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A b s t r a c t  

Broad-coverage grammars tend to be highly am- 
biguous. When such grammars are used in a 
restricted domain, it may be desirable to spe- 
cialize them, in effect trading some coverage for 
a reduction in ambiguity. Grammar specializa- 
tion is here given a novel formulation as an opti- 
mization problem, in which the search is guided 
by a global measure combining coverage, ambi- 
guity and grammar size. The method, applica- 
ble to any unification grammar with a phrase- 
structure backbone, is shown to be effective in 
specializing a broad-coverage LFG for French. 

1 I n t r o d u c t i o n  

Expressive grammar formalisms allow grammar 
developers to capture complex linguistic gener- 
alizations concisely and elegantly, thus greatly 
facilitating grammar development and main- 
tenance. Broad-coverage grammars, however, 
tend to overgenerate considerably, thus allowing 
large amounts of spurious ambiguity. If the ben- 
efits resulting from more concise grammatical 
descriptions are to outweigh the costs of spuri- 
ous ambiguity, the latter must be brought down. 
We here investigate a corpus-based compilation 
technique that  reduces overgeneration and spu- 
rious ambiguity without jeopardizing coverage 
or burdening the grammar developer. 

The current work extends previous work 
on corpus-based grammar specialization, which 
applies variants of explanation-based learning 
(EBL) to grammars of natural  languages. The 
earliest work (Rayner, 1988; Samuelsson and 
Rayner, 1991) builds a specialized grammar by 
chunking together grammar rule combinations 
while parsing training examples. What  rules to 
combine is specified by hand-coded criteria. 

Subsequent work (Rayner and Carter, 1996; 
Samuelsson, 1994) views the problem as that  
of cutting up each tree in a treebank of cor- 
rect parse trees into subtrees, after which the 
rule combinations corresponding to the subtrees 
determine the rules of the specialized gram- 
mar. This approach reports experimental re- 
sults, using the SRI Core Language Engine, 
(Alshawi, 1992), in the ATIS domain, of more 
than a 3-fold speedup at a cost of 5% in gram- 
matical coverage, the latter which is compen- 
sated by an increase in parsing accuracy. Later 
work (Samuelsson, 1994; Sima'an, 1999) at- 
tempts to automatically determine appropriate 
tree-cutting criteria, the former using local mea- 
sures, the latter using global ones. 

The current work reverts to the view of EBL 
as chunking grammar rules. It extends the 
latter work by formulating grammar special- 
ization as a global optimization problem over 
the space of all possible specialized grammars 
with an objective function based on the cover- 
age, ambiguity and size of the resulting gram- 
mar. The method was evaluated on the LFG 
grammar for French developed within the PAR- 
GRAM project (Butt  et al., 1999), but it is 
applicable to any unification grammar with a 
phrase-structure backbone where the reference 
treebank contains all possible analyses for each 
training example, along with an indication of 
which one is the correct one. 

To explore the space of possible grammars, a 
special treebank representation was developed, 
called a ]folded treebank, which allows the ob- 
jective function to be computed very efficiently 
for each candidate grammar. This representa- 
tion relies on the fact that  all possible parses 
returned by the original grammar for each train- 
ing sentence axe available and the fact that  the 
grammar specialization never introduces new 



parses; it only removes existing ones. 
The rest of this paper is organized as follows: 

Section 2 describes the initial candidate gram- 
mar and the operators used to generate new 
candidate grammars  from any given one. The 
function to be maximized is introduced and mo- 
tivated in Section 3. The folded treebank repre- 
sentation is described in Section 4, while Sec- 
tion 5 presents the experimental  results. 

2 U n f o l d i n g  a n d  S p e c i a l i z a t i o n  

The initial g rammar  is the grammar  underly- 
ing the subset of correct parses in the training 
set. This is in itself a specialization of the gram- 
mar which was used to parse the treebank, since 
some rules may not show up in any correct parse 
in the training set; experimental  results for this 
first-order specialization are reported in (Can- 
cedda and Samuelsson, 2000). This grammar  
is further specialized by inhibiting rule combi- 
nations that  show up in incorrect parses much 
more often than in correct parses. 

