
MAYA: A Fast Question-answering System Based On A Predictive
Answer Indexer*

Harksoo Kim, Kyungsun Kim
Dept. of Computer Science,

Sogang University
1 Sinsu-Dong, Mapo-Gu, Seoul,

121-742, Korea
{ hskim, kksun }

@nlpzodiac.sogang.ac.kr

Gary Geunbae Lee
Dept. of Computer Science

and Engineering,
Pohang University of

Science and Technology
San 31, Hyoja-Dong,

Pohang, 790-784, Korea
gblee@postech.ac.kr

Jungyun Seo
Dept. of Computer Science,

Sogang University
1 Sinsu-Dong, Mapo-Gu,
Seoul, 121-742, Korea
seojy@ccs.sogang.ac.kr

(Currently Visiting CSLI Stanford University)

Abstract

We propose a Question-answering
(QA) system in Korean that uses a
predictive answer indexer. The
predictive answer indexer, first,
extracts all answer candidates in a
document in indexing time. Then, it
gives scores to the adjacent content
words that are closely related with each
answer candidate. Next, it stores the
weighted content words with each
candidate into a database. Using this
technique, along with a complementary
analysis of questions, the proposed QA
system can save response time because
it is not necessary for the QA system to
extract answer candidates with scores
on retrieval time. If the QA system is
combined with a traditional
Information Retrieval system, it can
improve the document retrieval
precision for closed-class questions
after minimum loss of retrieval time.

1 Introduction∗∗

Information Retrieval (IR) systems have been
applied successfully to a large scale of search
area in which indexing and searching speed is
important. Unfortunately, they return a large

∗ This research was partly supported by BK21 program of
Ministry of Education and Technology Excellency
Program of Ministry of Information and
Telecommunications.

amount of documents that include indexing
terms in a user’s query. Hence, the user should
carefully look over the whole text in order to
find a short phrase that precisely answers his/her
question.

Question-answering (QA), an area of IR, is
attracting more attention, as shown in the
proceedings of AAA I (AAAI, 1999) and TREC
(TREC, http://trec.nist.gov/overview.html). A
QA system searches a large collection of texts,
and filters out inadequate phrases or sentences
within the texts. By using the QA system, a user
can promptly approach to his/her answer phrases
without troublesome tasks. However, most of
the current QA systems (Ferret et al., 1999; Hull,
1999; Srihari and Li, 1999; Prager et al., 2000)
have two problems as follows:

�
It cannot correctly respond to all of the users’
questions. It can answer the questions that are
included in the pre-defined categories such as
person, date, time, and etc.

�
It requires more indexing or searching time than
traditional IR systems do because it needs a
deep linguistic knowledge such as syntactic or
semantic roles of words.

To solve the problems, we propose a QA

system using a predictive answer indexer -
MAYA (MAke Your Answer). We can easily
add new categories to MAYA by only
supplementing domain dictionaries and rules.
We do not have to revise the searching engine of
MAYA because the indexer is designed as a
separate component that extracts candidate
answers. In addition, a user can promptly obtain
answer phrases on retrieval time because
MAYA indexes answer candidates in advance.

Most of the previous approaches in IR have
been focused on the method to efficiently
represent terms in a document because they
want to index and search a large amount of data
in a short time (Salton et al., 1983; Salton and
McGill , 1983; Salton 1989). These approaches
have been applied successfully to the
commercial search engines (e.g.
http://www.altavista.com) in World Wide Web
(WWW). However, in a real sense of
information retrieval rather than document
retrieval, a user still needs to find an answer
phrase within the vast amount of the retrieved
documents although he/she can promptly find
the relevant documents by using these engines.
Recently, several QA systems are proposed to
avoid the unnecessary answer finding efforts
(Ferret et al., 1999; Hull, 1999; Moldovan et al.
1999; Prager et al., 1999; Srihari and Li, 1999).

