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Abstract 

This paper demonstrates two methods to 

improve the performance of instance-

based learning (IBL) algorithms for the 

problem of Semantic Role Labeling 

(SRL).  Two IBL algorithms are utilized: 

k-Nearest Neighbor (kNN), and Priority 

Maximum Likelihood (PML) with a 

modified back-off combination method.  

The experimental data are the WSJ23 and 

Brown Corpus test sets from the CoNLL-

2005 Shared Task.  It is shown that ap-

plying the Tree-Based Predicate-

Argument Recognition Algorithm 

(PARA) to the data as a preprocessing 

stage allows kNN and PML to deliver F1: 

68.61 and 71.02 respectively on the 

WSJ23, and F1: 56.96 and 60.55 on the 

Brown Corpus; an increase of 8.28 in F1 

measurement over the most recent pub-

lished PML results for this problem 

(Palmer et al., 2005).  Training times for 

IBL algorithms are very much faster than 

for other widely used techniques for SRL 

(e.g. parsing, support vector machines, 

perceptrons, etc); and the feature reduc-

tion effects of PARA yield testing and 

processing speeds of around 1.0 second 

per sentence for kNN and 0.9 second per 

sentence for PML respectively, suggest-

ing that IBL could be a more practical 

way to perform SRL for NLP applica-

tions where it is employed; such as real-

time Machine Translation or Automatic 

Speech Recognition. 

1 Introduction 

The proceedings from CoNLL2004 and 

CoNLL2005 detail a wide variety of approaches 

to Semantic Role Labeling (SRL).  Many re-

search efforts utilize machine learning (ML) ap-

proaches; such as support vector machines (Mo-

schitti et al., 2004; Pradhan et al., 2004), percep-

trons (Carreras et al., 2004), the SNoW learning 

architecture (Punyakanok et al., 2004), EM-

based clustering (Baldewein et al., 2004), trans-

formation-based learning (Higgins, 2004), mem-

ory-based learning (Kouchnir, 2004), and induc-

tive learning (Surdeanu et al., 2003).  This paper 

compares two instance-based learning ap-

proaches, kNN and PML.  The PML method 

used here utilizes a modification of the backoff 

lattice method used by Gildea & Jurafsky (2002) 

to use a set of basic features—specifically, the 

features employed for learning in this paper are 

Predicate (pr), Voice (vo), Phrase Type (pt), Dis-

tance (di), Head Word (hw), Path (pa), Preposi-

tion in a PP (pp), and an “Actor” heuristic.   

The general approach presented here is an 

example of memory-based learning.  Many 

existing SRL systems are also memory-based 

(Bosch et al., 2004;Kouchnir, 2004), 

implemented using TilMBL software 

(http://ilk.kub.nl/software.html) with advanced 

methods such as Feature Weighting, and so forth.  

This paper measures the performance of kNN 

and PML for comparison in terms of accuracy 

and processing speed, both against each other 

and against previously published results. 

2 Related Work 

Features 
Most of the systems outlined in CoNLL2004 and 

CoNLL2005 utilize as many as 30 features for 

learning approaches to SRL.  The research pre-

sented here uses only seven of these: 
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Figure 1.  Illustration of path “NP↑S↓VP↓VBD” 

from a constituent “The officer” to the predicate “came” 

. 
Predicate – the given predicate lemma 

Voice – whether the predicate is realized as an 

active or passive construction (Pradhan et al., 

2004, claim approximately 11% of the sentences in 

PropBank use a passive instantiation) 

Phrase Type – the syntactic category (NP, PP, S, 

etc.) of the phrase corresponding to the semantic 

argument 

Distance – the relative displacement from the 

predicate, measured in intervening constituents 

(negative if the constituent appears prior to the 

predicate, positive if it appears after it) 

Head Word – the syntactic head of the phrase, 

calculated by finding the last noun of a Noun 

Phrase 

Path – the syntactic path through the parse tree, 

from the parse constituent to the predicate being 

classified (for example, in Figure 1, the path from 

Arg0 – “The officer“ to the predicate “came“, is 

represented with the string NP↑S↓VP↓VBD” 

represent upward and downward movements in the 

tree respectively) 

Preposition – the preposition of an argument in a 

PP, such as “during”, “at”, “with”, etc (for exam-

ple, in Figure 1, the preposition for the PP with 

Argm-Loc label is “to”).  