In more detail, we considered downward un- 
folding of g rammar  rules (see Fig . l )3  A gram- 
mar rule is unfolded downwards on one of the 
symbols in its r ight-hand side if it is replaced 
by a set of rules, each corresponding to the ex- 
pansion of the chosen symbol by means of an- 
other g rammar  rule. More formally, let G = 
(E, EN, S, R) be a context-free grammar,  and 
let r , r '  C R, k E .M + such that  rhs(r)  = aAfl,  
lal = k - 1, lhs(r') = A, rhs(r ' )  = V. The rule 
adjunction of r I in the k th position of r is defined 
as a new rule RA(r,  k, r ~) = r ' ,  such that: 

lhs(r") = lhs(r) 
rhs(r") = aVfl 

For unification grammars,  we instead require 

lhs(r') U rhs(r)(k)  
lhs(r 1') = O(lhs(r)) 
rhs(r") = O(oLTfl ) 

where rhs(r)(k) is the k th  symbol of rhs(r) ,  
where X t3 Y indicates that  X and Y unify, and 
where 0 is the most general unifier of lhs(r ~) and 
rhs(r)(k).  

The downward rule unfolding of rule r on its 
k th position is then defined as: 

DRU(r,  k) = 

1The converse operation, upward unfolding, was not 
used in the current experiments. 

{r'[3r"[r' = RA(r,  k, r")]} if ¢ 0 
= {r} otherwise 

It is easy to see tha t  if all r I E DRU(r, k) are 
retained then the new grammar  has exactly the 
same coverage as the old one. Once the rule 
has been unfolded, however, the grammar  can 
be specialized. This involves inhibiting some 
rule combinations by simply removing the cor- 
responding newly created rules. Any subset 
X C_ DRU(r ,k )  is called a downward special- 
ization of rule r on the k th element of its rhs. 

Given a grammar,  all possible (downward) 
unfoldings of its rules are considered and, for 
each unfolding, the specialization leading to the 
best increase in the objective function is deter- 
mined. The set of all such best specializations 
defines the set of candidate  successor grammars.  
In the experiments,  a simple hill-climbing algo- 
r i thm was adopted. Other  iterative-refinement 
schemes, such as simulated annealing, could eas- 
ily be implemented. 

3 T h e  O b j e c t i v e  F u n c t i o n  

Previous research approached the task of de- 
termining which rule combinations to allow ei- 
ther by a process of manual  trial and error or 
by statistical measures based on a collection of 
positive examples only: if the original g rammar  
produces more than  a single parse of a sentence, 
only the "correct" parse was stored in the tree- 
bank. However, we here also have access to all 
incorrect parses assigned by the original gram- 
mar. This in tu rn  means that  we do not need 
to est imate ambiguity through some correlated 
statistical indicator, since we can measure it di- 
rectly simply by checking which parse trees are 
licensed by every new candidate  grammar  G. 
There are many possible ways of combining the 
counts of correct and incorrect parses in a suit- 
able objective function. For the sake of sire- 
plicity we opted for a linear combination. How- 
ever, simply maximizing correct parses and min- 
imizing incorrect ones would most likely lead to 
overfitting. In fact, a g rammar  with one large 
flat rule for each correct parse in the treebank 
would achieve a very high score during training, 
but  most likely perform poorly on unseen data. 
A way to avoid overfitting consists in penalizing 
large grammars  by introducing an appropriate 
te rm in the linear combination. The objective 
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A • C  A-oc  A_oc 
B "- '~" D A "- 'P" E F C A ---~" E F C 
B-----P- E F A ~  

B ~ G Special izat ion 
D o w n w a r d  unfolding 
of  A -> B C on  "B"  

A • C  j 

B -----~ A D B " ' ~ " B  C C " ' D " E  B C 
B ' ' ' ~  A C " " - ~ E  B C 

C ' ' ' ~  E A Special izat ion 

Upward unfolding 
o f  A -> B C 

Figure 1: Schematic examples of upward and downward unfolding of rules. 

function Score was thus formulated as follows: 