Recent researches have combined the
strengths between a traditional IR system and a
QA system (Prager et al., 2000; Prager et al.,
1999; Srihari and Li, 1999). Most of the
combined systems access a huge amount of
electronic information by using IR techniques,
and they improve precision rates by using QA
techniques. In detail , they retrieve a large
amount of documents that are relevant to a
user’s query by using a well -known TF � IDF.
Then, they extract answer candidates within the
documents, and filter out the candidates by
using an expected answer type and some rules
on the retrieval time. Although they have been
based on shallow NLP techniques (Sparck-Jones,
1999), they consume much longer retrieval time
than traditional IR systems do because of the
addictive efforts mentioned above. To save
retrieval time, MAYA extracts answer
candidates, and computes the scores of the
candidates on indexing time. On retrieval time,
it just calculates the similarities between a user’s
query and the candidates. As a result, it can
minimize the retrieval time.

This paper is organized as follows. In Section
2, we review the previous works of the QA
systems. In Section 3, we describe the applied
NLP techniques, and present our system. In
Section 4, we analyze the result of our
experiments. Finally, we draw conclusions in
Section 5.

2 Previous Works

The current QA approaches can be classified
into two groups; text-snippet extraction systems
and noun-phrase extraction systems (also called
closed-class QA) (Vicedo and Ferrándex, 2000).

The text-snippet extraction approaches are
based on locating and extracting the most
relevant sentences or paragraphs to the query by
assuming that this text will probably contain the
correct answer to the query. These approaches
have been the most commonly used by
participants in last TREC QA Track (Ferret et al.,
1999; Hull , 1999; Moldovan et al., 1999; Prager
et al., 1999; Srihari and Li, 1999). ExtrAns
(Berri et al., 1998) is a representative QA
system in the text-snippet extraction approaches.
The system locates the phrases in a document
from which a user can infer an answer. However,
it is difficult for the system to be converted into
other domains because the system uses syntactic
and semantic information that only covers a very
limited domain (Vicedo and Ferrándex, 2000).

The noun-phrase extraction approaches are
based on finding concrete information, mainly
noun phrases, requested by users’ closed-class
questions. A closed-class question is a question
stated in natural language, which assumes some
definite answer typified by a noun phrase rather
than a procedural answer. MURAX (Kupiec,
1993) is one of the noun-phrase extraction
systems. MURAX uses modules for the shallow
linguistic analysis: a Part-Of-Speech (POS)
tagger and finite-state recognizer for matching
lexico-syntactic pattern. The finite-state
recognizer decides users’ expectations and
filters out various answer hypotheses. For
example, the answers to questions beginning
with the word Who are likely to be people’s
name. Some QA systems participating in Text
REtrieval Conference (TREC) use a shallow
linguistic knowledge and start from similar
approaches as used in MURAX (Hull, 1999;
Vicedo and Ferrándex, 2000). These QA
systems use specialized shallow parsers to
identify the asking point (who, what, when,
where, etc). However, these QA systems take a
long response time because they apply some
rules to each sentence including answer
candidates and give each answer a score on
retrieval time.

MAYA uses shallow linguistic information
such as a POS tagger, a lexico-syntactic parser
similar to finite-state recognizer in MURAX and

a Named Entity (NE) recognizer based on
dictionaries. However, MAYA returns answer
phrases in very short time compared with those
previous systems because the system extracts
answer candidates and gives each answer a score
using pre-defined rules on indexing time.

3 MAYA Q/A approach

MAYA has been designed as a separate
component that interfaces with a traditional IR
system. In other words, it can be run without IR
system. It consists of two engines; an indexing
engine and a searching engine.

The indexing engine first extracts all answer
candidates from collected documents. For
answer extraction, it uses the NE recognizer
based on dictionaries and the finite-state
automata. Then, it gives scores to the terms that
surround each candidate. Next, it stores each
candidate and the surrounding terms with scores
in Index DataBase (DB). For example, if n
surrounding terms affects a candidate, n pairs of
the candidate and terms are stored into DB with
n scores. As shown in Figure 1, the indexing
engine keeps separate index DBs that are
classified into pre-defined semantic categories
(i.e. users’ asking points or question types).

