
Sentence Completion Tests for Training and Assessment in a
Computational Linguistics Curriculum

Cerstin Mahlow, Michael Hess
Institute of Computational Linguistics, University of Zurich

Winterthurerstr. 190
CH-8057 Zurich,

Switzerland,
{mahlow, hess}@cl.unizh.ch

Abstract

This paper presents a novel type of test, halfway
between multiple-choice and free-form text,
used for training and assessment in several
courses in a Computational Linguistics curricu-
lum. We will describe the principles of the test,
the different ways in which it can be used by
learners, and the tools developed for authoring.
Use of this type of test is not limited to the field
of Computational Linguistics. Wherever text
heavy or even picture based topics are taught
use of this type of test is possible.

1 Introduction

Students of Computational Linguistics (CL)
at the University of Zurich come from two
different faculties, viz. the Faculty of Arts
and the Faculty of Economics, Business Man-
agement and Information Technology. Thus
they have a very uneven previous knowledge of
linguistics and programming. The introductory
lectures touch upon most aspects of CL but
cannot compensate for these differences in a
satisfactory way. We are trying to ease the
problem by supplying students with extensive
additional on-line reading material for individ-
ual study. However, until recently students had
no way of testing the knowledge they acquired
through self-study against the requirements
of the courses. For this reason we developed
web-based tools for individual training and
self-assessment.

Most assessments in web-based learning
courses use Multiple Choice (MC) tests. These
tests are easy to create for authors and easy
to use for students. Unfortunately the concept
of MC imposes a very restrictive format on
the tests, and they can basically test only the
presence or absence of small “knowledge bites”.
More general and abstract types of knowledge
are hard to test by means of MC.

Free-form text tests, i.e. tests allowing replies
in the form of mini-essays, are, of course, far
less restrictive but the costs of assessing them
by hand is, in many institutional contexts,
prohibitively high. Systems for reliable and
consistent automatic assessment of free-form
text are not yet available. Those that exist
either test writing style, or test the presence
or absence in an essay of (explicit) terms or of
(implicit) concepts (example: IEA; (Landauer
et al., 1998, p295-284)), or use a combination
of surface lexical, syntactic, discourse, and
content features (example: e-rater; (Burstein,
2003)). It was shown, by the system developers
themselves, that the most advanced of these
systems, e-rater, can be tricked rather easily
into giving marks that are far too good, by
using some knowledge of the techniques used
by the system (Powers et al., 2001). Since
knowledge of the techniques used by rating
systems can hardly be kept secret for any
length of time all such feature based systems
are open to this kind of tricks.

This is why we developed a new type of test,
called “Satzergänzungstests” (SET) – SET1,
positioned halfway between multiple-choice
tests and free-form text tests. We use this type
of test for training as well as for assessments,
and it is part of our web-based curriculum.
The development was funded by the University
in view of the implementation of the Bache-
lor/Master/PhD based “Bologna scheme” in
most European universities (see (European
Ministers of Education, 1999)).

With SETs we are able to create far more
demanding tasks for training and assessment
than we could otherwise. The philosophy
behind SETs will be presented in Section 2.

1“Sentence Completion Tests”.



In Section 3 we will show how the individual
student can use a test. In Section 4 we will
show how to create tests. In section 5, finally,
we will give an overview of the courses in which
we use these tests for teaching Computational
Linguistics (CL), and discuss in which other
contexts they could be used.

2 The philosophy behind SETs

(Rütter, 1973) creates an extensive topology for
assessments. He distinguishes between open,
semi-open and closed tasks. The distinction
derives from the type of answer expected
from the learner: There is no certain answer
the author expects (open tasks), the author
expects a certain answer the learner has to
create themselves (semi-open tasks), the learner
has to choose the right answer(s) from given
possibilities (closed tasks). Multiple Choice
tasks (MC) belong to the closed tasks.