 

In addition, an actor heuristic is adopted: where 

an instance can be labeled as A0 (actor) only if 

the argument is a subject before the predicate in 

active voice, or if the preposition “by” appears 

prior to this argument but after the predicate in a 

passive voice sentence.  For example, if there is a 

set of labels, A0 (subject or actor) V (active) A0 

(non actor), then the latter “A0” after V is 

skipped and labeled to another suitable role by 

this heuristic; such as the label with the second 

highest probability for this argument according 

to the PML estimate, or with the second shortest 

distance estimate by kNN. 

2.1 k Nearest Neighbour (kNN) Algorithm 

One instance-based learning algorithm is k-

Nearest Neighbour (kNN), which is suitable 

when 1) instances can be mapped to 

points/classifications in n-dimensional feature 

dimension, 2) fewer than 20 features are utilized, 

and 3) training data is sufficiently abundant.  

One advantage of kNN is that training is very 

fast; one disadvantage is it is generally slow at 

testing.  The implementation of kNN is described 

as following 

1. Instance base: 
All the training data is stored in a format 

similar to Bosch et al., (2004)—specifically, 

“Role, Predicate, Voice, Phrase type, Dis-

tance, Head Word, Path”.  As an example in-

stance, the second argument of a predicate 

“take” in the training data is stored as: 
A0 take active NP –1 classics NP↑S↓VP↓VBD 

This format maps each argument to six fea-

ture dimensions + one classification.  

2. Distance metric (Euclidean distance) is de-

fined as: 

D(xi, xj) = √√√√Σ(ar(xi))-ar(xj))
2   

where r=1 to n (n = number of different clas-

sifications), and ar(x) is the r-th feature of in-

stance x.  If instances xi and xj  are identical, 

then D(xi , xj )=0 otherwise D(xi , xj ) repre-

sents the vector distance between xi and xj . 

3. Classification function 

Given a query/test instance xq to be classified, 

let x1, ... xk denote the k instances from the 

training data that are nearest to xq.  The clas-

sification function is  

F^(xq) <- argmaxΣδ(v,f(xi)) 

where i =1 to k,  v =1 to m (m = size of train-

ing data), δ(a,b)=1 if a=b, 0 otherwise; and 

v denotes a semantic role for each instance 

of training data. 

Computational complexity for kNN is linear, 

such that TkNN -> O( m * n ), which is propor-

tional to the product of the number of features (m) 

and the number of training instances (n). 

2.2 Priority Maximum Likelihood (PML) 

Estimation 

Gildea & Jurafsky (2002), Gildea & Hocken-

maier (2003) and Palmer et al., (2005) use a sta-

tistical approach based on Maximum Likelihood 

method for SRL, with different backoff combina-

 

Predicate Arg0 

Argm-LOC 
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P(r | hw, pt, pre ,pp) P(r | pt, pa, pr, pp) P(r | pt, di, vo, pr, pp) 

 

 

P(r | hw, pr, pp) P(r | pt, pr, pp) 

    

       P(r | pr, pp)    Local 

   

    Global 

P(r | hw, pp)   P(r | pt, di, vo, pp) 

tion methods in which selected probabilities are 

combined with linear interpolation.  The prob-

ability estimation or Maximum Likelihood is 

based on the number of known features available.  