The searching engine identifies a user’s
asking point, and selects an index DB that
includes answer candidates of his/her query.
Then, it calculates similarities between terms of
his/her query and the terms surrounding the
candidates. The similarities are based on p-
Norm model (Salton et al., 1983). Next, it ranks
the candidates according to the similarities.

� � � � � � 	
 �

� � � � � � � �

� � � � � � � � � � � �

� � ! " # $ % % ! # � & ' ()
* + , - - . / . 0 1

2 3 4 5 6 7 8 9 : ; < = 8 9 : ; < 9

> ? @
A B C D B E F G H I

J K L M
N L O M L P K Q R S

…

T U V W X

Y Z [\] ^ _ ` a b c d e c f e g d h ` i h

j k l m n o l p q o r k s

t u v w x y y z u { | u }

~ � � � � � �

� � � � � � � � � � � � � �

� �

� � � ¡ ¢ £
¤ ¥ ¦ § ¤ ¨ ¨ © ª «

¬ ® ¯ ° ± ² ³ ´ µ ´ ³ ¶ °
¶ ° ± · ® ² ¸ ± µ ¹

º » ¼ ½ ¾ ¿ À Á

Figure 1. A basic architecture of the QA engines

Figure 2 shows a total architecture of MAYA
that combines with a traditional IR system. As

shown in Figure 2, the total system has two
index DBs. One is for the IR system that
retrieves relevant documents, and the other is for
MAYA that extracts relevant answer phrases.

Â Ã Ä Å Æ

Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ê Ð Ñ Ï Ð Ê Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Õ Û Ü Ú Û ÕÝ Þ ß à á â
ã ä å æ å ç è é ê

ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ � � � � � � � � �
� � � 	 � 	
 � � � � � � � � �

� � � � � � � � �
� � � � � � � !" � # $ � % & ' () ' #

Figure 2. A total architecture of the combined

MAYA system

3.1 Predictive Answer indexing

The answer indexing phase can be separated in 2
stages; Answer-finding and Term-scoring. For
answer-finding, we classify users’ asking points
into 14 semantic categories; person, country,
address, organization, telephone number, email
address, homepage Uniform Resource Locator
(URL), the number of people, physical number,
the number of abstract things, rate, price, date,
and time. We think that the 14 semantic
categories are frequently questioned in general
IR systems. To extract answer candidates
belonging to each category from documents, the
indexing engine uses a POS tagger and a NE
recognizer. The NE recognizer makes use of two
dictionaries and a pattern matcher. One of the
dictionaries, which is called PLO dictionary
(487,782 entries), contains the names of people,
countries, cities, and organizations. The other
dictionary, called unit dictionary (430 entries),
contains the units of length (e.g. cm, m, km), the
units of weight (e.g. mg, g, kg), and others. After
looking up the dictionaries, the NE recognizer
assigns a semantic category to each answer
candidate after disambiguation using POS
tagging. For example, the NE recognizer
extracts 4 answer candidates annotated with 4
semantic categories in the sentence, “

* + , -.
 (/ 0 1 2 3 www.yahoo.co.kr) 4 5 6 78 9

 : ; < 6 = > ? @ A B . (Yahoo Korea
(CEO Jinsup Yeom www.yahoo.co.kr) expanded

the size of the storage for free email service to 6
mega-bytes.)” . C D E F G (Yahoo Korea)
belongs to organization, and H I J (Jinsup
Yeom) is person. www.yahoo.co.kr means
homepage URL, and 6 K L (6 mega-bytes) is
physical number. Complex lexical candidates
such as www.yahoo.co.kr are extracted by the
pattern matcher. The pattern matcher extracts
formed answers such as telephone number,
email address, and homepage URL. The patterns
are described as regular expressions. For
example, Homepage URL satisfies the following
regular expressions: M

^(http://)[_A-Za-z0-9N -]+(N .[_A-Za-z0-9N -
]+)+(/[_~A-Za-z0-9N - N .]+)*$ O
^[0-9]{ 3} (N .[0-9]{ 3})(N .[0-9]{ 2,}){ 2} (/[_~A-
Za-z0-9N - N .]{ 2,})*$ O
^[0-9]*[_A-Za-zN -]{ 1,} [_A-Za-z0-9N -
]+(N .[_A-Za-7z0-9N -]{ 2,}){ 2,} (/[_~A-Za-z0-
9N - N .]{ 2,})*$