The topology presented by Rütter is not
restricted to the easy tasks. You will also find
so-called “Erweiterungswahlaufgaben” in the
class of closed assigns. This task consists of
a piece of information the tested person has
to extend so as to create a coherent piece
of new information. The learner can choose
suitable extensions from a given list. Rütter’s
description includes the hint that these tasks
are hard to design but present a very clear
structure for the test person.

Our Sentence Completion Tests can be seen
as an instance of such Erweiterungswahlauf-
gaben. The learner has to answer a complex
question in near-free-form on the basis of
extensive choices of possible answer compo-
nents supplied by the system. There will be
answer components considered indispensable,
some considered correct but optional, others
categorised as outright wrong, and others still
rated as irrelevant to the question at hand.
The required components of the answer will all
have to occur in the answer but not in a fixed
order.

In concrete terms this means that a learner
will author an answer in the form of a complete
sentence, in a piecemeal fashion and under the
guidance of the system, by picking answer frag-
ments from dynamically adapted choice menus
popping up as the answer is growing. At each

step the user input will be checked by the sys-
tem against the answer model that contains all
the expected answer parts, essential relation-
ships between them, and possible restrictions
on the order of these parts. At each step as
well as at the very end the system can generate
feedback for the user which will make him un-
derstand why and in which aspects his answer
is correct or incorrect.

3 How to use a SET

All SETs are presented under a web interface.
The student has to start a browser2 and choose
a single SET3.

3.1 Basic elements of a SET
The student sees four coloured fields4, each la-
beled with a number and a functional descrip-
tion. These fields are:

1. Text up to now

2. Comments/Feedback

3. List of elements to continue

4. Preview

Text up to now contains the question and the
answer in its present state. List of elements
to continue consists of possible continuations
of the answer. Clicking on one of the radio
buttons activates the Preview showing all the
options that will become available once the
learner has committed himself to the given
continuation. That way the user is always
aware of the consequences his choice might
have. The listing field includes two submit
buttons, one for submitting the choice, one for
undoing the last choice. The element list will
show the elements in different order each time
the user reloads or restarts a SET.

The crucial field is the one for Com-
ment/Feedback. The user does not merely get
a “Right - Wrong” feedback but rather

• If the answer contains the correct compo-
nents but a wrong relationship the feedback
will point this out and invite the user to try
again and find the correct combination.

2At the moment the SET web interface is tested with
Netscape and InternetExplorer.

3Where to find all SETs will be described in sec-
tion 5.2.

4The same colours are used in our ordinary MC-tests
to give the student a familiar feeling for the assessment
situation.



• If the answer consists of correct compo-
nents as well as of wrong ones the feedback
will say so and point out which components
are wrong.

• If the answer is one of the correct ones,
the feedback will approve this solution and
mention the other possible correct answers.

This way for every possible combination of
answer components the user gets a different
optimised feedback.

The text inside the feedback field is displayed
as HTML so that it is possible to include links
to related SETs, back to the lecture notes or
associated material. A feedback text also can
include a link to a new SET, as a followup.

Sometimes it is useful to have the system
generate a comment before a complete an-
swer has been created by the learner. Once
the learner has chosen a certain number of
wrong answer components he will get suitable
feedback before finishing. In this case the
feedback is used to warn the user that he is on
a completely wrong track and that he ought to
undo some of the last choices, or to start again
from scratch.

3.2 A sample SET
See figure 1 for a sample session with SET.
The initial question is: “Was ist ein Parser?”
(What is a parser?).

Here the user chose “Ein Parser ist eine
Prozedur” (“A parser is a procedure”) as next
element in the third field. This will be the
beginning of his answer. Clicking on the corre-
sponding radio button activated the preview in
the fourth field. Before submitting the choice,
the user can think about the combinations
his choice will allow. The preview shows 4
possibilities to continue with the description of
the aim of this procedure.

If the user is satisfied with his choice, he will
click the submit button “Auswahl bestätigen”
(Confirm choice). This will result in reloading
the site with the new information.