If the full feature set is selected the probability is 

calculated by    

P (r | pr, vo, pt, di, hw, pa, pp) =  

# (r, pr, vo, pt, di, hw, pa, pp)  / 

 # (pr, vo, pt, di, hw, pa, pp) 

 

Gildea & Jurafsky (2002) claims “there is a 

trade-off between more-specific distributions, 

which have higher accuracy but lower coverage, 

and less-specific distributions, which have lower 

accuracy but higher coverage” and that the se-

lection of feature subsets is exponential; and that 

selection of combinations of different feature 

subsets is doubly exponential, which is NP-

complete.  Gildea & Jurafsky (2002) propose the 

backoff combination in a linear interpolation for 

both coverage and precision.   Following their 

lead, the research presented here uses Priority 

Maximum Likelihood Estimation modified from 

the backoff combination as follows: 

P
’
 ( r | pr, vo, pt, di, hw, pa, pp) = 

 λ1*P(r | pr, pp) +λ2*P(r | pt, pr, pp) + 

λ3*P(r | pt, pa, pr, pp) + λ4*P(r | pt, di, 

vo, pp) + λ5*P(r | pt, di, vo, pr, pp) + 

λ6*P(r | hw, pp) + λ7*P(r | hw, pr, pp) 

+ λ8*P(r | hw, pt, pr, pp)  

where Σiλi = 1. 

Figure 2 depicts a graphic organization of the 

priority combination with more-specific distribu-

tion toward the top, similar to Palmer et al. (2005) 

but adding another preposition feature.  The 

backoff lattice is consulted to calculate probabili-

ties for whichever subset of features is available 

to combine.  As Gildea & Jurasksy (2002) state, 

“the less-specific distributions were used only 

when no data were present for any more-specific 

distribution.  Thus, the distributions selected are 

arranged in a cut across the lattice representing 

the most-specific distributions for which data are 

available.” 

 

 

 

 

 

 

 

 

Figure 2. Combination of Priority Estimation for 

PML system originated from Gildea et al., (2002) 

The classification decision is made by the fol-

lowing calculation for each argument in a sen-

tence: argmax r1 .. n P(r1…n | f1,..n) This approach is 

described in more detail in Gildea and Jurasky 

(2002).   

The computational complexity of PML is hard to 

calculate due to the many different distributions 

at each priority level.  In Figure 2, the two calcu-

lations P(r | hw, pp), and P(r | pt, di, vo, pp) be-

long to the global search, while the rest belong to 

a local search which can reduce the computa-

tional complexity.  Examination of the details of 

execution time (described in the results section 

of this paper) show that a plot of the execution 

time exhibits logarithmic characteristics, imply-

ing that the computational complexity for PML 

is log-linear, such that TPML -> O( m * log n ) 

where m denotes the size of features and n de-

notes the size of training data. 

2.3 Predicate-Argument Recognition Algo-

rithm (PARA) 

Lin & Smith (2005; 2006) describe a tree-based 

predicate-argument recognition algorithm 

(PARA).  PARA simply finds all boundaries for 

given predicates by browsing input parse-trees, 

such as given by Charniak’s parser or hand-

corrected parses.  There are three major types of 

phrases including given predicates, which are VP, 

NP, and PP.  Boundaries can be recognized 

within boundary areas or from the top levels of 

clauses (as in Xue & Palmer, 2004). Figure 3 

shows the basic algorithm of PARA, and more 

details can be found in Lin & Smith (2006).  The 

best state-of-the-art ML technique using the 

same syntactic information (Moschitti, 2005) 

only just outperforms a preliminary version of 

PARA in F1 from 80.72 to 81.52 for boundary 

recognition tasks.  But PARA is much faster than 

all other existing techniques, and is therefore 

used for preprocessing in this study to minimize 

query time when applying instance-based learn-

ing to SRL.  The computational complexity of 

PARA is constant. 