In the next stage, the indexing engine gives

scores to content words within a context window
that occur with answer candidates. The
maximum size of the context window is 3
sentences; a previous sentence, a current
sentence, and a next sentence. The window size
can be dynamically changed. When the indexing
engine decides the window size, it checks
whether neighboring sentences have anaphora or
lexical chains.
 P Q R S T U V W X Y Z [\]

^ _ ` a b a c d e f g e a h i a d j k i b e a f b a e l j f e g m n j o l g b i a d p

q r s t u v w x y z { | | | } ~ � � � � } � � } �� � � � � � � � � � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « « « ¬ ® ¯ ° ° ¬ ± ° ¬ ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ ¶ ¶ À À Á Á Â Â Ã ÄÃ Ä Å ÀÅ À Æ Æ Ç Ç Ã Ã È È À À É Ê

Ë Ì Ì Í Í Î Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Ý Þ Þ ß ß à á â ã ä å æ ç è éê ë ì í î í î ï í ð ñ ò ó ô ì í õ õ ö ö ÷ ø ù ú ö÷ ø ù ú ö û ü ý þ ÿ � � � � � � � � ÿ � � � ü � � ÿ � � � � � � ü 	
 � � � � � � � � � � � � � �� � � �
� � � � � � � � ! � � " � ! # $ % & & ' $ () &

* * + + , ,

- - . . , ,

/ / 0 0 1 1

2 2 3 3 1 1

4 4 5 5 6 6 7 7 8 8

4 4 5 5 6 6 7 7 8 8

9 9 4 4 : : ; ; 7 7 < < 4 4

9 9 4 4 : : ; ; 7 7 < < 4 4

Figure 3. An example with the adjusted window

size

If the next sentence has anaphors or lexical
chains of the current sentence and the current
sentence does not have anaphors or lexical
chains of the previous sentence, the indexing
engine sets the window size as 2. Unless
neighboring sentences have anaphors or lexical

chains, the window size is 1. Figure 3 shows an
example in which the window size is adjusted.

The scores of the content words indicate the
magnitude of influences that each content word
causes to answer candidates. For example, when
www.yahoo.co.kr is an answer candidate in the
sentence, “

= > ? @ A
 (www.yahoo.co.kr) B CD E

 F G H I J K L M . (Yahoo Korea
(www.yahoo.co.kr) starts a new service.)” , N OP Q R

(Yahoo Korea) has the higher score than S T U
(service) because it has much more

strong clue to www.yahoo.co.kr. We call the
score a term score. The indexing engine assigns
term scores to content words according to 5
scoring features described below.
 V

POS: the part-of-speech of a content word. The
indexing engine gives 2 points to each content
word annotated with a proper noun tag and
gives 1 point to each content word annotated
with other tags such as noun, number, and etc.
For example, W X Y Z [(Yahoo Korea)
obtains 2 points, and \] ^ (service) obtains 1
point in “ _ ` a b c (www.yahoo.co.kr) d ef g

 h i j k l m n o . (Yahoo Korea
(www.yahoo.co.kr) starts a new service.)” . p
Grammatical Role: the grammatical relations of
the subcategorized functions of the main verb in
a sentence. The indexing engine gives 4 points
to a topic word, 3 points to a subject, 2 points to
an object and 1 point to the rests. The
grammatical roles can be decided by case
markers like q / r (un/nun), s / t (i/ga) and u /v

(ul/lul) since Korean is a language with well-
developed morphemic markers. For example, wx

 y z { (Yahoo Korea) obtains 3 points
because it is a subject, and | } ~ (service)
obtains 2 point because it is an object in the
above sample sentence. �
Lexical Chain: the re-occurring words in
adjacent sentences. The indexing engine gives 2
points to each word that forms lexical chains
and gives 1 point to others. For example, if the
next sentence of the above sample sentence is
“ � � � � � � � � � � � � 6 � � � � � � � �

 � � � � � � � � � . (The members
of the service can use the free storages of 6
mega-bytes for email .)” , � � � (service)
obtains 2 points.
Distance: the distance between a sentence
including a target content word and a sentence
including an answer candidate. The indexing
engine gives 2 points to each content word in
the sentence including the answer candidate.

