/mccracken.pdf). Table 5

shows average execution time (in seconds) per

sentence for the two algorithms. PML runs

faster than kNN when all 20 training datasets are

used (i.e. WSJ 02 to 21). A graphic illustration

of execution speed is shown in Figure 6. The

simulation formulas for PML and kNN are “y =

0.1734Ln(x) - 0.9046” and “y = 2.441*10-5
x +

0.0129” respectively. “x” denotes numbers of

training sentences, and “y” denotes second per

sentence related to “x” training sentences. The

execution time for PML is about 8 times longer

than kNN for 1.7k training sentences, but PML

ultimately runs faster than kNN on all 39.8K

training sentences (and, extrapolating from the

graph in Figure 6, on any larger datasets). Thus

PML seems generally more suitable for large

training data.

Input
Instance

retriever
Instance

Base

Input PARA

Instance
Base

Role

Classifier

Output

184

Training sets KNN PML

WSJ 21 0.050 0.396

WSJ 15 - 18 0.241 0.687

WSJ 02 - 21 1.000 0.941

Table 5. Illustration of results for execution

time by kNN and PML on WSJ 24 with known

arguments

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Figure 6. Curve of execution time for kNN (k=1)

and PML on WSJ 24 with known arguments

5.5 WSJ 24 with Gold parses and PARA

Table 6 shows performance for both systems

when gold (hand-corrected) parses are supplied

and PARA preprocessing is employed. Com-

pared to the results in Table 4, the performance

on the combined training sets (WSJ 02 to 21)

drops F1:9.24 and Lacc (label accuracy):2.4 for

kNN; and drops F1:8.02 and Lacc:0.66 for PML

respectively. This may indicate that PML is

more error tolerant in labeling accuracy. How-

ever, both systems perform worse due largely to

an idiosyncratic problem in the PARA-

preprocessor when dealing with hand-corrected

parses—ultimately due to a particular parsing

error.

5.6 WSJ 24 with Charniak’s parses and

PARA

Table 7 shows the performance of both systems

using auto-parsing (i.e. Charniak’s parser) and

PARA argument recognition. Compared to the

results in Table 4, the performance on all training

sets (WSJ 02 to 21) drops F1:17.25 and

Lacc:0.65 for kNN, and F1:16.78 and Lacc:-0.78

(i.e. increasing Lacc) for PML respectively.

Both systems drop a lot in F1 due to errors

caused by the auto-parser (in particular errors

relating to punctuation), whose effects are subse-

quently exacerbated by PARA. Even so, the la-

bel accuracy (Lacc) is more or less similar be-

cause the training dataset are parsed by

Charniak’s parser instead of gold parses.

5.7 WSJ 23 with Charniak’s parses and

PARA

Table 8 shows the results for WSJ 23, where the

performance of PML exceeds kNN by about

F1:3.8. WSJ 23 is used as a comparison dataset

in SRL. More comparisons with other systems

are shown in Table 12.

5.8 Brown corpus with Charniak’s parses

and PARA

Table 9 shows the results when moving to a dif-

ferent language domain—the Brown corpus.

Both systems drop a lot in F1 . Compared to WSJ

23, MPL drops 10.47 in F1 and kNN, 11.65 in F1.

These drops are caused partially by PARA, and

partially by classifiers. PARA in Lin & Smith

(2006) drops about 3.1 in F1 when moving to the

Brown Corpus; but more research is required to

uncover the cause.

5.9 Further results on kNN with all training

data

Table 10 shows different results for various val-

ues of k in kNN. Both systems, GP (gold-parse)

& PARA and CP (Charniak’s parse) & PARA,

perform best (as measured by F1) when K is set

as one. But when the system is labeling a known

argument, selection of k=5 is better in terms of

both F1 and Label accuracy (Lacc).

5.10 Further results on PML with all train-

ing data

Table 11 shows results for PML with different

methods of calculating probabilities. “L+G”

means the basic probability distribution (from

Figure 2). “L only” and “G only” mean all prob-

ability is calculated only as either “local” or

“global”, respectively. “L>>G” means that

probabilities are calculated globally only when

the local probability is zero. “L only” is the fast-

est approach, and “G only” the slowest (about

five seconds per sentence). Both are poor in per-

formance. “L+G” has the best result and

“L>>G” is rated as intermediate in performance

and execution time.