3 System Architecture 

There are two stages to this system: the building 

stage (comparable to training for inductive sys-

tems) and testing (or classification).  The build-

ing stage shown in Figure 4 just stores all feature 

representations of training instances in memory 

without any calculations.  All instances are 

stored in memory in the format described earlier, 

denoting {Role (r), Predicate (pr), Voice (vo), 
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Phrase Type (pt), Path (pa), Distance (di), Head 

Word (hw), Preposition in a PP (pp) }. Figure 5 

characterizes the testing stage, where new in-

stances are classified by matching their feature 

representation to all instances in memory in or-

der to find the most similar instances.  There are 

two tasks during the testing stage: Argument 

Identification (or Boundary recognition) per-

formed by PARA, and Argument Classification 

(or Role Labeling) performed using either kNN 

or PML.  This approach is thus a “lazy learning” 

strategy applied to SRL because no calculations 

occur during the building stage. 

4 Data, Evaluation, and Parsers 

The research outlined here uses the dataset re-

leased by the CoNLL-05 Shared Task 

(http://www.lsi.upc.edu/~srlconll/soft.html).  It 

includes several Wall Street Journal sections 

with parse-trees from both Charniak’s (2000) 

parser and Collins’ (1999) parser.  These sections 

are also part of the PropBank corpus 

(http://www.cis.upenn.edu/~treebank).  WSJ sec-

tions 20 and 21 (with Charniak’s parses) were 

used as test data.  PARA operates directly on the 

parse tree.  Evaluation is carried out using preci-

sion, recall and F1 measures of assignment-

accuracy of predicated arguments.  Precision (p) 

is the proportion of arguments predicated by the 

system that are correct.  Recall (r) is the propor-

tion of correct arguments in the dataset that are 

predicated by the system.    

Finally, the F1 measure computes the harmonic 

mean of precision and recall, such that F1 =2*p*r 

/ (p+r), and is the most commonly used primary 

measure when comparing different SRL systems.  

For consistency, the performance of PARA for 

boundary recognition is tested using the official 

evaluation script from CoNLL 2005, srl-eval.pl 

(http://www.lsi.upc.edu/~srlconll/soft.html) in all 

experiments presented in this paper.  Related sta-

tistics of training data and testing data are out-

lined in Table 1.  The average number of predi-

cates in a sentence for WSJ02-21 is 2.27, and 

each predicate comes with an average of 2.64 

arguments. 

 

Create_Boundary(predicate, tree)  

If the phrase type of the predicate == VP  

- find the boundary area ( the closest S clause) 

- find NP before predicate 

- If there is no NP, then find the closest NP from Ancestors. 

- find if WHNP in it’s siblings of the boundary area,  

if found  // for what, which, that , who,… 

-  if the word of the first WP’s family is “what” then   

- add WHNP to boundary list  

else // not what, such as who which,… 

 - find the closest NP from Ancestors 

   - add the NP to the boundary list and add 

  this WHNP to boundary list as reference of NP 

 

   -  add valid boundaries of the rest of constituents to boundary list. 

 

If phrase type of the predicate  ==NP 

- find the boundary area ( the NP clause) 

- find RB(POS) before predicate and add to boundary list. 

- Add this predicate to boundary list. 

- Add the rest of word group after the predicate and before the end of the NP clause as a 

whole boundary to boundary list. 

 

If phrase type of the predicate  ==PP 

- find the boundary area ( the PP clause) 

- find the closet NP from Ancestors if the lemma of the predicate is “include”, and add 

this NP to boundary list.(special for PropBank) 

- Add this predicate to boundary list. 

-  

Add the rest of children of this predicate to boundary list or add one closest NP outside the boundary 

area to boundary list if there is no child after this predicate. 

 

Figure 3. Outline of the Predicate Argument Recognition Algorithm (PARA) 
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Figure 4. Illustration of System Architecture for 

the building stage 

 

 

 

 

 

 

 

 

Figure 5. Illustration of System Architecture for 

the testing stage 

5 Experiments and Results 

Experimental results were obtained for part of 

the Brown corpus (the part provided by CoNLL-

2005) and for Wall Street Journal (WSJ) 

Sections 21, 23, and 24 using different training 

data sets (WSJ 21, WSJ 15 to 18, and WSJ 02 to 

21) shown in Table 1.  There are two tasks, Role 

classification with known arguments as input, 

and Boundary recognition & Role classification 

with gold (hand-corrected) parses or auto 

(Charniak’s) parses.  In addition, execution speed, 

the learning curve, and some further results for 

exploration of kNN and PML are also included 

below. 