The engine gives 1 point to others. For example, ¡ ¢ £ ¤ ¥
(Yahoo Korea) and ¦ § ¨ (service)

in the above sample sentence obtain 2 points
respectively because the content words are in
the sentence including the answer candidate,
www.yahoo.co.kr. ©
Apposition: the IS-A relation between a content
word and an answer candidate. The indexing
engine extracts appositive terms by using
syntactic information such as Explicit IS-A
relation, Pre-modification and Post-modification.
For example,

¡ ¢ £ ¤ ¥
(Yahoo Korea) is Pre-

modification relation with www.yahoo.co.kr in
the above sample sentence. The indexing engine
gives 2 points to each appositive word and gives
1 point to others.

The indexing engine adds up the scores of the 5
features, as shown in Equation 1.

EDCBA

fEfDfCfBfA
ts iiiii

i ++++
⋅+⋅+⋅+⋅+⋅

= 54321 (1)

tsi is the term score of the ith term, and fij is the
score of the jth feature in the ith term. A, B, C, D
and E are weighting factors that rank 5 features
according to preference. The indexing engine
uses the following ranking order: E > C > B > A
> D. The weighted term scores are normalized,
as shown in Equation 2.

()
0 0

0
log

)/log(

_
5.05.0

=

>

+

ij

ij
j

ij

ts

ts
N

nN

tsMax

ts (2)

Equation 2 is similar to TF⋅IDF equation (Fox,
1983). In Equation 2, tsij is the term score of the
ith term in the context window that is relevant to
the jth answer candidate. Max_tsj is the
maximum value among term scores in the
context window that is relevant to the jth answer
candidate. n is the number of answer candidates
that are affected by the ith term. N is the number
of answer candidates of the same semantic
category. The indexing engine saves the
normalized term scores with the position
information of the relevant answer candidate in
the DB. The position information includes a
document number and the distance between the
beginning of the document and the answer
candidate. As a result, the indexing engine
creates 14 DB’s that correspond to the 14
semantic categories. We call them answer DB’s.

3.2 Lexico-syntactic Query processing

In the query processing stage, the searching
engine takes a user’s question and converts it
into a suitable form, using a semantic dictionary,
called a query dictionary. The query dictionary
contains the semantic markers of words. Query
words are converted into semantic markers
before pattern matching. For example, the query
“ ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ? (Who is
the CEO of Yahoo Korea?)” is translated into
“ ¸ ¹ º » ¼ j %½ ¾ j % ¿ À jp ef sf (%who
auxiliary-verb %person preposition Yahoo
Korea symbol)” . In the example, % Á ¾
(%person) and % ¿ À (%who) are the semantic
markers. The content words out of the query
dictionary keep their lexical forms. The
functional words (e.g. auxiliary verb,
preposition) are converted into POS’s. After
conversion, the searching engine matches the
converted query against one of 88 lexico-
syntactic patterns, and classifies the query into
the one of 14 semantic categories. When two or
more patterns match the query, the searching
engine returns the first matched category.

% Â Ã (xsn)* (j)?% Ä Å .* $
(%person (xsn)* (j)? %who .* $)

% Æ Ç (xsn)* (j)? % È É (j) (% Ê Ë)? .* $
(%person (xsn)* (j)? %name (j) (%what)? .* $)

% Ì Í (xsn)* (j)? (% Î Ï)? % Ð Ñ .* $
(%person (xsn)* (j)? (%name)? %want_to_know .* $)

% Ò Ó % Ô Õ .* $
(%which %person .* $)

Figure 4. Lexico-syntactic patterns

Figure 4 shows some lexico-syntactic patterns
for person category. The above sample query
matches the first pattern in Figure 4.