Text bisher (Text up to now) will contain
the question, the beginning of the answer and
the fragments added by the learner so far “Ein
Parser ist eine Prozedur”. The feedback field

will still be empty. Auswahl der Fortsetzungen
(List of elements to continue) will show all
possible continuations. Vorschau (Preview)
will be empty until the user clicks on one of the
radio buttons in the list of elements to continue.

This sequence of actions will be repeated
until the user has created a complete sentence.
He then gets the feedback. If he is not satisfied
with one of his choices before finishing, he can
undo the last choice, or simply restart the SET.

In case the user is on a probably wrong
way he will get feedback before finishing the
SET. See figure 2 for an example. The user
created an answer start “Ein Parser ist eine
Prozedur, um die syntaktische Korrektheit einer
Sprache...” (“A parser is a prozedure to ... the
syntactical correctness of a language”). The
intervening feedback points to the principle of
correctness concerning certain constructions
of languages and prompts the user to undo
the last decission(s). (“Was wohl soll die
syntaktische Korrektheit einer Sprache sein?!
Nur einzelne Konstruktionen einer Sprache
können korrekt oder inkorrekt sein. Einen
Schritt zurück!”

Figure 3 shows the finished SET. The user
followed the hint in the intervening feedback
shown in figure 2. He removed the part “einer
Sprache” (“of a language”). The answer
created by the user is “Ein Parser ist eine
Prozedur um die syntaktische Korrektheit eines
Satzes zu ermitteln” (“A parser is a procedure
to detect the syntactical correctnes of a sen-
tence“). Clearly, this answer is not correct. It
describes rather an acceptor than a parser. The
comment says so and then offers a correct def-
inition with a hint to the latin origins of Parser.

3.3 Training mode and assessment
mode

SETs can be used in E-Learning for training as
well as for assessments. Self-assessment can be
seen as an instrument for training – users get
elaborate feedback for their answers and are
invited to try again.

In the training/self-assessment mode users
get feedback after completing the answer or
while composing it. The feedback always takes
into account all components collected up to



Figure 1: Snapshot of a SET session for answering the SET “What is a parser?”

that point as well as the user’s undo or redo
actions. The user is allowed to undo a decision
as often as he likes. This way finding the right
answer is a question of either knowing it or
following the hints in the feedback.

In the assessment mode the user gets a
number of points credited. The points total is
compiled the same way the feedback is created.
Depending on the answer fragments chosen by
the learner, and on their order, the points total
will be computed. It is also possible to chain
several SETs one after another5, collect the
credits collected in each of them, and present
the grand total at the very end.

The user can be allowed to use the undo but-
ton in different manners. Three settings are
possible:

• The undo button can be used as often as
the learner wants but each use is logged in
the background.

5SETs can be linked in linear or network like fashion
via HTML links or followups in the comments.

• Each use of the undo button results in a
deduction of a certain number of points,
and its use is logged.

• The use of the button is allowed only a pre-
set number of times – if the user tries to
undo more often, the button is disabled.

That way tutors can track whether the student
arrived at the answer by merely trying out all
possible continuations.

4 How to create a SET

What does an author have to consider when
creating a SET? First, he has to decide which
answer elements the user can choose from at
any given step. Second, he must make sure
that any of the answer components offered as
a choice at a given step will contribute to a
well-formed sentence only. Finally, helpful and
syntactically well-formed comments have to be
defined for any of the possible answers.

What the presentation of a SET ultimately
boils down to is running a Finite State Automa-
ton (FSA), with answer components as states



Figure 2: Snapshot of an intermidate result while answering the SET “What is a parser?”

and user choices as input. This is done by a
Prolog program as the back-end for a single
SET. As input it takes the SET specific Prolog
automaton, the path up to now, and the current
choice of the user. As output it creates the new
current answer, the new list of elements to con-
tinue, the preview, comments, paths and points.

The author of a SET has thus to write
a (potentially large) FSA. This is a tedious
and error-prone task. How can this be done
efficiently and reliably?