Scorea = Acorr Corra -- Aine InCa - ~s ize  S i z e a  

where Corr and Inc are the number of correct 
and incorrect parses allowed by the grammar,  
and Size is the size of the grammar measured 
as the total  number  of symbol  occurrences in the 
right-hand sides of its rules. Acorr and Ainc are 
weights controlling the pruning aggressiveness: 
their ratio Acorr/Ainc intuitively corresponds to 
the number of incorrect trees a specialization 
must disallow for each disallowed correct tree, 
if the specialization is to lead to an improve- 
ment over the current grammar. The lower this 
ratio is, the more aggressive the pruning is. The 
relative value of ;~size with respect to the other 
As also controls the depth  to which the search is 
conducted: most specializations result in an in- 
crease in grammar size, which tends to be more 
and more significant as the number and the size 
of rules grows; a larger Asize thus has the effect 
of stopping the search earlier. Note that  only 
two of the three weights are independent.  

4 T r e e b a n k  R e p r e s e n t a t i o n  

A folded treebank is a representation of a set 
of parse trees which allows an immediate as- 
sessment of the effects of inhibiting specific rule 
combinations. It is based on the idea of "fold- 
ing" each tree onto a representation of the gram- 
mar itself. Any phrase-structure grammar can 
be represented as a concatenat ion/or  graph - -  
a directed bipart i te  mult igraph with an or-node 
for each symbol  and a concatenation-node for 
each rule in the grammar. The present de- 
scription covers context-free grammars, but  the 
scheme can easily be extended to any unifica- 
tion grammar with a context-free backbone by 
replacing symbol  eqality with unification. 

Given a grammar G = (E, EN, S,R), we can 
define a relation ~ and a (partial) function ~?n: 

• ~/~ C EN × R s.t. ( A , r  / E r/~ i f fA = lhs(r) 

• r~R : R × Af + ~ E s.t. r l R ( r  , i )  = X iff 
rhs(r) = f i X %  ]/3[ = i - 1 

Figure 2 shows the correspondence between a 
simple grammar fragment and its concatena- 
t ion/or  graph. 

Each tree can be  represented by folding it 
onto the concatenat ion/or  graph representing 
the grammar it was derived with, or, in other 
words, by appropriately annotat ing the graph 
itself. If N is the set of nodes of a parse tree 
obtained using grammar  G, the corresponding 
folded tree is a partial  function f 

f : N x N - - - ~ R x A f  + 

such that  f ( n , n ' )  = (r, k) implies that  node n 
was expanded using rule r, and that  node n' is 
its k th daughter in the tree (Fig.3). In the fol- 
lowing, we will use the inverse image of (r, k) un- 
der f ,  which we denote ¢(r, k) : f - l ( ( r ,  k)) : 
{ ( n , n ' ) l f ( n , n '  ) : ( r , k ) }  C g × N .  This can in 
turn  be  seen as a partial  function 

¢ : R × Jkf+ ~ 2 N×N 

Disallowing the expansion of the k th element 
in the right-hand side of rule r by means of rule 
r' (assuming symbols match, i.e., (r/R(r, k), r ') E 
rl2 ) results in suppressing a tree where: 

3n, n', n" E N, k' E .hf + 
[<n, e ¢(r, k) A <n', n"> • ¢(r', k')] 

This check can be  performed very efficiently 
once the tree is represented by the ¢ function, 
i.e., once it is folded, as all this requires is to 
compare the entries for (r, k) and (r', k') 2 with a 
procedure linear in the size of the entries them- 
selves. If we used a more tradit ional represen- 
tation, the same check would require traversing 

2In fact, it suffices to check the entries for (r', 1). 



A 

• nO 

nl ~ B 
• n2 • 

c ~ n4 
• 

f n3 

c On5 

• n7 • n8 
f e 

¢(r l ,  1) = {<no,n1), <rt4,rt5>} 
¢( r l ,  2) = {<no, n2), (n4, n6)} 
¢(r2, 1) = 0 
¢(r2, 2) = 0 
¢(r3, 1) = {(n2, n3)} 
¢( r3 ,  2) = (<n2, n4>} 
¢(r4, I) = {<n6, nT>} 
¢( r4 ,  2) -~ {(n6,  n8) } 

A 

r 1 --% ~ r2 
O ^ ' ~  " O 

C x \  
e .  ~ ~;, . e  

r ~ ~o" 
~ ; !  '~r4  

Figure 3: A tree and its folded representat ion.  

the whole tree. The  worst-case complexity is 
still linear in the size of the tree, but  in prac- 
tice, the number  of nodes expanded  using any 
given rule is much  smaller t han  the total  num- 
ber of nodes. 