After classifying the query into a semantic
category, the searching engine calculates the
term scores of the content words in the query.
As shown in Rule 1, the term scores are
computed by some heuristic rules, and the range
of the term scores is between 0 and 1. Using the
heuristic rules, the searching engine gives high
scores to content words that focus a user’s
intention. For example, when a user inputs the
query “ Ö × Ø Ù Ú Û Ü Ý Þ ß à á ? (In
what year is Yahoo founded?)” , he/she wants to
know only the year, rather than the organizer or
the URL of Yahoo. So, the QA searching engine

gives a higher score to â ã (year) than to ä å
(Yahoo) in contrast to the ordinary IR searching
engine.

1. The last content word in a sentence receives a

high score. For example, æ ç (CEO) in “ è é ê ç ë ? (The CEO of Yahoo?)” receives a high
score.

2. The next content words of specific interrogatives
such as ì í (which), î ï (what) receive high
scores. For example, ð (mountain) in “ ñ ò ó ô õ ö

 ÷ ø ù ? (Which mountain is the highest?)”
receives a high score.

3. The next content words of specific prepositions
like ú û (about) receive low scores, and the
previous content words receive high scores. For
example, the score of ü ý (article) in “ þ ÿ � � �

 � � (the article about China)” is lower
than that of � � (China).

Rule 1. Heuristic rules for scoring query terms

3.3 Answer scoring and ranking

The searching engine calculates the similarities
between query and answer candidates, and ranks
the answer candidates according to the
similarities. To check the similarities, the
searching engine uses the AND operation of a
well -known p-Norm model (Salton et al., 1983),
as shown in Equation 3.

p
p
i

pp

p
i

p
i

pppp

and qqq

aqaqaq
QASim

+++
−++−+−

−= �
�

21

2211)1()1()1(
1),(

 (3)

In Equation 3, A is an answer candidate, and ai
is the ith term score in the context window of
the answer candidate. ai is stored in the answer
DB. qi is the ith term score in the query. p is the
P-value in the p-Norm model.

It takes a relatively short time for answer
scoring and ranking phase because the indexing
engine has already calculated the scores of the
terms that affect answer candidates. In other
words, the searching engine simply adds up the
weights of co-occurring terms, as shown in
Equation 3. Then, the engine ranks answer
candidates according to the similarities. The
method for answer scoring is similar to the
method for document scoring of traditional IR
engines. However, MAYA is different in that it
indexes, retrieves, and ranks answer candidates,
but not documents.

We can easily combine MAYA w ith a
traditional IR system because MAYA has been
designed by a separate component that
interfaces with the IR system. We implemented
an IR system that is based on TF⋅IDF weight
and p-Norm model (Lee et al., 1999).

To improve the precision rate of the IR
system, we combine MAYA with the IR system.
The total system merges the outputs of MAYA
with the outputs of the IR system. MAYA can
produce multiple similarity values per document
if two or more answer candidates are within a
document. However, the IR system produces a
similarity value per document. Therefore, the
total system adds up the similarity value of the
IR system and the maximum similarity value of
MAYA , as shown in Equation 4.

βα
βα

+
⋅+⋅=),(),(

),(
QAQAsimQDIRsim

QDSim id (4)

In Equation 4, QAsimd(Ai,Q) is the similarity
value between query Q and the ith answer
candidate Ai in document d. IRsim(D,Q) is the
similarity value between query Q and document
D. � and 	 are weighting factors. We set
 and 	
to 0.3 and 0.7.

The total system ranks the retrieved
documents by using the combined similarity
values, and shows the sentences including
answer candidates in the documents.

4 Evaluation

4.1 The experiment data

In order to experiment on MAYA , we collected
14,321 documents (65,752 kilobytes) from two
web sites: korea.internet.com (6,452 documents)
and www.sogang.ac.kr (7,869 documents). The
former gives the members on-line articles on
Information Technology (IT). The latter is a
homepage of Sogang University. The indexing
engine created the 14 answer DBs (14 semantic
categories).