4.1 The machinery behind a SET

Developing the automaton normally starts
with the author writing a number of possible
correct and incorrect answers, in a way similar
to the development of an ordinary MC. The
author then marks where these sentences could
be split into fragments. Splitting must allow
the combination of various sentence fragments
from different sentences in a way that only
well-formed passages result. To limit the
number of such combinations the author can

define constraints that explicitly include or
exclude certain combinations.

To increase readability, answer fragments
that are of the same syntactic type can be
collected in boxes. It is, however, advisable
to create distinct boxes for correct fragments,
wrong fragments, and indifferent fragments of
the same syntactic type; this makes the design
of complex automata considerably easier. Each
box has an ID, in-going and outgoing boxes6,
information concerning specific constraints
on allowed combinations, and (positive or
negative) credits the user will collect when
choosing this element. Boxes are linked by
vectored edges to create a number of paths
through the answer fragments, each one of
which will define a complete and syntactically
well-formed sentence.

Splitting answer sentences into fragments
that can be combined freely creates, of course,
a large number of potential answers (in fact,

6Except start boxes – no in-going box – and the boxes
at the end of a sentence path – no outgoing box.



Figure 3: Snapshot of the finished SET session for answering the SET “What is a parser?”

a potentially infinite number). It would
be clearly impossible to write individual
comments for each of these answers. We over-
come this obstacle by generating comments,
semi-automatically in some cases, and fully
automatically in others. The semi-automatical
creation relies on the fact that each answer
fragment can be rated according to its correct-
ness and relevance for a given question. It is
relatively easy to attach, to a limited number
of “strategically important” answer fragments,
comment fragments specifying in what way
they are (in)correct and (ir)relevant. We then
have SET collect the comment fragments of
all answer fragments chosen by the learner,
and combine them into complete and syntac-
tically well-formed comments that refer to the
individual parts of an answer and point out
superfluous, missing, or wrong bits, in any
degree of detail desired by the author. We
can even generate comments on the basis of
arbitrarily complex logical conditions over an-
swer fragments, thus identifying, among others,
contradictions in answers. That way we can
generate a potentially infinite number of com-

ments on the basis of relatively few comment
fragments. This is the semi-automatic creation
of comments, taking into account the local
properties of an answer path. We also allow
the fully automatic creation of comments that
take into consideration the global properties
of answer paths. Thus the fact that a learner
used the undo button very often in various
places, or took a very circuitous way to arrive
at his answer, may be detected by measuring
global values of the answer path and can then
be commented upon automatically7. For a
detailed documentation see (Brodersen and
Lee, 2003).

4.2 Developing a sample SET

Clearly the author of a SET must be supported
in the design of even moderately complex FSAs.
To this end we developed an authoring tool
called Satzergänzungstest-Ersteller-Interface
(SETEI), a Java application with a GUI. It uses

7Resulting in comments like “You used the undo but-
ton way too often.” or “Correct but your answer could
have been much shorter”, etc.



a text-based format for saving data and has an
export function to create the FSA. Figure 4
shows the final stages in the development of
the SET “Was ist ein Parser?” (“What is a
parser?”) used as example in section 3.2.

The box in the left upper corner is the
start box, containing the question. Boxes
1, 2, 3, 4, 6, 7, 8, 9, 13 are answer boxes
containing answer fragments. Boxes 10, 11, 12,
14 are comment boxes containing comments
for complete answers or certain combinations
of answer parts (box 14).

One of the boxes, box 14, is selected, and
inside this box the text element 72 is selected.
As the boxes offer limited space the full text of
a selected element is shown at the very bottom
of the window. Here we can also see the box
number, fragment number, and the credits
attached to the selected answer fragment.
These credits can be used, in assessment mode,
to grade the answer. Creating, filling, and
modifying boxes is a matter of a few clicks.

The possible answer paths are represented,
obviously, as vectored edges between boxes.
Each path must end in a comment box.