5.1 WSJ 24 with known arguments 

Table 2 shows the results from kNN and PML 

with known boundaries/arguments (i.e. the sys-

tems are given the correct arguments for role 

classification).  All training datasets (WSJ02-21) 

include Charniak’s parse trees.   The table shows 

that PML achieves F1: 2.69 better than kNN. 

5.2 Features & Heuristic on WSJ 24 with 

known arguments 

Table 3 shows the contribution of each feature 

and the actor heuristic by excluding one feature 

or heuristic.  It indicates that Head Word, Prepo-

sition, and Distance are the three features that 

contribute most to system accuracy, and the addi-

tional Actor heuristic is fourth. Path, Phrase type 

and Voice are the three features contibuting the 

least for both classification algorithms. 

 

 W02-21 W15-18 W21 W23 W24 Brown 

Sent 39,832 8,936 1,671 2,416 1,346 426 

Tok 950,028 211,727 40,039 56,684 32,853 7,159 

Pred 90,750 19,098 3,627 5,267 3,248 804 

Verb 3,101 1,838 855 982 860 351 

Args 239,858 50,182 9,598 14,077 8,346 2,177 

Table 1. Counts on the data sets used in this pa-

per from CoNLL 2005 Shared Task 

 

Known Boundary on WSJ 24 

Algorithm P R F1 Lacc 

kNN 83.71 83.73 83.72 85.03 

PML 86.29 86.52 86.41 87.20 

Table 2.  Illustration of results by kNN (k=1) 

and PML on WSJ Section 24 with known argu-

ments 

5.3 Learning Curve 

Table 4 shows that performance improves as 

more training data is provided; and that PML 

outperforms kNN by about F1:2.8 on average for 

WSJ 24 for the three different training sets, 

mainly because the backoff lattice improves both 

recall and precision.  The table shows that it is 

not always beneficial to include all features for 

labeling all roles. While P(r | hw, pt, pre, pp) is 

mainly for adjunctive roles (e.g. AM-TMP), P(r | 

pt, di, vo, pr, pp) is mainly for core roles (e.g. A0). 

5.4 Performance of Execution Time 

Building (or training) time is about 2.5 minutes 

for both PML and kNN, whereas it takes any-

where from about 10 hours to 60 hours for other 

ML-based architectures (according to the data 

presented by McCracken http://www.lsi.upc.es/ 

~srlconll/st05/slides/mccracken.pdf).  Table 5 

shows average execution time (in seconds) per 

sentence for the two algorithms.  PML runs 

faster than kNN when all 20 training datasets are 

used (i.e. WSJ 02 to 21).  A graphic illustration 

of execution speed is shown in Figure 6.  The 

simulation formulas for PML and kNN are “y = 

0.1734Ln(x) - 0.9046” and “y = 2.441*10-5 
x + 

0.0129” respectively.  “x” denotes numbers of 

training sentences, and “y” denotes second per 

sentence related to “x” training sentences.  The 

execution time for PML is about 8 times longer 

than kNN for 1.7k training sentences, but PML 

ultimately runs faster than kNN on all 39.8K 

training sentences (and, extrapolating from the 

graph in Figure 6, on any larger datasets).  Thus 

PML seems generally more suitable for large 

training data. 