5.11 Comparison with other systems

Table 12 shows results from other existing sys-

tems. In the second row (PARA+PML) is

trained on all datasets (WSJ 02 to 21) for the

“BR+RL” task (to recognize argument bounda-

ries and label arguments) on the test data WSJ 23,

with an improvement of F1:8.28 in comparison to

the result of Palmer et al., (2005) given in the

185

first row. The basic kNN in the fourth row,

trained by four datasets (WSJ 15 to 18 in CoNLL

2004) for the RL” task (to label arguments by

giving the known arguments) on the test data

WSJ 21, increases F1:6.68 compared to the result

of Kouchnir (2004) in the third row. Execution

time for our own re-implementation of Palmer

(2005) is about 3.785 sec per sentence. Instead of

calculating each node in a parse tree like the

Palmer (2005) model, PARA+PML can only fo-

cus on essential nodes from the output of PARA,

which helps to reduce the execution time as

0.941 second per sentence. Execution time by

Palmer (2005) is about 4 times longer than

PARA+PML on the same machine (n.b. execu-

tion times are for a computer running Linux on a

P4 2.6GHz CPU with 1G MBRAM).

More details from different systems and combi-

nations of systems are described in the proceed-

ings of CoNLL-2005.

 kNN k=1 PML

 P R F1 P R F1

ALL 83.71 83.73 83.72 86.29 86.52 86.41

- Voice 81.69 81.60 81.64 85.64 85.90 85.77

- Phrase Type 82.79 82.79 82.79 85.68 85.96 85.82

- Distance 76.53 76.42 76.47 83.76 83.97 83.86

- Head Word 78.26 78.05 78.15 81.84 81.96 81.90

- Path 83.67 83.63 83.65 85.44 85.72 85.58

- Preposition 79.40 79.29 79.33 82.02 82.12 82.07

- Actor 80.38 80.64 80.51 84.74 85.01 84.81

Table 3. Illustration of contribution for each feature and the Actor heuristic by kNN (k=1) and PML

on WSJ 24 with known arguments

 kNN k=1 PML

Training sets P R F1 Lacc P R F1 Lacc

WSJ 21 76.76 77.02 76.89 78.03 79.20 79.26 79.23 80.40

WSJ 15 - 18 80.40 80.18 80.29 81.85 83.61 83.70 83.66 84.61

WSJ 02 - 21 83.71 83.73 83.72 85.03 86.29 86.52 86.41 87.20

Table 4. Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24

with known arguments

 kNN k=1 PML

Training sets P R F1 Lacc P R F1 Lacc

WSJ 21 67.96 67.90 67.93 75.61 70.51 70.57 70.54 78.17

WSJ 15 - 18 72.42 72.25 72.34 80.66 75.64 75.62 75.63 83.55

WSJ 02 - 21 74.48 74.48 74.48 82.63 78.39 78.40 78.39 86.54

Table 6. Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24

with gold (Hand corrected) parses and PARA

 kNN k=1 PML

Training sets P R F1 Lacc P R F1 Lacc

WSJ 21 61.05 60.90 60.98 77.45 63.75 63.43 63.59 80.70

WSJ 15 - 18 64.66 64.11 64.38 82.13 67.55 67.15 67.35 85.23

WSJ 02 - 21 66.62 66.32 66.47 84.38 69.81 69.45 69.63 87.98

Table 7. Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24

with Charniak’s parses and PARA

 kNN k=1 PML

Training sets P R F1 Lacc P R F1 Lacc

WSJ 21 62.87 62.55 62.71 78.85 64.94 64.49 64.71 81.31

WSJ 15 - 18 66.66 65.96 66.31 83.60 69.05 68.52 68.79 86.14

WSJ 02 - 21 68.92 68.31 68.61 86.20 71.24 70.79 71.02 88.77

Table 8. Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 23

with Charniak’s parses and PARA

186

 kNN k=1 PML

Training sets P R F1 Lacc P R F1 Lacc

WSJ 21 52.56 51.40 51.97 67.70 55.17 53.88 54.52 70.15

WSJ 15 - 18 55.58 54.20 54.88 71.56 59.10 57.56 58.32 75.53

WSJ 02 - 21 57.71 56.22 56.96 74.14 61.26 59.85 60.55 78.26

Table 9. Illustration of results with different training datasets by kNN (k=1) and PML on Brown Cor-