Whenever  a specialization is performed,  all 
folded trees tha t  are no longer licensed are 
removed; the conca tena t ion /or  graph for the 
g rammar  is upda ted  to reflect t he  in t roduct ion 
and the el iminat ion of rules; and the annota-  
tions on the affected edges are appropria te ly  re- 
combined and dis tr ibuted.  If the performed spe- 
cialization is X C_ DRU(r,  k) ~ {r}, 3 then  the 
conca tena t ion /or  graph is upda t ed  as follows 

= nux\{~) 
~r = ~r U {(lhs(r),~)l~ E X} \ {( lhs(r ) , r )}  

~ ( r " ,  i) = 

{ VR(r",i), r" ¢ X 
~]R(r,i), r u E X , i  < k 

= VR(r ' , i  -- k + 1), r" = a A ( r ,  k, r ')  E X, 
k < i < k + m - 1 ,  

~R(r, i -- m + 1), r"  = RA(r ,  k, r ')  E X, 
i > k + m - 1 ,  

where m = ari ty(r ' )  = Irhs(r')l is the number  
of r ight-hand-side symbols of rule r ~. For each 
tree tha t  is not e l iminated as a consequence of 

3If X = DRU(r, k) = {r}, then no update is needed. 

the specialization we have 

~(~",~) = 

¢(r",i), 
if r"  ¢~ X ,  r"  ¢ r' 

¢(~",/) k (<n',n">13n[<n,n'> e ¢(~, k)]), 
if r"  = r ~ 

{(n, n">13n', n", k'[<n, n'> ~ ¢(~, k) 
A ( n ' , n " )  E ¢( r ' , k ' )  A (n ,n ' " )  E ¢(r, i)]} 
if r"  = R A ( r , k , r  ~) E X , i  < k 

{(n, n")13n'[(n,  n') E ¢(r, k)A 
(n', n") E ¢(r ' ,  i -- k + 1)]} 
i f r " = R A ( r , k , r  ~) E X ,  k < i < k + m - 1 ,  

{ ( n , n " ) 1 3 n ' , n " , k ' [ ( n , n '  ) E ¢(r ,k)A 
<n', n"> e ¢(~', k')A 
(n, n'") E ¢(r, i - m + 1)]} 
if r"  = R A ( r ,  k, r ~) E X ,  i > k + m - 1, 

where again m = ari ty(r ' ) .  These  updates  can 
be implemented  efficiently, requiring neither a 
traversal of the tree nor of the grammar .  

5 E x p e r i m e n t a l  R e s u l t s  

We specialized a broad-coverage LFG grammar  
for French on a corpus of technical  documen-  
ta t ion using the m e t h o d  described above. The  
t reebank consisted of 960 sentences which were 
all known to be covered by the original gram- 
mar. For each sentence, all the  trees re turned  by 
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R --  { r l ,  r2,  r3,  r4} s . t .  
rl:  A - ~ c B  
r2: A --+ e A 
ra: B - + f A  
r4: B - a r E  

~2 = {(A, r l ) ,  (A, r2}, {B, r3), (B, r4)} 

C 

fiR: (rl,  1) ~ c 
(rl,  2) ~ B 
(r2,1) -+ e 
(r2, 2) ~ A 
(r3, 1) ~ f 
(r3, 2) ~ A 
(r4,1) I 
@4, 2) --~ e 

A 

r l  r 2 
® ® 

• • / • e 

/ 
r 3 \ / r 4  

f 

Figure 2: A tiny grammar  and the correspond- 
ing concatenat ion/or  graph. 

the original g rammar  were available, together 
with a manually assigned indication of which 
was the correct one. The environment used, 
the Xerox Linguistic Environment  (Kaplan and 
Maxwell, 1996) implements a version of opti- 
mality theory where parses are assigned "opti- 
mality marks" based on a number  of criteria, 
and are ranked according to these marks. The 
set of parses with the best marks are called the 
optimal parses for a sentence. The correct parse 
was also an optimal parse for 913 out of 960 sen- 
tences. Given this, the specialization was aimed 
at reducing the number  of optimal parses per 
sentence. 