 

 

Input 
Instance 

retriever 
Instance 

Base 

Input PARA 

Instance 
Base 

Role  

Classifier 

 

Output
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Training sets  KNN PML 

WSJ 21  0.050 0.396 

WSJ 15 - 18  0.241 0.687 

WSJ 02 - 21  1.000 0.941 

Table 5.  Illustration of results for execution 

time by kNN and PML on WSJ 24 with known 

arguments 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Figure 6.  Curve of execution time for kNN (k=1) 

and PML on WSJ 24 with known arguments 

 

5.5 WSJ 24 with Gold parses and PARA 

Table 6 shows performance for both systems 

when gold (hand-corrected) parses are supplied 

and PARA preprocessing is employed.  Com-

pared to the results in Table 4, the performance 

on the combined training sets (WSJ 02 to 21) 

drops F1:9.24 and Lacc (label accuracy):2.4 for 

kNN; and drops F1:8.02 and Lacc:0.66 for PML 

respectively.  This may indicate that PML is 

more error tolerant in labeling accuracy.  How-

ever, both systems perform worse due largely to 

an idiosyncratic problem in the PARA-

preprocessor when dealing with hand-corrected 

parses—ultimately due to a particular parsing 

error.  

5.6 WSJ 24 with Charniak’s parses and 

PARA 

Table 7 shows the performance of both systems 

using auto-parsing (i.e. Charniak’s parser) and 

PARA argument recognition.  Compared to the 

results in Table 4, the performance on all training 

sets (WSJ 02 to 21) drops F1:17.25 and 

Lacc:0.65 for kNN, and F1:16.78 and Lacc:-0.78 

(i.e. increasing Lacc) for PML respectively.  

Both systems drop a lot in F1 due to errors 

caused by the auto-parser (in particular errors 

relating to punctuation), whose effects are subse-

quently exacerbated by PARA.  Even so, the la-

bel accuracy (Lacc) is more or less similar be-

cause the training dataset are parsed by 

Charniak’s parser instead of gold parses. 

5.7 WSJ 23 with Charniak’s parses and 

PARA 

Table 8 shows the results for WSJ 23, where the 

performance of PML exceeds kNN by about 

F1:3.8.  WSJ 23 is used as a comparison dataset 

in SRL.  More comparisons with other systems 

are shown in Table 12. 

5.8 Brown corpus with Charniak’s parses 

and PARA 

Table 9 shows the results when moving to a dif-

ferent language domain—the Brown corpus.  

Both systems drop a lot in F1 .  Compared to WSJ 

23, MPL drops 10.47 in F1 and kNN, 11.65 in F1. 

These drops are caused partially by PARA, and 

partially by classifiers.  PARA in Lin & Smith 

(2006) drops about 3.1 in F1 when moving to the 

Brown Corpus; but more research is required to 

uncover the cause. 

5.9 Further results on kNN with all training 

data  

Table 10 shows different results for various val-

ues of k in kNN.  Both systems, GP (gold-parse) 

& PARA and CP (Charniak’s parse) & PARA, 

perform best (as measured by F1) when K is set 

as one.  But when the system is labeling a known 

argument, selection of k=5 is better in terms of 

both F1 and Label accuracy (Lacc). 

5.10 Further results on PML with all train-

ing data 

Table 11 shows results for PML with different 

methods of calculating probabilities.  “L+G” 

means the basic probability distribution (from 

Figure 2).  “L only” and “G only” mean all prob-

ability is calculated only as either “local” or 

“global”, respectively.  “L>>G” means that 

probabilities are calculated globally only when 

the local probability is zero.  “L only” is the fast-

est approach, and “G only” the slowest (about 

five seconds per sentence). Both are poor in per-

formance.  “L+G” has the best result and 

“L>>G” is rated as intermediate in performance 

and execution time. 

5.11 Comparison with other systems 

Table 12 shows results from other existing sys-

tems.  In the second row (PARA+PML) is 

trained on all datasets (WSJ 02 to 21) for the 

“BR+RL” task (to recognize argument bounda-

ries and label arguments) on the test data WSJ 23, 

with an improvement of F1:8.28 in comparison to 

the result of Palmer et al., (2005) given in the 
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first row.  The basic kNN in the fourth row, 