pus with Charniak’s parses and PARA

 Known boundary GP & PARA CP & PARA

K F1 Lacc F1 Lacc F1 Lacc

1 83.72 85.03 74.48 82.63 66.47 84.38

3 83.67 85.13 74.33 82.70 65.94 84.03

5 83.89 85.16 74.14 82.28 65.89 83.81

7 83.27 84.66 73.43 81.59 65.52 83.54

9 82.86 84.25 73.00 81.22 65.13 82.99

Table 10. Illustration of results by kNN with different K values on WSJ 24 with known arguments,

Gold (Hand-corrected) parses & PARA and Charniak’s parses & PARA

 Known boundary on WSJ 24

Method P R F1 Lacc T (Sec/Sen)

L+G 86.29 86.52 86.41 87.20 0.941

L only 80.78 80.73 80.76 81.70 0.027

G only 75.60 76.35 75.97 77.52 5.094

L>>G 82.44 82.42 82.43 83.29 0.128

Table 11. Illustration of results by PML with different methods on WSJ 24 with known arguments

System Train Test Tasks P R F1 Lacc T

Palmer (2005) W02-21 W23 BR+RL 68.60 57.80 62.74 81.70 3.785

PARA+PML W02-21 W23 BR+RL 71.24 70.79 71.02 88.77 0.941

Kouchnir (2004) W15-18 W21 RL 75.71 74.60 75.15

kNN W15-18 W21 RL 81.86 81.79 81.83 83.57 0.242

Table 12. Illustration of results for different tasks by different systems and training datasets on differ-

ent testing datasets

6 Summary and Remarks

This paper has shown that basic syntactic infor-

mation is useful for Semantic role labeling using

instance-based learning techniques. Specifically,

the following have been demonstrated:

1. It is possible to achieve acceptable F1

scores with considerably faster execution

times (compared to Gildea & Jurasky, 2002)

for the Semantic role labeling problem us-

ing the Priority Maximum Likelihood in-

stance-based learning algorithm and the

Tree-based Predicate-Argument Algorithm

(PARA) as a preprocessing step, without

any training given a state-of-the-art parser

such as Charniak’s parser. The overall per-

formance on WSJ 23 dataset is 71.02 in F1

score. Performance drops to 60.55 for the

Brown corpus, but this appears to be simi-

lar to performance drops experienced by

other systems reported in CoNLL-2005.

2. F1 performance is better for PML than for

kNN, where the computational complexity

for PML is O(m * log n) as opposed to

O(m * n) for kNN, where m denotes the

number of features and n denotes the num-

ber of training instances.

3. Execution time for the instance-based

learning presented here is about four times

faster for SRL than the comparable ap-

proach used by Palmer, (2005). That is,

PARA plays an important role reducing the

overhead during classification when using

instance-based learning.

4. Using PARA, and other modifications such

as the preposition feature and Actor heuris-

tic, improves the accuracy of both kNN and

PML in comparison to similar approaches.

187

5. The best system developed for this paper

(PML & PARA) is still outperformed by

some of the best systems from CoNLL-

2005 when it comes to accuracy, but it is

much simpler and is many orders-of-

magnitude faster at delivering acceptable

performance.