We ran a series of ten-fold cross-validation ex- 
periments; the results are summarized in the ta- 
ble in Fig.4. The first line contains values for 
the original grammar.  The second line contains 
measures for the first-order pruning grammar,  
i.e., the g rammar  with all and only those rules 
actually used in correct parses in the training 
set, with no combination inhibited. Lines 3 and 
4 list results for fully specialized grammars. Re- 
sults in the third line were obtained with a value 
for ~corr equal to 15 times the value of Ainc in 
the objective function: in other words, during 
training we were willing to lose a correct parse 
only if at least 15 incorrect parses were canceled 
as well. Results in the fourth line were obtained 
when this ratio was reduced to 10. The average 
number of parses per sentence is reported in the 
first column, whereas the second lists the av- 
erage number  of optimal parses. Coverage was 
measured as the fraction of sentences which still 
receive the correct parse with the specialized 
grammar.  To assess the t rade off between cover- 
age and ambiguity reduction, we computed the 
F-score 4 considering only optimal parses when 
computing precision. This measure should not 
be confused with the F-score on labelled brack- 
eting reported for many stochastic parsers; here 
precision and recall concern perfect matching of 
whole trees. Recall is the same as coverage: the 
ratio between the number  of correct parses pro- 
duced by the specialized grammar  and the to- 
tal number  of correct parses (equalling the total 
number of sentences in the test set). Precision is 
the ratio between the number  of correct parses 
produced by the specialized grammar  and the 
total number of parses produced by the same 
grammar.  The fourth column lists values for the 
F-score when equal weight is given to precision 
and recall. Intuitively, however, in many cases 
missing the correct parse is more of a problem 
than returning spurious parses, so we also com- 
puted the F-score with a much larger emphasis 
on recall, i.e., with a = 0.1. The corresponding 
values are listed in the last column. 

The average number  of parses per sentence, 
both optimal and non-optimal, decreases signif- 
icantly as more and more aggressive specializa- 
tion.is carried out, and consequently, more cov- 
erage is lost. The most aggressive form of spe- 

4The F-score is the harmonic mean of recall and pre- 
cision, where precision is weighted a and recall 1 - a.  
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Avg.p/s Avg. o.p./s. Coverage (%) F(a-- 0.5) F(c~-- 0.1) 
orig. 1941 4.69 100 35.15 73.05 
f.o.pruning 184 3.38 89 40.64 71.89 
Acorr=lh)~inc 82 2.23 86 53.25 76.58 
~corr----lO)kin c 63 2.03 82.5 54.46 74.80 

Figure 4: Results of the 

cialization gives the highest F-score for c~ = 0.5, 
whereas somewhat more conservative parame- 
ter settings lead to a better F-score when re- 
call is valued more. A speedup of a factor 4 
is achieved already by first-order pruning and 
remains approximately the same after further 
specialization. 

6 Conclusions 
Broad-coverage grammars tend to be highly am- 
biguous, which may constitute a serious prob- 
lem when using them for natural-language pro- 
cessing. Corpus-independent compilation tech- 
niques, although useful for increasing efficiency, 
do little in terms of reducing ambiguity. 

In this paper we proposed a corpus-based 
technique for specializing a grammar on a do- 
main for which a treebank exists containing all 
trees returned for each sentence. This tech- 
nique, which builds extensively on previous 
work on explanation-based learning for NLP, 
consists in casting the problem as an optimiza- 
tion problem in the space of all possible spe- 
cializations of the original grammar. As initial 
candidate grammar, the first-order pruning of 
the original grammar is considered. Candidate 
successor grammars are obtained through the 
downward rule unfolding and specialization op- 
erator, that has the desirable property of never 
causing previously unseen parses to become 
available for sentences in the training set. Can- 
didate grammars are then assessed according to 
an objecting function combining grammar am- 
biguity and coverage, adapted to avoid overfit- 
ting. In order to ensure efficient computability 
of the objective function, the treebank is pre- 
viously folded onto the grammar itself. Exper- 
imental results using a broad-coverage lexical- 
functional grammar of French show that the 
technique allows effectively trading coverage for 
ambiguity reduction. Moreover, the parameters 
of the objective function can be used to control 
the trade off. 

specialization experiments. 
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