
DEPENDENCY PARSING
USING DEPENDENCY GRAPH

Tomasz Obrębski
Poznań University of Technology∗

Adam Mickiewicz University
Poland

e-mail: Tomasz.Obrebski@put.poznan.pl

Abstract

In this paper an efficient algorithm for dependency parsing is described in which am-
biguous dependency structure of a sentence is represented in the form of a graph. The idea
of the algorithm is shortly outlined and some issues as to its time complexity are discussed.

1 Introduction

The paper describes a computationally efficient dependency parsing algorithm. It has been

developed for language engineering applications to precess raw text corpora on the syntactic

level. Since our primary concern was the efficiency, we have considered a limited coverage of

the syntactic constructions; hence discontinuity, ellipsis, and several other types of complicated,

textually infrequent, constructions have not been handled. The algorithm were implemented in

the dependency paser dgp (dependency graph parser).

2 Syntactic description and parsing algorithm

The syntactic structure of a sentence is represented as a projective dependency tree, whose

nodes are labeled with words while arcs are labeled with dependency types (cf. [2]). In addition,

syntactic attributes, eg. expressing the property of being the head of a relative clause, may be

assigned to nodes during the parsing process. The grammatical description is formulated in the

form of constraints determining the possibility of establishing a dependency between a given

pair of words and rules of syntactic attributes assignment.

In order to describe the algorithm we introduce the following relations among the nodes of a

dependency tree and, also, dependency graph: wi is a transitive left dependent of wj , if wi is a

transitive dependent of wj and all intervening dependencies are directed leftwards (considering

linear order of words). The node wi is a transitive left head of wj , if wi is a transitive head of wj

and all intervening dependencies are directed rightwards. The node wi is visible to wj (on the

∗This work was partially financed by Poznań University of Technology, Research Project No 45-083/03/DS.



left), if wi is a transitive left head of the left surface neighbour of a transitive left dependent of

wj . The visibility relation expresses the structural condition for two nodes to be connectable.

The basic idea is as follows: dependency tree construction algorithms usually operate by

adding, for as long as possible, a grammatically licenced arc between two nodes mutually vis-

ible of which none has a head (e.g. [1]). If we drop the letter condition, the algorithm will

produce a graph, which will contain all arcs that would be added in all possible (successful

and unsuccessful) passes of the tree construction algorithm and those arcs only. All projective

dependency trees possible to construct are sub-graphs of this graph. We call this structure a

dependency graph. The complexity of the deterministic version of the algorithm following this

idea is O(n3), which is the same as for the tree construction algorithm. In the implementa-

tion it is reduced1 to O(n2), and the test-measured complexity is still lower. With the core

algorithm only context-independent grammatical constraints, i.e. those which refer only to the

categories and the relative position of the words being connected, can be taken into account

during graph construction. The core algorithm can be extended to handle ambiguous input,

obligatory dependencies, and additional order constraints with time complexity increased by

a constant factor. Incorporation of mechanisms needed to handle propagation of syntactic at-

tributes, which involve node duplication, significantly affects the theoretical complexity, only

slightly affecting, however, the test-measured complexity.

After constructing the graph, we have the information of each node’s all (possible) transitive

left heads and dependents, as well as nodes visible on the left. Using this information, each

possible tree can be generated in time O(n2) (O(n) in the implementation).

In the dgp parser the grammar is represented as a set of two-dimensional tables indexed

with word categories, what makes grammatical information instantly accessible. For a fourty-

word sentence the graph construction time is about 10ms (PC 1,2 GHz). One tree is generated

in approximately 0,1ms. More details about the algorithm can be found in [3].

References

[1] R. Hudson. Towards a computer-testable word grammar of english. In UCL Working Papers

in Linguistics, volume 1. University College London, 1989.

[2] I. A. Mel’čuk. Dependency Syntax: Theory and Practice. State University of New York

Press, 1988.

[3] T. Obrębski. Dependency parsing using dependency graph for storing ambiguous structure.

ICII Technical report, Poznań University of Technology, Jan 2003.

1The algorithm performs computations on sets of transitive left heads and visible nodes. The operations of
union and intersection of ordered sets, which theoretically are linear, in the calculation of the implementational
complexity are considered as unary operations, as they are realized as operations on bit vectors of constant size.

View publication statsView publication stats

https://www.researchgate.net/publication/266169377