trained by four datasets (WSJ 15 to 18 in CoNLL 

2004) for the RL” task (to label arguments by 

giving the known arguments) on the test data 

WSJ 21, increases F1:6.68 compared to the result 

of Kouchnir (2004) in the third row.  Execution 

time for our own re-implementation of Palmer 

(2005) is about 3.785 sec per sentence. Instead of 

calculating each node in a parse tree like the 

Palmer (2005) model, PARA+PML can only fo-

cus on essential nodes from the output of PARA, 

which helps to reduce the execution time as 

0.941 second per sentence. Execution time by 

Palmer (2005) is about 4 times longer than 

PARA+PML on the same machine (n.b. execu-

tion times are for a computer running Linux on a 

P4 2.6GHz CPU with 1G MBRAM).   

More details from different systems and combi-

nations of systems are described in the proceed-

ings of CoNLL-2005. 

 

 

   kNN   k=1   PML    

 P R F1 P R F1 

ALL 83.71 83.73 83.72 86.29 86.52 86.41 

- Voice 81.69 81.60 81.64 85.64 85.90 85.77 

- Phrase Type 82.79 82.79 82.79 85.68 85.96 85.82 

- Distance 76.53 76.42 76.47 83.76 83.97 83.86 

- Head Word 78.26 78.05 78.15 81.84 81.96 81.90 

- Path 83.67 83.63 83.65 85.44 85.72 85.58 

- Preposition 79.40 79.29 79.33 82.02 82.12 82.07 

       

- Actor 80.38 80.64 80.51 84.74 85.01 84.81 

Table 3.  Illustration of contribution for each feature and the Actor heuristic by kNN (k=1) and PML 

on WSJ 24 with known arguments 

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  76.76 77.02 76.89 78.03  79.20 79.26 79.23 80.40 

WSJ 15 - 18  80.40 80.18 80.29 81.85  83.61 83.70 83.66 84.61 

WSJ 02 - 21  83.71 83.73 83.72 85.03  86.29 86.52 86.41 87.20 

Table 4.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24 

with known arguments 

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  67.96 67.90 67.93 75.61  70.51 70.57 70.54 78.17 

WSJ 15 - 18  72.42 72.25 72.34 80.66  75.64 75.62 75.63 83.55 

WSJ 02 - 21  74.48 74.48 74.48 82.63  78.39 78.40 78.39 86.54 

Table 6.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24 

with gold (Hand corrected) parses and PARA  

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  61.05 60.90 60.98 77.45  63.75 63.43 63.59 80.70 

WSJ 15 - 18  64.66 64.11 64.38 82.13  67.55 67.15 67.35 85.23 

WSJ 02 - 21  66.62 66.32 66.47 84.38  69.81 69.45 69.63 87.98 

Table 7.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24 

with Charniak’s parses and PARA 

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  62.87 62.55 62.71 78.85  64.94 64.49 64.71 81.31 

WSJ 15 - 18  66.66 65.96 66.31 83.60  69.05 68.52 68.79 86.14 

WSJ 02 - 21  68.92 68.31 68.61 86.20  71.24 70.79 71.02 88.77 

Table 8.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 23 

with Charniak’s parses and PARA  
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    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  52.56 51.40 51.97 67.70  55.17 53.88 54.52 70.15 

WSJ 15 - 18  55.58 54.20 54.88 71.56  59.10 57.56 58.32 75.53 

WSJ 02 - 21  57.71 56.22 56.96 74.14  61.26 59.85 60.55 78.26 

Table 9.  Illustration of results with different training datasets by kNN (k=1) and PML on Brown Cor-

pus with Charniak’s parses and PARA 

 

 Known boundary  GP & PARA  CP & PARA 

K F1 Lacc  F1 Lacc  F1 Lacc 

1 83.72 85.03  74.48 82.63  66.47 84.38 

3 83.67 85.13  74.33 82.70  65.94 84.03 

5 83.89 85.16  74.14 82.28  65.89 83.81 

7 83.27 84.66  73.43 81.59  65.52 83.54 

9 82.86 84.25  73.00 81.22  65.13 82.99 

Table 10.  Illustration of results by kNN with different K values on WSJ 24 with known arguments, 