For the test data, we collected 50 pairs of
question-answers from 10 graduate students.
Table 1 shows the 14 semantic categories and
the numbers of the collected question-answers in
each category. As shown in Table 1, we found 2
question-answers out of the 14 semantic
categories. They are not closed-class question-

answers but explanation-seeking question-
answers like “Question: How can I search on-
line Loyola library for any books? Answer:
Connect your computer to http://loyola
1.sogang.ac.kr” .

Category person country address organization

of QAs 9 3 3 9

Category telephone email URL people num.

of QAs 3 5 4 0

Category phy. num. abs. num. rate price

of QAs 1 1 0 4

Category date time out of cat. total

of QAs 5 1 2 50

Table 1. The number of the collected question-
answers in each category

We use two sorts of evaluation schemes. To

experiment on MAYA , we compute the
performance score as the Reciprocal Answer
Rank (RAR) of the first correct answer given by
each question. To compute the overall
performance, we use the Mean Reciprocal
Answer Rank (MRAR), as shown in Equation 5
(Voorhees and Tice, 1999).

= ∑

i
iranknMRAR /1/1 (5)

With respect to the total system that combines
MAYA w ith the IR system, we use the
Reciprocal Document Rank (RDR) and the
Mean Reciprocal Document Rank (MRDR).
RDR means the reciprocal rank of the first
document including the correct answers given
by each question.

4.2 Analysis of experiment results

The performance of MAYA is shown in Table 2.
We obtained the correct answers for 33
questions out of 50 in Top 1.

Rank Top 1 Top 2 Top 3 Top 4

of answers 33 4 3 2

Rank Top 5 Top 6~ Failure
Total

(MRAR)

of answers 1 2 5
50

(0.80)

Table 2. The performance of the QA system

Table 3 shows the performance of the total
system. As shown in Table 3, the total system
significantly improves the document retrieval
performance of underlying IR system about the
closed-class questions.

 The average retrieval time of the IR system
is 0.022 second per query. The total system is
0.029 second per query. The difference of the
retrieval times between the IR system and the
total system is not so big, which means that the
retrieval speed of QA-only-system is fast
enough to be negligible. The IR system shows
some sentences including query terms to a user.
However, the total system shows the sentences
including answer candidates to a user. This
function helps the user get out of the trouble that
the user might experience when he/she looks
through the whole document in order to find the
answer phrase.

Rank Top 1 Top 2 Top 3 Top 4

of answers 1 22 8 5 2

of answers 2 36 5 2 1

Rank Top 5 Top 6~ Failure
Total

(MRDR)

of answers 1 3 10 0
50

(0.54)

of answers 2 2 4 0
50

(0.76)
of answers 1: the number of answers which are ranked at
top n by using the IR system
of answers 2: the number of answers which are ranked at
top n by using the total system

Table 3. The performance of the total system

MAYA could not extract the correct answers
to certain questions in this experiment. The
failure cases are the following, and all of them
can be easily solved by extending the resources
and pattern rules: �

The lexico-syntactic parser failed to classify
users’ queries into the predefined semantic
categories. We think that most of these failure
queries can be dealt with by supplementing
additional lexico-syntactic grammars. �
The NE recognizer failed to extract answer
candidates. To resolve this problem, we should
supplement the entries in PLO dictionary, the
entries in the unit dictionary, and regular
expressions. We also should endeavor to
improve the precision of the NE recognizer.

5 Conclusion

We presented a fast and high-precision Korean
QA system using a predictive answer indexer.
The predictive answer indexer extracts answer
candidates and terms surrounding the candidates
in indexing time. Then, it stores each candidate
with the surrounding terms that have specific
scores in answer DB’s. On the retrieval time, the
QA system just calculates the similarities
between a user’s query and the answer
candidates. Therefore, it can minimize the
retrieval time and enhance the precision. Our
system can easily converted into other domains
because it is based on shallow NLP and IR
techniques such as POS tagging, NE recognizing,
pattern matching and term weighting with
TF⋅IDF. The experimental results show that the
QA system can improve the document retrieval
precision for closed-class questions after the
insignificant loss of retrieval time if it is
combined with a traditional IR system. In the
future, we pursue to concentrate on resolving the
semantic ambiguity when a user’s query
matches two or more lexico-syntactic patterns.
Also, we are working on an automatic and
dynamic way of extending the semantic
categories into which the users’ queries can be
more flexibly categorized.