• Two paths contain three boxes – 1→8→9
and 1→2→7

• Two paths contain four boxes – 1→2→3→7
and 1→2→6→13

• One path contains five boxes –
1→2→3→4→7

Possible answers in the above example may
thus consist of three, four or five parts. Since
each answer box contains at least two text
elements this automaton defines many more
answers than there are paths. On path 1→2, for
instance, the user can combine each element in
box 1 with each element in box 2. Connections
between boxes are created or deleted by simple
dragging or clicking operations. Whenever a
circular connection is created, even an indirect
one, the user is asked whether this is what he
really wanted to do.

The top menu in the window contains the
various tools for the manipulation of boxes.
Thus, to see all text elements in one box plus
all the in-going and out-going boxes and the
constraints for elements, the author may use

the box browser Ansicht (view). The browser
presents a magnified view on the given box
with additional functionalities to edit the
box content. The user can also zoom out
and see the bare structure of the entire FSA,
without box contents, can select sub-parts of
the automaton and try them out in isolation,
etc.

To allow intermediate feedback, comment
boxes may be placed in the middle of the FSA
(such as, in this SET, comment box 14). All
answer paths end with a comment box to give
feedback after creating a complete sentence.

5 Where to use SET

5.1 Where we use SETs

Since winter term 2003/2004 we use SETs at
our institute as a training and self-assessment
tool in introductory courses on CL. They are
often used as final element in learning units in-
tended for self-study by students. These learn-
ing units each cover one particular aspect of
Computational Linguistics that may be unfa-
miliar to part of the audience (such as regu-
lar expression, tokenising, tagging or parsing).
They are organised around Problem-based In-
teractive Learning Applications.8 While simple
skills can be tested with standard MC meth-
ods, for more general and more abstract types
of knowledge SETs turned out to be a much bet-
ter solution. Any type of question that would,
ideally, require a free form answer can be turned
into a SET. These are definitional questions
(“What is a parser?”) as well as a questions
requiring comparisons between concepts (“How
does a parser differ from an acceptor?”) and the
description of procedures (“What are the pro-
cessing steps of a transfer Machine Translation
system?”). It is important that SETs can deter-
mine, and comment upon, non-local properities
of answers. Thus a SET can detect contradic-
tions between different parts of an answer, or a
wrong sequencing in the description of process-
ing steps (say, putting tokenising after parsing),
or repetitions, all of which may occur in parts of
an answer that are arbitrarily far removed from
each other.

8See (Carstensen and Hess, 2003) for more informa-
tion.



Figure 4: SETEI session for creating the SET “What is a parser?”

5.2 Real Examples of SETs

SETs have been developed mainly for the intro-
ductory classes in Computational Linguistics
at Zurich but new tests for more advanced
courses are under development. Since classes
are taught in German, all SETs are in German,
too.

Students can access SETs in two ways:

• As most SETs are used in Learning Units
students will encounter SETs for the first
time when they are working their way
through the Learning Units.

• When preparing for exams students want
to have random access to SETs. For this
reason all SETs ever developed are accessi-
ble via one big collection, our Setcenter.

The Setcenter
www.cl.unizh.ch/ict-open/satztest/setcenter.html

offers a check-box list to create a customised
web page containing a short introduction to
SETs, help for using them, and a list of links
to the chosen SETs. For a first look at SETs
the page www.ifi.unizh.ch/cl/ict-open/satztest/,
with pre-defined examples from outside the
field of Computational Linguistics, may also be
useful.

Most of the SETs we developed ask questions
about the basic concepts and terms of the field.
Some examples are listed in table 1.