Gold (Hand-corrected) parses & PARA and Charniak’s parses & PARA  

 

 Known boundary on WSJ 24 

Method P R F1 Lacc T (Sec/Sen) 

L+G 86.29 86.52 86.41 87.20 0.941 

L only 80.78 80.73 80.76 81.70 0.027 

G only 75.60 76.35 75.97 77.52 5.094 

L>>G 82.44 82.42 82.43 83.29 0.128 

Table 11.  Illustration of results by PML with different methods on WSJ 24 with known arguments 

 

System Train Test Tasks P R F1 Lacc T 

Palmer (2005) W02-21 W23 BR+RL 68.60 57.80 62.74 81.70 3.785  

PARA+PML W02-21 W23 BR+RL 71.24 70.79 71.02 88.77 0.941 

         

Kouchnir (2004) W15-18 W21 RL 75.71 74.60 75.15   

kNN W15-18 W21 RL 81.86 81.79 81.83 83.57 0.242 

Table 12.  Illustration of results for different tasks by different systems and training datasets on differ-

ent testing datasets  

6 Summary and Remarks 

This paper has shown that basic syntactic infor-

mation is useful for Semantic role labeling using 

instance-based learning techniques.  Specifically, 

the following have been demonstrated: 

1. It is possible to achieve acceptable F1 

scores with considerably faster execution 

times (compared to Gildea & Jurasky, 2002) 

for the Semantic role labeling problem us-

ing the Priority Maximum Likelihood in-

stance-based learning algorithm and the 

Tree-based Predicate-Argument Algorithm 

(PARA) as a preprocessing step, without 

any training given a state-of-the-art parser 

such as Charniak’s parser.  The overall per-

formance on WSJ 23 dataset is 71.02 in F1 

score.  Performance drops to 60.55 for the 

Brown corpus, but this appears to be simi-

lar to performance drops experienced by 

other systems reported in CoNLL-2005. 

2. F1 performance is better for PML than for 

kNN, where the computational complexity 

for PML is O( m * log n ) as opposed to 

O( m * n ) for kNN, where m denotes the 

number of features and n denotes the num-

ber of training instances. 

3. Execution time for the instance-based 

learning presented here is about four times 

faster for SRL than the comparable ap-

proach used by Palmer, (2005).  That is, 

PARA plays an important role reducing the 

overhead during classification when using 

instance-based learning.   

4. Using PARA, and other modifications such 

as the preposition feature and Actor heuris-

tic, improves the accuracy of both kNN and 

PML in comparison to similar approaches.   
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5. The best system developed for this paper 

(PML & PARA) is still outperformed by 

some of the best systems from CoNLL-

2005 when it comes to accuracy, but it is 

much simpler and is many orders-of-

magnitude faster at delivering acceptable 

performance.  

With the latest revised and optimized PML, the 

performance on WSJ 23 is 71.22 in F1, and the 

speed is 0.623 second per sentence with 3.0G 

CPU and 1 G RAM.  Koomen et al. (2006), with 

more than 25 features, achieved the best results 

reported in CoNLL2005 on WSJ 24; but PML’s 

performance (using PARA as a preprocessor, and 

seven features) achieves an F1 measure 5.10 less 

than Kooman’s system (74.76) on WSJ 24 utilis-

ing Charniak-1 parses, and 4.07 less when using 

Kooman’s test result (WSJ 23) as known-

boundary input.  In this experiment, with the Ac-

tor heuristic, PML delivers better accuracy for 

A0 (89.96%) than Kooman’s (88.22%), but the 

recall (83.53%) is 4.35 % lower than Kooman’s 

(87.88%).  There are some spaces to improve 

PML such as low accuracy on AM-MOD, and 

AM-NEG, and duplicate core roles, and forth.  

Future work will investigate using more features, 

new heuristics and/or other ML approaches to 

improve the performance of instance-based 

learning algorithms at the SRL task. 
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