With the latest revised and optimized PML, the

performance on WSJ 23 is 71.22 in F1, and the

speed is 0.623 second per sentence with 3.0G

CPU and 1 G RAM. Koomen et al. (2006), with

more than 25 features, achieved the best results

reported in CoNLL2005 on WSJ 24; but PML’s

performance (using PARA as a preprocessor, and

seven features) achieves an F1 measure 5.10 less

than Kooman’s system (74.76) on WSJ 24 utilis-

ing Charniak-1 parses, and 4.07 less when using

Kooman’s test result (WSJ 23) as known-

boundary input. In this experiment, with the Ac-

tor heuristic, PML delivers better accuracy for

A0 (89.96%) than Kooman’s (88.22%), but the

recall (83.53%) is 4.35 % lower than Kooman’s

(87.88%). There are some spaces to improve

PML such as low accuracy on AM-MOD, and

AM-NEG, and duplicate core roles, and forth.

Future work will investigate using more features,

new heuristics and/or other ML approaches to

improve the performance of instance-based

learning algorithms at the SRL task.

References

Baldewein, U, Erk, K, Padó, S. and Prescher, D.

(2004). Semantic role labelling with similarity-

based generalization using EM-based clustering In

Proceedings of Senseval-3 pp. 64-68

Bosch, A. V. D., Canisius, S., Daelemans, W., and

Sang, E. T. K. (2004). Memory-based semantic

role labeling: Optimizing features, algorithm and

output. In Proceeding of CoNLL’2004 Shared Task.

Carreras, X., Màrquez, L. and Chrupała, G. (2004).

Hierarchical Recognition of Propositional Argu-

ments with Perceptrons. In Proceeding of

CoNLL’2004 Shared Task.

Charniak, E. (2000). A Maximum-Entropy-Inspired

Parser. In Proceedings of NAACL-2000.

Collins, M. (1999). Head-Driven Statistical Models

for Natural Language Parsing. PhD Dissertation,

University of Pennsylvania.

Gildea, D. and Jurafsky, D. (2002). Automatic Label-

ing of Semantic Roles. Computational Linguistics,

28(3):245-288.

Gildea, D. and Hockenmaier, J. (2003). Identifying

Semantic Roles Using Combinatory Categorial

Grammar . In Proceedings of EMNLP-2003, Sap-

poro, Japan.

Higgins, D. (2004). A transformation-based approach

to argument labeling. In Proceeding of

CoNLL’2004 Shared Task.

Kouchnir, B. (2004). A Memory-Based Approach for

Semantic Role Labeling. In Proceeding of

CoNLL’2004 Shared Task.

Kooman, P., Punyakanok, V., Roth, D., and Yih, W.

(2005). Generalized Inference with Multiple Se-

mantic Role Labeling Systems. In Proceedings of

CoNLL-2005.

Lin, C.S. A. and Smith, T. C. (2005). Semantic role

labeling via Consensus in Pattern-matching. In

Proceedings of CoNLL-2005.

Lin, C.S. A. and Smith, T. C. (2006). A Tree-based

Algorithm for Predicate-Argument Recognition. In

Bulletin of Association for Computing Machinery

New Zealand (ACM_NZ), volumn 2, issue 1.

Moschitti, A., Giuglea, A. M., Coppola, B., and Basili,

R. (2005). Semantic role labeling using support

vector machines. In Proceedings of CoNLL-2005.

Palmer, M., Gildea, D., and Kingsbury, P., (2005).

The Propostin Bank: An Annotated Corpus of Se-

mantic Roles. In Proceedings of ACL: Volume 31,

Number 1. p72-105.

Pradhan, S., Ward, W., Hacioglu, K., Martin, J. H.,

Jurafsky, D. (2004). Shallow Semantic Parsing us-

ing Support Vector Machines, in Proceedings of

the Human Language Technology Confer-

ence/North American chapter of the Association

for Computational Linguistics annual meeting

(HLT/NAACL-2004), Boston, MA.

Punyakanok, V., Roth, D., Yih, W., and Zimak, D.

(2004). Semantic Role Labeling via Integer Linear

Programming Inference . In Proceedings of. the In-

ternational Conference on Computational Linguis-

tics (COLING),2004.

Surdeanu, M., Harabagiu, S., Williams, J., and

Aarseth, P. (2003). Using Predicate-Argument

Structures for Information Extraction. In Proceed-

ings of ACL 2003, Sapporo, Japan.

188