References
AAAI Fall Symposium on Question Answering.

1999.

Berri, J., Molla, D., and Hess, M. 1998. Extraction
automatique de réponses: implémentations du
systéme ExtrAns. In Proceedings of the fifth
conference TALN 1998, pp. 10-12.

Ferret, O., Grau, B., Illouz, G., and Jacquemin C.
1999. QALC – the Question- Answering program
of the Language and Cognition group at LIMSI-
CNRS. In Proceedings of The Eighth Text
REtrieval Conference(TREC-8), http://trec.nist.
gov/pubs/trec8/t8_proceedings.html.

Fox, E.A. 1983. Extending the Boolean and Vector
Space Models of Information Retrieval with P-
norm Queries and Multiple Concept Types, Ph.D.
Thesis, CS, Cornell University.

Hull , D.A. 1999. Xerox TREC-8 Question
Answering Track Report. In Proceedings of The
Eighth Text REtrieval Conference(TREC-8),
http://trec.nist.gov/pubs/trec8/t8_proceedings.html.

Kupiec, J. 1993. Murax: A Robust L inguistic
Approach for Question Answering Using an On-

line Encyclopedia. In Proceedings of SIGIR’93.

Lee, G., Park, M., and Won, H. 1999. Using syntactic
information in handling natural language queries
for extended boolean retrieval model. In
Proceedings of the 4th international workshop on
information retrieval with Asian languages
(IRAL99), pp. 63-70.

Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea,
R., Goodrum, R., Gîrju, R., and Rus, V. 1999.
LASSO: A Tool for Surfing the Answer Net. In
Proceedings of The Eighth Text REtrieval
Conference (TREC-8), http://trec.ni st.gov/pubs
/trec8/t8_proceedings.html.

Prager, J., Brown, E., Coden A., and Radev D. 2000.
Question-Answering by Predictive Annotation. In
Proceedings of SIGIR 2000, pp. 184-191.

Prager, J., Radev, D., Brown, E., and Coden, A. 1999.
The Use of Predictive Annotation for Question
Answering in TREC8. In Proceedings of The
Eighth Text REtrieval Conference (TREC-8),
http://trec.nist.gov/pubs/trec8/t8_proceedings.html.

Salton, G., Fox, E.A., and Wu, H. 1983. Extended
Boolean Information Retrieval, Communication of
the ACM, 26(12):1022-1036.

Salton, G., and McGill , M. 1983. Introduction to
Modern Information Retrieval (Computer Series),
New York:McGraw-Hill .

Salton, G. 1989. Automatic Text Processing: The
Transformation, Analysis and Retrieval of
Information by Computer. Reading, MA:Addison-
Wesley.

TREC (Text REtrieval Conference) Overview,
http://trec.nist.gov/overview.html.

Sparck-Jones, K. 1999. What is the role NLP in Text
Retrieval?. Natural Language Information
Retrieval, Kluwer Academic Publishers.
T.Strzalkowski (ed), pp.1-24.

Srihari, R., and Li, W. 1999. Information Extraction
Supported Question Answering. In Proceedings of
The Eighth Text REtrieval Conference (TREC-8),
http://trec.nist.gov/pubs/trec8/t8_proceedings.html.

Vicedo, J. L., and Ferrándex, A. 2000. Importance of
Pronominal Anaphora resolution in Question
Answering systems. In Proceeding of ACL 2000,
pp. 555-562.

Voorhees, E., and Tice, D. M. 1999. The TREC-8
Question Answering Track Evaluation. In
Proceedings of The Eighth Text REtrieval
Conference (TREC-8), http://trec.nist.gov/pubs
/trec8/t8_proceedings.html.