In some case we also “abuse” SETs to
function itself as authoring tool with feedback
facilities. In one case students are asked to



Intro to CL 1 Intro to CL 2
CL Extension / Intension
Linguistics Propositions
Morphology Presuppositions
Semantics Axioms
Parsing Modus Ponens
FSA Lambda Abstracting
Generative Power
Types of Ambiguity
Indexing
Information Extraction
Information Retrieval
Machine Translation

Table 1: SETs in the introductory lectures for
CL

write specific rules for a chunking grammar.
In a SET, they get a set of rule elements
to choose from (pre-terminal and terminal
categories, parentheses, Kleene star, etc.) and
have to combine them, step by step, creating a
grammar rule in the process. If their choice of a
symbol is completely off track (such as a gram-
mar rule beginning with a closing parenthesis)
they are warned right away. Otherwise the
structure of the completed rule is commented
upon. If the rule is not correct, users are sent
back to the beginning. Otherwise they are sent
to a subsequent SET, with a more demanding
task. That way, by chaining SETs, we teach
them to write increasingly complex chunking
rules, under close guidance of the system. This
turned out to be a very promising use of SETs.

5.3 Use of SET in other topics
The question arises whether it would be
possible to use SETs in fields other than CL.
In general, in all fields where short textual
descriptions are the best way to answer ques-
tions, SETs are a good way to automatise
training and testing. SETs are of particular
interest to the Arts and Humanities, but
the Medical Sciences might also be a field
that could benefit form SETs (for instance,
a picture is presented and the user is asked
to describe what seems important or abnormal).

6 Conclusions

In training or assessment situations where
correct answers to questions do not consist of
one (or a few) isolated items (words, numbers,

symbols) but where a complete description in
natural language is required, and when human
tutors are not available, SET is the right tool
to use. It allows to simulate, to some extent,
the detailed comments to individual aspects of
an answer that make human tutors so valuable.

While SETs are great once they have been
written, the process of authoring them is still
painful, demanding, error-prone, and thus
extremely time-consuming. We will need
authoring tools that allow a top-down kind of
design for SETs, with stepwise refinement of
the code and on-the-fly testing of selected parts
of the FSA, instead of the low-level design
process used now. It would also be very useful
to have programs that work, bottom-up, from
possible answers to FSAs, by automatically
identifying common phrases in answers and
collecting them in boxes. We developed such
a system and found it very useful but its
grammatical coverage is too small to make it
viable in practice. The automatic creation of
terminological variations in potential answers,
by accessing on-line lexical resources, will be
another feature that might make life easier for
test developers. We continue work on all of
these lines of research.

7 Acknowledgements

Our thanks go to Sonja Brodersen and David
Lee, who developed the SET and SETEI en-
vironments, to Esther Kaufmann, who created
most of the existing SETs, and to Kai-Uwe
Carstensen for valuable feedback on the results.

References

Sonja Brodersen and David Lee. 2003.
Dynamisches Multiple-Choice mit Satz-
Ergänzungstests. Dokumentation zum
gesamten Satztestprojekt. unpublished,
December 2003.

Jill Burstein. 2003. The e-rater scoring en-
gine: Automated essay scoring with nat-
ural language processing. In M. D. Sher-
mis and J. Burstein, editors, Automated es-
say scoring: A cross-disciplinary perspective.
Lawrence Erlbaum Associates, Inc., Hillsdale,
NJ.

Kai-Uwe Carstensen and Michael Hess.
2003. Problem-based web-based teaching
in a computational linguistics curriculum.
www.linguistik-online.de, 17(5/2003).



European Ministers of Education. 1999.
The bologna declaration of 19 june 1999.
www.bologna-berlin2003.de/pdf/bologna-
declaration.pdf, June 1999.

T. K. Landauer, P. W. Foltz, and D. Laham.
1998. Introduction to Latent Semantic Anal-
ysis. Discourse Processes.

Donald E. Powers, Jill Burstein, Martin
Chodorow, Mary E. Fowles, and Karen Ku-
kich. 2001. Stumping E-Rater: Challeng-
ing the Validity of Automated Essay Scoring.
GRE Research, GRE Board Professional Re-
port No. 98-08bP, ETS Research Report 01-
03.

Theodor Rütter. 1973. Formen der Tes-
taufgabe. Eine Einführung für didaktische
Zwecke. C.H.Beck.


